

Asahikawa Medical University Repository http://amcor.asahikawa-med.ac.jp/

眼科写真(2022)38:48-54.

OCT-Angiography -循環障害による網膜血管床閉塞と 再潅流の検索-

福井 勝彦, 大谷地 裕明, 中川 浩明,

# **OCT - Angiography** -循環障害による網膜血管床閉塞と再灌流の検索-

福井 勝彦 1), 大谷地 裕明 1), 中川 浩明 2)

山田眼科1), 旭川医科大学病院2)

# 1. はじめに

光 干 渉 断 層 計 (Optical coherence tomography:以下 OCT) <sup>1)</sup>は光の物理的特性で ある干渉現象から眼球組織を画像化することの できる機器である.光軸の奥行方向の測定(Ascan)を水平方向に連続撮影することで二次元 画像化(B-scan)し,更にB-scan 画像を複数 ライン撮ることで三次元画像も得られる.OCT -Angiography<sup>2)</sup>(以下 OCTA)は,OCT 画像の 振幅の変化量を加算平均して画像を再構築でき る.複数枚のB-scan 画像から振幅の変化や位 相変化を捉え,血流の有無を閾値により二値化

(1:0)することで血管像の作成が可能である. 検査も侵襲が無く,簡便で任意の層を En face 画 像で表示できる.近年では,同一部位の経過観察 が可能なものや高解像度化,高速化,広角化が進 歩した機種が増えてきている.撮影対象として 血管閉塞を伴う症例<sup>3-10)</sup>や脈絡膜新生血管の治 療効果<sup>11)</sup>,脈絡膜循環障害<sup>12,13)</sup>,新生血管黄斑 症における脈絡膜新生血管の深さレベル(厚み) の検索<sup>14)</sup>,網膜内血管腫状増殖の微小血管増殖 や Stage 分類<sup>15)</sup>の検索も可能となった.

今回は、網膜循環障害を伴う全身性エリトマ トーデス (systemic lupus erythematosus : 以 下 SLE)<sup>16)</sup>および、網膜中心静脈閉塞 (central retinal vein occlusion : 以下 CRVO)の亜型で ある半球状中心静脈閉塞 (hemispherical central vein occlusion : 以下 hemi CRVO)<sup>17)</sup>に 対し,OCTA で経過観察を行い、網膜血管床閉 塞と再灌流を検索したので報告する.膠原病の 一つである SLE は,眼合併症の主要病変に網膜 の閉塞性動脈炎がある.網膜病変は,網膜梗塞が その基盤にあり、急性多発性に発症する網膜の 軟性白斑がみられる.軟性白斑は放射状乳頭周 囲毛細血管(redial peripapillary capillaris:以 下 RPCs)の範囲にみられ,網膜循環障害が著 しい疾患である.

CRVO は、網膜中心静脈の血管内に血栓(塞 栓)が形成され、その上流の静脈にうっ滞が生 じ、血管壁が破壊されることで静脈に沿って出 血する疾患である. CRVO の亜型として中心静 脈が先天的に強膜篩状板部で上下に分枝してい るとき、その一方が閉塞する hemi CRVO がある.

# 2. 対象と方法

対象は SLE と hemi CRVO の 2 症例である. 撮影装置は,波長840nm, scan速度70,000A - scan / 秒, 深さ方向の解像度が 5µm のフー リエドメイン OCT である, RTVue XR Avanti (Optovue 社製) を用いた. 本装置は 自動分層化機能により三次元網膜画像(3D) Reina) を構築することができ, OCTA 画像は自 動分層化機能により,網膜表層画像(ILM~IPL -10μm), 網膜深層画像 (IPL-10μm~OPL+ 10µm),網膜外層画像 (OPL+10µm~BML-10µm), 脈絡膜毛細血管板層画像 (BML-10µm~+30µm)の4画像が表示される.また, 三次元視神経乳頭画像(3D Disc)では、硝子体 画像(ILM-2000µm~ILM), 視神経乳頭画像 (ILM~IPL-10µm), 放射状乳頭周囲毛細血 管画像(ILM~NFL), 脈絡膜篩状板層画像 (BRM-10µm~BRM+30µm)の4画像と水 平断と垂直断のB-scan 画面上の segmentation ラインで観察した.

