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Abstract

We investigated the lock-in transition of charge density waves (CDWs) in quasi-one-dimensional

conductors, based on McMillan’s free energy. The higher-order umklapp terms play an essential

role in this study. McMillan’s theory was extended by Nakanishi and Shiba in order to treat

multiple CDW vectors. Although their theories were aimed at understanding CDWs in quasi-

two-dimensional conductors, we applied them to the quasi-one-dimensional conductors, including

K0.3MoO3, NbSe3, and m-TaS3, and confirmed its validity for these cases. Then we discussed

our previous experimental result of o-TaS3, which revealed the coexistence of commensurate and

incommensurate states. We found that the coexistence of multiple CDW vectors is essential for the

lock-in transition to occur in o-TaS3. The even- and odd-order terms in the free energy play roles

for amplitude development and phase modulation, respectively. Moreover, consideration of the

condition of being commensurate CDWs allowed us to relate it with that of the weak localization

in random media.
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I. INTRODUCTION

Lock-in transition between incommensurate and commensurate charge density waves

(CDWs) has been studied since the mid-1970s [1–14]. It is induced by the coupling of a

lattice periodicity with a charge density wave. The transition is often accompanied with

the formation of a discommensuration lattice between commensurate and incommensurate

phases. Occurrence of discommensuration was predicted by theory [2] and found in quasi-

two-dimensional conductors, e.g. in 2H-TaSe2 [5, 7] and 1T-TaS2 [9, 11, 14], both of which

are typical quasi-two-dimensional conductors with Peierls transition. In contrast, the lock-in

transition of CDWs in quasi-one-dimensional conductors remains unsubstantiated, although

several experiments were reported [6, 8, 10, 12]. We previously performed a synchrotron

x-ray study in o-TaS3 and suggested that the discommensuration lattice is formed when

commensurate and incommensurate phases coexist [13]. However, this preliminary report

lacked theoretical interpretation. In this paper we review the theoretical treatments of

the lock-in transition and apply them to the quasi-one-dimensional conductors, including

K0.3MoO3, NbSe3, and m-TaS3. The validity of the theory is confirmed for these cases. We

then go on to discuss the synchrotron data of o-TaS3. The coexistence of the commensurate

and incommensurate phases is found to be essential for the lock-in transition. The even- and

odd-order terms in free energy play roles for amplitude development and phase modulation,

respectively. Moreover, consideration of the condition of being commensurate CDWs allows

us to relate it with that of the weak localization in random media [15]. This explains why

quantum interference phenomena have been observed in CDWs [16, 17].

II. PREVIOUS EXPERIMENTS

Let us take an overview of the lock-in transition in o-TaS3. This quasi-one-dimensional

conductor undergoes a Peierls transition at 220 K. At the transition, all the electrons on

the Fermi surfaces contribute to form the Peierls gap and the system becomes an insula-

tor, contrary to similar materials, such as NbSe3 and m-TaS3, in which remained electrons

contribute to metallic conduction even after Peierls transitions occur. Hence, by absence

of remained normal electrons, o-TaS3 is one of the most appropriate materials for CDW

studies. The first x-ray study was made by Tsusumi et al. who determined the CDW vector
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TABLE I. Characteristics of quasi-one-dimensional CDW systems. The wave vectors of each ma-

terial and its ground state are shown (commensurate, incommensurate, or nearly commensurate).

Material CDW 1 CDW 2 Ground State

o-TaS3 0.255c∗ → 0.252c∗ 0.250c∗ C

K0.3MoO3 0.263b∗ → ∼0.250b∗ − NC

m-TaS3 0.253b∗ 0.247b∗ IC

NbSe3 0.245b∗ → 0.241b∗ 0.260b∗ IC

of o-TaS3 [18]. This work was followed by Roucau, who found that the CDW vector shifts

from being 0.255c∗ (incommensurate) to 0.250c∗ (commensurate) at low temperatures [8].

The details of the lock-in transition were revealed by use of synchrotron diffraction [13]. By

lowering the temperature, the CDW vector shifts from being incommensurate closer to com-

mensurate; however, it stops at 0.252c∗. The commensurate CDW independently appears

at 130 K. In addition, coexistence of the commensurate and incommensurate CDWs was

found in the temperature range down to 50 K, then the complete lock-in was observed at the

lowest temperature, as shown in Fig. 1 [19]. The observed diffraction pattern of coexistence

of two CDWs is clearly distinguished from those in the current-induced discommensuration

lattice, which induces symmetric subpeaks at both sides of the main satellite [20, 21].

