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ON THE INDICATRIX BUNDLE ENDOWED WITH
THE K-CONNECTION OVER A FINSLER SPACE.

Hiroshi Yasupa

Introduction. Let us consider an n-dimensional Finsler space M with a
fundamental function F ( x, y) and Cartan connection £/, (x, y). Then we
can construct the indicatrix bundle L=‘Tg’ [z over M, Ix being the indicatrix
at a point x of M, and introduce in a natural way a metric on [, which, in
fact, corresponds to the O-lift in [4]1.’ On the other hand, though the choice
of metrical connections on [, is highly arbitrary, it seems to the present au-
thor that, for the present, it is enough for a practical use to consider two
connections. One is the D-connection due to A. Deicke [ 1] and another is
the K-connection due to M. Kurita [ 3].

In the papers (8], (9], [10], we treated with the indicatrix bundle en-
dowed with the D-connection. In the present paper, we shall study the indic-
atrix bundle endowed with the K-connection. The terminologies and notations
are referred to the papers [ 9], [10] unless otherwise stated.

§1. Metric and connection on L. Let(@*) (4= 12+ +m-1) be an
adapted orthogonal coframe and (es) the adapted orthogonal frame dual to

(@w?). Then they are given by

(1.1) e'=&de' (a=12 9 n), @%= =¥ (a=12 +-., n-1),
(1.2) e,=& (0/%'=Ni2/3l'), enca=ena= £ad/3N,

together with

gu= 08, U=L=0F/3y', ¢"=3 L,
(i« 5

1) Numbers in brackets refer o the references at the end of the paper.
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Ea=1'=g"l,, DI'=dl'+ Njdz', Nj=T",
From now on, we use indices as follows : Small Latin indices g4, b, ¢, *
“5 & j ks -+ -run from 1 to n and capital indices A, B, C, + -+ - from 1 to
2n-1, while Greek indices a, /3, 7, « run from 1 to n-1.

A metric on [, is given by the tensor (G whose components are 6., with

>, we have

respect to (e¢,). If we denote the inner product by <

(1.4) <ew es>= 04 < wh, wl>=0848, (do?= 3 wrw’ (s;arc
A
length) .
Let L be endowed with the K-connection due to M. Kurita (3], (7)

This connection is defined by

@ a " B (50 &3 a
g (w}) [“""’ @Wig, Wp= — Wy, Wg, = wWg,
= @ —
B
la) la) al — —
Wy Wieg W = w il =0,
() - () a __ a -
Pn C"Pb\'?’l—rlﬂ)cir!ﬁ!f?l_o’

b A c A (7!
wii‘*-rn'c:“’ + 'y, o',

i =_§tu|J§i Fa I‘,,“Ey,=—§f|,§i§#,

boe

where j and |; indicate the first and second covariant differentiations of

(1.5)

The K-connection is metrical but not symmetric in general.

Cartan.
§2. Torsion and curvature. The equations of structure are given by
dwﬂ = w'/A CU: 21 w'B‘/\#{Z )
(2 1)
do'® = W AVE + o Aaif) + L 29 oA,
where
#l:'; :AJ‘N gé :‘ é’l”; (Ub‘ U‘U?.)Z/ljl‘k\ o CI; g{GE;wEY:,
(2.: 2 ;
Z(ﬂ:m s Roijx grn f. ?:: Ay = '2 }?agu /ayk’ AJIK = .(:'18 Ao
The torsion form 4 and tensor T.% are given by
(2 3) T": dwd_ wrs‘/\mg= % T“f\cwﬂ/\w(: ( THA(,‘*{" TC’.‘B= O)
Then in virtue of (1.5), (2.1), (2.2), and {2.3) we have
(GJ: w"/\u‘l?‘.ni_ %Z(albr wb/\mc’

ra:w:ﬁ'/\lu:gl! T
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(2 .4) Tnﬂc =Tus)ir,=Te= T1fsiﬁ';r: = 0, T.'rxcb SRR Ab:ﬂr, =A% C;: f;,
— Ts=Tpo% = ROIJ.\' ety :r Trjuqur T A.rllk ( 0iGe C:) c;

Then we can state

Proposition 1. The K-connection is symmetric if and only if M is a lo-
cally Euclidean space. A path in L with respect to the K-connection does not
coincide with an extremal in L.

Proof. If T,%.= 0, it follows from (2 .4) that A,,= 0 and R,',,= 0O
and vice versa. A path coincides with an extremal if and only if T,%. are
skew-symmetric in all indices A, B and (, while (2 .4) denies the latter.