## 3. 結果

## 1) SLE

SLE 症例の初診時の眼底写真と OCT の断層 画像を図1に示す. 眼底写真では拡張した網膜 静脈と、RPCs の範囲に乳白色の軟性白斑がみ られた. OCT の水平断および垂直断では, 隆起 した網膜層に拡大した嚢胞と漿液性網膜剥離 (serous retinal detachment:以下 SRD) がみ られた.フルオレセイン蛍光眼底造影 (fluorescein angiography:以下 FA) とインド シアニングリーン蛍光眼底造影 (Indocyanine green angiography:以下 IA)では、早期から虚 血による網膜血管と脈絡膜血管の循環障害がみ られた (図 2). OCTA では視神経乳頭周囲の RPCs に循環障害がみられた(図3). 黄斑部で は網膜表層画像と網膜深層画像にも循環障害が 判定でき, 脈絡膜毛細血管板層画像にも黒い陰 影領域が検索できた(図4).



図1 SLE の初診時所見 a: RPCs の範囲に軟性白斑 b:囊胞(矢頭)とSRD(矢印)



図 2 FA/IA 所見(早期) a:網膜血管の循環障害(FA: 矢印)

- b:脈絡膜血管の循環障害(IA:矢印)



初診時の視神経乳頭部 OCTA 画像(3×3mm) 図 3 a: 視神経乳頭上方の RPCs 循環障害(矢頭) b: 視神経乳頭下方の RPCs 循環障害(矢頭)



図 4 初診時の黄斑部 OCTA 画像(3×3mm) a:網膜浅層血管の循環障害(矢頭) b:網膜深層血管の循環障害(矢頭)と嚢胞(矢印) c:網膜外層 d:脈絡膜毛細血管板層の陰影(矢頭)

この症例は初診から3日後にステロイド治療 が開始された. それから約1週間後に撮影範囲 を広角(8×8mm)にして撮影した OCTA では, 網膜表層画像および網膜深層画像に上下血管ア ーケード内に広がる網膜血管床閉塞がみられた. また、網膜外層画像と脈絡膜毛細血管板層画像 にも黒い陰影領域が検索でき, 脈絡膜毛細血管 板層にも循環障害が示唆された(図5).

約1か月後のOCTAでは、視神経乳頭上方で RPCs, 黄斑部で網膜血管床閉塞の進行と拡大が みられた. 脈絡膜毛細血管板層画像では, 脈絡膜 毛細血管板の循環障害を示唆する黒い陰影は消 褪し、顆粒状の均一なモザイクパターンに改善 していた (図 6).



### 図 5 約1週間後の黄斑部 OCTA 画像(8×8mm)

- a:網膜表層血管の循環障害(矢頭)
- b:網膜深層血管の循環障害(矢頭)
- c:網膜外層の陰影領域(矢頭)
- d:脈絡膜毛細血管板層の循環障害(矢頭)



#### 図6 約1か月後の 0CTA 画像

- a: 視神経乳頭部上方の RPCs の循環障害拡大(矢頭) (4.5×4.5mm)
- b:黄斑部網膜表層血管の循環障害進行(矢頭) (3×3mm)
- c:黄斑部網膜深層血管の循環障害進行(矢頭)
   (3×3mm)
- d:脈絡膜毛細血管板層(3×3mm)



- 図7 約6か月後の眼底写真と0CT 所見
  - a:軟性白斑の消褪
  - b: 嚢胞と漿液性網膜剥離が消褪

約 6 か月後の眼底画像と OCT の断層画像を 図 7 に示す.初診時にみられた視神経乳頭およ び視神経乳頭上部 RPCs の範囲に発生していた 軟性白斑は消褪していた. OCT の黄斑部水平断 および垂直断では,網膜内の嚢胞と SRD の消褪 が認められた.

OCTA では,視神経乳頭の RPCs および黄斑 部にみられた網膜表層血管の循環障害は血流が 再灌流(循環改善)していることが確認できた (図 8).



図8約6か月後のOCTA画像(3×3mm)
 a: 視神経乳頭上方の RPCs 再灌流(矢頭)
 b: 黄斑部網膜表層毛細血管再灌流(矢頭)

約9か月後,網膜表層画像と網膜深層画像か ら黄斑部上鼻側の RPCs および黄斑部にみられ た循環障害が改善傾向にあることが確認できた. また,約1週間後の網膜外層画像にみられた黒 い陰影領域が消褪していた.さらに,脈絡膜毛細 血管板層画像でも,循環障害を示唆する黒い陰 影が消褪し,正常眼と同様の顆粒状の均一なモ ザイクパターンを示していたことから脈絡膜層 の血流改善が示唆された(図9).その1年後(初 診から約1年9か月後)には網膜表層および網 膜深層の血管の循環障害はさらに改善がみられ た(図10).