The observed CDW characteristics in o-TaS3 differ from those in other quasi-one-

dimensional conductors. Blue bronze K0.30MoO3 undergoes a Peierls transition at 180

K with k1 = 0.263b∗ [12]. By lowering the temperature to 100 K, its CDW wave vector

shifts to be nearly commensurate with a slight residual incommensurability (∼ 0.250b∗).

Lock-in transition to the commensurate state does not occur in this conductor (incomplete

lock-in). In NbSe3 [10], as well as m-TaS3 [6], there are three conducting chains, two of

which contribute to form CDWs. Neither NbSe3 nor m-TaS3 exhibits lock-in transition.

The first CDW wave vector in m-TaS3 is independent of temperature with q1 = 0.245b∗ ,

whereas q1 of that in NbSe3 shifts from 0.245b∗ at 150 K to 0.241b∗ at low temperatures [22].

In these conductors, the second CDW (q2 = 0.247b∗ for m-TaS3, q2 = 0.260b∗ for NbSe3)

appears at lower temperatures. As summarized in Table I, it seems difficult to treat such

various behaviors of CDWs in quasi-one-dimensional conductors with a simple theory, in

particular, for such vector shift and complete/incomplete lock-in phenomena.
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III. MODEL AND RESULTS

Theoretically, the lock-in transition in quasi-two-dimensional conductors has been dis-

cussed, initially by McMillan [2], and followed by Nakanishi and Shiba [4]. Their treatment

is based on free energy with higher-order umklapp terms. McMillan’s free energy has the

following form:

F1 = F 0
∫
d2s[−|ϕ|2 − βY Re(ϕ3) +

1

2
|ϕ|4 + β|∇⃗ϕ+ iϕ|2 + γ| − q⃗1 × ∇⃗ϕ|2] (1)

where ϕ is a phase of CDW defined as ψ = ψ0e
iK·r/3ϕ(r), and ψ is a complex order param-

eter. Here the coefficients F 0, β, Y , and γ were the same as those defined in the original

literature[23]. Equation (1) was derived for commensurability index, namely, the ratio of

CDW and lattice periodicities, M = 3. The commensurability energy originates from the

third-order umklapp term, proportional to the coefficient β. Though McMillan’s discussion

aimed to understand the behavior of quasi-two-dimensional conductors, e.g., 2H-TaSe2, it

also includes quasi-one-dimensional cases. To apply their theories to our case, M = 4, we

should know what happens in McMillan’s free energy. By substituting ψ = ψ0e
iK·r/4ϕ(r)

for the order parameter, a simple calculation gives a result similar to Eq. (1); however,

it lacks the βY Re(ϕ3) term, because the umklapp term becomes fourth-order in this case,

namely, proportional to |ϕ|4. In contrary to the M = 3 case, this calculation provides an

unfamiliar result. The umklapp term gives no energy gain if a phase modulation ϕ = e−iθ(x)

alone is considered as in McMillan. His calculation for the case M = 3 provided the free

energy as F 0(−1
2
+ β(1 − Y )). A first-order lock-in transition takes place at the point

Y = 1. On the other hand, from our calculation for the case M = 4, the free energy of

the commensurate state is a constant value F 0(−1
2
+ β), which is always larger than that

of incommensurate state F 0(−1/2). This explains the absence of the lock-in transition in

the charge density wave of blue bronze, whose CDW vector becomes nearly-commensurate

at low temperatures. On the contrary, the origin of the CDW vector shift from 0.263b∗ to

∼ 0.250b∗ remains unsolved. We will discuss this issue later.

Nakanishi and Shiba’s extension of McMillan’s theory covers the systems with multiple

CDW vectors [4]. They treated the lock-in transition of a two-dimensional conductor 1T-

TaS2, whose nesting vectors ki (i = 1, 2, 3) satisfy a relation 3ki − kj = Gi, where Gi

are reciprocal vectors, leading to the commensurability energy through the fourth term of

umklapp processes. Also, after a simple calculation, this fourth-order term is found to give
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the energy gain only when coefficients of the nesting vectors in such a relation are odd

numbers (1 or 3) for combining them to the reciprocal vector. This explains the absence of

the lock-in transition in NbSe3 andm-TaS3, both of which have the nesting vectors satisfying

2k1 + 2k2 = G.