Let Q5 and K., be the curvature form and tensor. Then they are de-
B D

fined by
(2 .5) Qp= w.ltl/\“’c‘ — dwj = % Ke'ep @ Nw® (Kg'ep= — Kg'e)s

which is reducible to

(2.6) Q=7 Ritea@ Awi+ Pyl s 0 Nt + 3 Sutyua @7 Ne'?,

Calculating the second term of (2 .5) on use of (1.1), (1.3), (1.5),
(2.1), (2.2) and the Ricci identities [ 6], and comparing with the right
hand side of (2 .6), we have (ecf. [7])
Rbacd = Ritkh g:‘ g:; E: ng;! Phar'd‘: = Pj‘ich ’::z ’;‘;’ Cf f;.

(C 1)
Sbla‘}'ud‘l= SJ!):I; gf ‘::, g; r}j'!

(C 2) Risica= Pig) cior = S-‘a\nwua\ =.0,
(C 3) thﬂ::d: PLEL:KG‘) = S‘aﬂ:w.m =0,

R ea = RranSi Ea L E2y Pilicior = Pl ML EE LS,
(C 4)

:.e”-Jl‘:r» wy= (. SJ[kh + Ak ’1;_ }ln;h:() é’? C:: é’; g:

where R,'.,, P/'x» and S,,, are the first, second and third curvature ten-

sors of Cartan.
n m m
If we denote by R,'yn, P,wn and S,',. the tensors on M determined by

(Cm) (m=1, 2,3, 4) respectively, we obtain the following :

— 18 =



4

—— ON THE INDICATRIX BUNDLE ENDOWED WITH THE K-CONNECTION OVER A FINSLER SPACE

1 1 1
B 3 i b el i
(2 °7) Rjkh_RIkh’ PJI»h_Pfkhl ;kh S}.\'h!

i

2 2
=3 t L) e i b i
Jth_lJROkhr PJ‘kﬁ_lJPONhI Sjlash‘“lemu

)
o
&
.

3% 3 . 3
(2 +9) R;‘xn = Ri%ns Pilen= I P, %ns SJlkh ={ Tikn
Jiul = R.' xn— By s Rorm s
3 : o i ‘
(2.10) Py = Poxiy— Pl — Poenlyy
i ‘ ,
Si'sn= Sjrkh. + hswhe = R hrs
where T",, is any homogeneous indicatory tensor of degree O in [, provided
T‘.kh T Tlhk .
Immediately we have

Proposition 2. The curvaiure tensor Ku'cp on L never vanishes.
Proof. If K%, = 0, il follows from (2 .7) and (2 .10) that

iljkhi _vhjh h: = O;

which implies h;,, = O and hence the rank of (ges) is less than pn, contrary to

hypothesis.

§3. Covariant differentiations and distributions on L. For the sake
of brevity, we consider only a proper tensor of type (1 .1) on J, whose com-

ponents are T (x, /) with respect to { e,). The covariant differentials of

4 are given by

DTi=dTi+ wTi— wpTi= F,; Tha®,

where V), Tj are covariant derivatives and the camponents of a tensor of type

(1.2) on L. For V, T}, we have
VoaTs="10.T8— T8 o :N; §L +. 1505 T2 =T,% T,
(3.1) Vi Td= Bia T4+ I'vfer T8 — Isla) T35
G, Ti="8: OTY Ox's Viiy= Vrnia, Ba Th=TH . s

Let T be a tensor on [, whose components are given by

T"!'— { T:: TS»J T!.l — TJ := b Tnﬂl_ TJ g! g.@!

(3-2) B b tal ) a J
T(al- T‘,al h =T.n‘ g.‘ b’ I‘¢‘3w=’1-‘J' gl é‘ﬁ’
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where i}"j, f‘f, ’Z3“j and ’;“j are tensors on M. Then, from (1.5) and (3.1)

we have
P Th= 08, JEP G L, VTl =10, 88 ELEL,
B P = BT e A EER
@earemr 2t Qe =T R R T,
Py T8 =05 |, B2 4= B0 l0td,
Foy i1 =0 [, 0y et gy, Floee

Let X=y"¢, and Y= p"e, be any two vector fields on L. Then if we
denote by F; the covariant differentiation in the direction of X, it follows from
(1.2) and (1 .5) that

VyY= (6\an+ UAF,\HR) HHEn,
(3.4)
E)‘avr): auv”‘t}”u;.’\"; g;: a.a:U”= ajagU“'

A distribution F on [, is said to be parallel if, for any vector field X on
L and any vector field Y belonging to FE, F.Y belongs always to F.