図9 約9か月後の黄斑部 OCTA 画像(8×8mm)

- a:網膜表層毛細血管の循環障害縮小(矢頭)
- b:網膜深層毛細血管の循環障害縮小(矢頭)
- c:網膜外層の循環障害改善
- d:脈絡膜毛細血管板層の循環障害改善



図 11 初診時の眼底写真と 0CT 画像
 a:軟性白斑(矢頭)と線状・火炎状網膜出血
 b:網膜の肥厚と嚢胞(矢頭)



図10 約1年9か月後の黄斑部 OCTA 画像(8×8mm) a:網膜表層の循環障害がさらに改善(矢頭) b:網膜深層の循環障害がさらに改善(矢頭)

![](_page_4_Picture_11.jpeg)

図 12 初診時の FA

- a:造影早期のFA画像.網膜表層出血は蛍光遮断(矢印), NPAは充盈欠損(矢頭)
- b:造影後期の FA 画像. 網膜静脈から蛍光漏出(矢印), NPA は充盈欠損の持続(矢頭)

約9か月後のFAを図13に示す.造影早期で は、初診時にみられた網膜表層出血が消褪した ことにより、網膜毛細血管瘤とNPAの範囲が明 瞭に観察できるようになった.そのため、閉塞領 域の辺縁から蛍光漏出を伴う網膜新生血管の発 生が確認できた.また、閉塞部の血流を代償する 拡張毛細血管による側副血管や動静脈短絡路の 形成が判定できた.造影後期では、造影早期に確 認された網膜新生血管より硝子体中に旺盛な蛍 光漏出を認めた.また、NPAには初診時と同様 に造影剤の流入は認められなかった.

# 2) hemi CRVO

網膜中心静脈の下方が閉塞した hemi CRVO を図 11 に示す. 初診時の眼底写真では網膜静脈 の拡張と蛇行,下方の神経線維の走行に沿った 軟性白斑と網膜表層に線状・火炎状網膜出血が みられた. OCT では,網膜は肥厚し,網膜内に は大きな嚢胞を伴う黄斑浮腫がみられた. FA の 造影早期では,網膜表層出血に一致した蛍光遮 断と網膜の循環障害による無灌流領域(non・ perfusion area:以下 NPA)が低蛍光を示して いた.造影後期では,網膜静脈から蛍光漏出がみ られ,NPA の血管には蛍光の充盈は認められな かった(図 12).

![](_page_5_Figure_1.jpeg)

図 13 約 9 か月後の FA 所見

 a:造影早期の FA 画像.
 動静脈の短絡路(矢印),新生血管(矢頭)
 b:造影後期の FA 画像.
 閉塞部位の虚血(矢印),新生血管からの蛍光漏出(矢頭)

この症例は初診時から 6 か月後と 9 か月後に OCTA を撮影し経過を観察した. 6 か月後の網 膜表層画像に網膜新生血管の萌芽が検索できた. 網膜表層画像,深層画像ともに再灌流はみられ なかった. 9 か月後には,網膜表層画像に拡大し た網膜新生血管の血管構築が明瞭に捉えられて いる.また,網膜表層画像,深層画像の NPA に 再灌流はみられなかった(図 14).

![](_page_5_Picture_4.jpeg)

## 図 14 初診時より6か月後と9か月後の0CTA 画像 a:6か月後の網膜表層に新生血管の萌芽(矢頭).

- 再灌流はみられない(矢印)
- b:6か月後の網膜深層. 再灌流はみられない(矢印)
- c:9か月後の網膜表層に拡大した新生血管(矢頭). 再灌流はみられない(矢印)
- d:9か月後の網膜深層. 再灌流はみられない(矢印)

# 4. 考察

造影剤(フルオレセイン・Na:最大吸収波長 493nm)を投与する FA では、広範な波長域 (barrier filter: 500nm~680nm)から二次元 の蛍光画像を構築することができるが、RPCs, 網膜表層血管、網膜深層血管を詳細に分層して 深さレベルで検索することは困難である.対し て, OCTA では, 眼底内に動きがあるものは白 く (血流:1), 動きの無いものは黒く (静的な組 織:0) 画像化される. さらに, 自動分層化機能 により 3D Reina, 3D Disc ともに 4 画像を表示 して組織内の深さレベルを数十 µm レベルで観 察することが可能である.しかしながら,OCTA は振幅の変化が遅いもの(充盈遅延: filling delay) も流れの無いもの(充盈欠損: filling defect)として再構築されてしまうのが短所であ る. これは, filling delay で血流が低下すると OCT 信号の閾値が遮断され filling defect とし て捉えられることが原因 5<sup>)</sup> である. つまり, FA で低蛍光を示す循環障害において, OCTA では 時間的な変化(時系列)の検索が不可能で filling delay と filling defect の鑑別は困難である.

SLE において, RPCs の網膜血管床閉塞は非 可逆性である.小範囲の場合は、軟性白斑は数か 月後には消褪し、限局性の網膜萎縮を残して治 癒する.しかし,広範囲で増悪再燃を繰り返す場 合には,網膜静脈は極端な拡張の結果,数珠状を 呈し, 続発性の網膜血管新生や硝子体出血など により失明に至る場合がある. 今回の SLE 症例 では、3D Reina にて初診時から網膜表層および 網膜深層血管に循環障害が確認できた. 網膜血 管床閉塞は, OCTAの網膜神経線維層の RPCs, 網膜神経節層にある網膜表層血管、内顆粒層の 外側にある網膜深層血管にも発生することが判 定できた.ステロイド治療が初診から3日後に 開始されたものの,約1週間後の広角画像では, 脈絡膜毛細血管板層にも血流の悪い領域が黒い 陰影(脈絡膜循環障害)11)として検索できた.約 1か月後では、3D disc での RPCs と 3D Retina での網膜表層および網膜深層に循環障害の進行 と拡大がみられた.約6か月後には、軟性白斑 の消褪が認められ、RPCs と網膜表層及び網膜

深層に再灌流が検索できた.これらのことから, SLE での循環障害は filling delay であったこと が考えられた.約9か月後のOCT 画像では,網 膜内の嚢胞及び SRD の消褪が認められ, OCTA でも網膜表層画像および網膜深層画像で改善が みられたものの, 一部に filling delay が残存し ていることも確認できた. 脈絡膜毛細血管板層 画像では、初診時から約1か月後に顆粒状の均 ーなモザイクパターンの画像に改善しており, 今回の症例では脈絡膜の循環障害改善が網膜の 循環障害改善より先行していたことが示唆され た.約1年9か月後には網膜表層および網膜深 層血管は約1年前と比較し緩徐に循環障害が改 善傾向にあることが確認できた.本症例によっ て、SLEにおける OCTA を用いた循環障害の範 囲,経過,治療効果(再灌流)の検索が有用であ る可能性が考えられた.

CRVO では、網膜静脈の拡張と蛇行、視神経 乳頭を中心とした網膜神経線維の走行に沿って 網膜表層に線状・火炎状網膜出血がみられるこ とが多い.また、黄斑浮腫がほぼ全例でみられ、 虹彩表面に新生血管が発生し、血管新生緑内障 を合併するなど様々な所見が生じることが知ら れている. 今回の hemi CRVO 症例では分枝し た下方血管のみが閉塞し眼底の下半分に軟性白 斑と網膜表層に線状・火炎状網膜出血がみられ た. FA では、下方の静脈に循環障害と低蛍光が 認められた. FA による経過観察にて血流の再灌 流を検索したものの,約9か月後にも再灌流は 認められず、閉塞血管の辺縁から蛍光漏出を伴 う新生血管が発生した.また,閉塞部の血流を代 償する拡張毛細血管による側副血管や動静脈短 絡路が形成されていた.よって,循環障害は filling defect であったことが判定できた.

循環障害を疑う低蛍光には filling delay と filling defect があり, filling delay は, 視力低下 の転帰は比較的良好であるが, filling defect は, 血管症閉塞が高度で視力回復は不良なことが多 い. filling delay と filling defect を鑑別して治 療するには, 経過観察しながら複数回の FA を 施行する必要がある. OCTA の短所としては, 先にも述べたように filling delay も filling **defect** として画像化されてしまうことがある. 簡便な検査法であるものの 1 回のみの検索では, filling delay と filling defect の判定は困難で, OCTA でも経過観察が必要であった.