Let V be an n-dimensional distribution on [, defined by @'®'= (. Then it
is known that M is realizable as V such that the metric and connection on V
induced from those on [, identify with the metric and connection on M, and
that a local base for V is given by (e,), being also a local base for M. From

(1.5) and (3 .4) we have

o b 181 = b
Z,d €a — a.-teb+Pnr\€'ﬂ - a A€ns
(3 . 5)
- i a d
PXY_ (651)‘ + v -1_'(1 H) uueril

where Y= "¢, and »'* = 0.

Let [ be an (n-1)-dimensional distribution on I, defined by «® = (.
Then [ is involutive and the orthogonal complement of V, too. And the indi-
catrix [, at any fixed point x of M is regarded as an integral manifold of J,
the local equation of [, being x' = const., and a local base for [, is given by

(e ). In the same way as before we have
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Vwe.a; = F:aabA e, + Fifaﬁrl.{ gy = F':Jﬁwla €
(3.6)
Pe¥= (8;0"+ 0" Ti) uteian,
where Y= 104'%"¢,, and »* = 0. In virtue of (3.5) and (3 .6) we can state

Theorem 1. The distributions V and I are both parallel in L.

Any indicatrix [, becomes a Riemannian submanifold of [, by means of the
metric and connection on [, induced from those on [, and the differential geo-
metry to be developed on ], is the same as that in §2 of (9].

I is called an quio-paralle! submanifold of [, if, for any vector fields X
and Y on [, F,Y is tangential to I, at every point of J, [2].

I is called to be A-parallel in [ along a curve C in M if the h-mapping
along C is the parallel displacement with respect to the K-connection (9 ).
From Theorem 1 we have

Corollary 1. 1.  Any indicairix I. is an auto-parallel submanifold of L.
Any indicatrix I. is h-parallel in L along any curve in M.

V is called to be auto-parallel in L if, for any vector fields X and v
belonging to ¥, F, Y belongs to V.

V is called to be y-parallel along an indicatrix [, if, for any vector field
Y belonging to V and any vector field X on J,, V.Y belongs to V. From The-
orem 1 we have

Corollary 1. 2. The distribution V is auto-parallel in L and v-parallel
along any indicatr: [..

§4. Curves in L. Let C be a curve in [, defined by

(4.1) C:x'=zx" (s)i'='(s) (5;are length),
provided F (x, [) = 1.
Putting X= (w*/ds) e,, from (1 .5) and (3 .6) we have

Py X=1d(/ds)/ds+ (@"/ds) (w/ds) I',%s | ea
+ 1d (@' /ds)/ds+ (@®'/ds) (0®/ds) T \&'s} erars

4.2)

which is, in virtue of (1 .1), (1 .3) and (1. 5), reducible to
V‘\‘Xz £* C? 2a.F 7]‘ gza@:cr:'

(4.3) & =d*x"/ds*+ I} (dx'/ds) (dx"/ds)+ A,'x (dx’/ds) (DI"/ds)
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"'=hs |d (DI"/ds)/ds+ I'*’ (dx’'/ds) (DI"/ds)l

+ A (DI'/ds) (DI*/ds)
Hence, from (4 .3) we have

Theorem 2. An equation of a path C in L is given by

(4.4 €&€=0 7'=0 in(4.3).

Let C:x'=2x'(s) (s;arc lenth) be a curve in M. Then if C is a ho-
rizontal lift of C to [, the following holds good along C :

(4.5 @/ds=0 or DI'/ds= 0 .
Applying (4 .5) to (4 .3), we get

(4.6) PyX=88leq, ' =d2'/ds*+ I (dx’/ds) (dx"/ds).

Hence, because of (4 .6) we can state

Corollary 2. 1. If a horizontal lift C of a curve C in M to L is a path

in L, then the curve C is a geodesic in M. Conversely, any holizontal lift
of a geodesic in M is a path in L.

Let C*:1'=1"(s) (s;arc length) be a curve in an indicatrix J,.
Then if C is tangential to [, along C* the following holds good :
(4.7 @/ds=0 or dx'/ds= 0.

Applying (4 .7) to (4 .3), we obtain

(4.8 FiX=7"Clear 1 =nhe (d?1'/ds?) + A, (di’/ds) (di*/ds).

In this case, since ki (d?!"/ds?) = d*!'/ds*+ 1", it follows from (4 .8)
that Fy X= O if and only if

(4.9 2!/ ds*+ 1"+ AS (dl'/ds) (dl¥/ds) = 0,

which is the equation of a geodesic C* in [, (5], (10].
Thus we have

Corollary 2. 2. A path C in L satisfying (4 . 7) is a geodesic in some

indicalriz I.. FEvery geodesic in any indicatriz I. is a path in L.
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