約6か月後のOCTAでは,網膜表層画像では, 血管閉塞部辺縁に網膜新生血管の萌芽が捉えら れ,約9か月後には,萌芽から拡大した網膜新 生血管が確認できた.さらに,網膜の循環障害に より広域に閉塞した NPA 内の網膜表層及び網 膜深層もOCTA で経過観察したが,再灌流は確 認できず filling defect であることが確認できた.

# 5. まとめ

非侵襲的な検査手段である OCTA は網脈絡膜 の血管病変を描出できる新たな技術で蛍光眼底 造影<sup>12)</sup>に類似した画像が得られる.しがしなが ら,OCTA では filling delay も filling defect と して再構築されてしまう短所がある.

SLE は, 膠原病の一つであり RPCs の分布範 囲に軟性白斑がみられ,循環障害が著しい疾患 である. 今回の症例の場合では,OCTA にて網 膜血管床閉塞の再潅流のみならず SLE による 脈絡膜毛細血管板層の循環障害の情報や改善が 検索できた. また CRVO の亜型である hemi CRVO ついて,OCTA にて経過観察をしても循 環障害の回復はみられず filling defect であると 考えられた.しかしながら,新生血管の萌芽や経 過観察中に拡大した新生血管の血管構築の観察, さらに網膜表層及び網膜深層での再灌流の有無 が検索には有用であった.

## 参考文献

- 春名正光:光コヒーレンストモグラフィ(OCT).
   Medical Photonice 1:29-33, 2010.
- 2) Hong YJ, Miura M, et al : Noninvasive investigation of deep vascular pathologies of exudative macular disease by highpenetration optical coherence angiography. Invest Ophthalmol Vis Sci 54: 3621-3631, 2013.

- 石羽澤明弘:OCT アンギオグラフィ RTVue XR Avanti. 眼科 57:1439-1449, 2015.
- 三浦雅博:総説 OCT angiography. 眼科 57:1557-1568, 2015.
- 5) 野崎実穂:これからの眼底血管評価法 OCT angiography. 臨眼 69:1752-1762, 2015.
- Spaide RF , Fujimoto JG et al : Image Artifacts in optical coherence angiography. Retina 35 : 2163-2180, 2015.
- 石羽澤明弘:OCT アンギオグラフィ. あたらし い眼科 33:175-187, 2016.
- Ishibazawa A, Nagaoka T, et al:optical coherence tomography angiography in diabetic retinopathy: A Prospective Pilot Study. Am J Ophhalmol 160:35-44, 2015.
- Usui S, Ikuno Y, et al: Circadian changes in subfoveal choroidal thickness and the relationship with circulatory factors in healthy subjects. Invest Ophthalmol Vis Sci 53:2300-2307, 2012.
- 福井勝彦: 3D-OCT によるOCT Angiogaphy -脈絡膜新生血管の構築-.
   日本眼科写真協会誌 33: 36-40, 2016.
- 福井勝彦: OCT Angiogaphy 脈絡膜 循環障害の観察-. 日本眼科写真協会誌 34:18-23, 2017.
- 13) 福井勝彦: OCT Angiogaphy 一蛍光眼底
  造影との比較一. 日本眼科写真協会誌 35:
  27-33, 2018.
- 14) 福井勝彦,大谷地裕明,他:OCT Angiography -新生血管黄斑症における
   脈絡膜新生血管の効果的な検索方法-.日
   本眼科写真協会誌 36:35-41, 2019.

- 15) 福井勝彦,大谷地裕明,他:OCT Angiography -網膜内血管腫状増殖の微
   小血管増殖とStage 分類-.日本眼科写真
   協会誌 37:8-14, 2020/2021.
- 16) Kinouchi R, Kinouchi M, et al.
  Macular capillary recovery in systemic lupus erythematosus complicated by Kikuchi-Fujimoto disease. Int Ophthalmol 38 : 1797-1801, 2018.
- 17) Sogawa K, Taiji N, et al. En-face optical coherence tomography angiography of neovascularization elsewhere in hemicentral retinal vein occlusion. Int Med Case Rep J 8:263-266, 2015.