As shown above, even-order processes in the free energy develop the amplitude, while odd-

order processes induce phase-related phenomena. Figure 2 shows whether the fourth-order

umklapp terms couple to the lattice periodicity or not. The (2,2) case, namely, 2k1+2k2 = G,

which is satisfied in NbSe3 and m-TaS3, provides the same potential modulation as that in

blue bronze. Therefore, the absence of lock-in transition in these conductors is found to

be of the same origin. On the other hand, the (1,3) case provides sufficient contribution to

the lock-in transition also in quasi-one-dimensional conductors. This case was discussed to

explain the lock-in transition of an organic conductor, TTF-TCNQ [3].

Now we will apply these theoretical considerations to our experimental results. CDWs in

o-TaS3 were not assumed as those in multiple chains, such as NbSe3 and m-TaS3. However,

the coexistence of commensurate and incommensurate CDWs in o-TaS3, as shown in Fig. 1,

suggests this possibility. By lowering the temperature, CDWs split into two kinds: commen-

surate and incommensurate ones. The commensurate CDW vector appears at kc = 0.250c∗

from even-order terms in the free energy, whereas the incommensurate CDW vector remains

at kic = 0.252c∗. The fourth-order umklapp term, which satisfies kc + 3kic ≃ G, couples

to the lattice periodicity and obtains commensurability energy. At a temperature between

50 K and 30 K, a transition may occur, allowing the system to be complete lock-in. This

scenario perfectly explains our synchrotron data [13]. The incommensurate phase in the co-

existence regime may have discommensurations, as discussed in the previous report, because

a discommensuration state is energetically preferable to incommensurate CDW, according

to McMillan [2]. In addition, the transition temperature coincides with that of occurrence of

glasslike behavior [24]. This behavior can be understood as a result of the lock-in transition,

which freezes global motion of the CDWs.

IV. DISCUSSIONS

Our discussion does not rule out the possibility for the generation of an individual dis-

commensuration, namely soliton, in commensurate CDWs. According to Bak and Emery [3],
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a sinusoidal potential in CDW leads to the sine-Gordon equation, whose solution includes

a phase soliton with the charge e/M . Moreover, such a sinusoidal modulation of poten-

tial can be derived only by commensurability [25]. This agrees with previous experimental

results, including the discrepancy between longitudinal and transverse conductivity at low

temperatures [26], the existence of unexpected carriers [27], and the nonlocal transportation

[28].

According to the microscopic theory [25], the sinusoidal potential in commensurate CDWs

is rooted in the condition

ϵk+MQ = ϵk, (2)

where ϵk is the energy of momentum k, and Q = 2kF is a CDW vector. Equation (2) means

that the sum of each vector equals the reciprocal vector, i.e., MQ = G, and the energy of

an electron-hole pair conserves after it is interacted M times by the CDW momentum of

2kF . This leads to the phase dependence of the gap energy as 2|∆|M(cosMϕ− 1) [29].

If a system is purely one-dimensional, Eq. (2) merely provides M ’th order of umklapp

process, whereas in two-dimensional systems, another interpretation becomes possible as

follows: it is similar to that of Anderson localization, in particular, in the weak localiza-

tion regime [15]. Anderson localization results from self-interference of a wave function by

multiple elastic scattering in random media. Bergmann’s condition for the localization to

occur has a form
∑

i gi = 0, where gi denotes scattering vectors by impurities. It should be

noted that a moment in the lattice can stay in any arbitrary Brillouin zone. Since all the

scattering processes are elastic, the energy of the wave function conserves. Therefore, by

considering Bergmann’s condition in substitution of Q for gi, one may obtain Eq. (2), as

shown in Fig. 3.

This interpretation agrees with previous experimental results in o-TaS3. At low tempera-

tures, the system undergoes complete lock-in, as shown in Fig. 1, where quantum interference

phenomena were discovered in o-TaS3 [16, 17]. In particular, the localization phenomenon

in the commensurate state suggests that CDWs have a two-dimensional correlation over the

b-c plane, and the closed path of CDW trajectory plays a crucial role [17].

Finaly, here we will mention a limitation to our discussion. The lock-in energy has

been found to relate with the odd-order terms in McMillan’s free energy. By applying this

to quasi-one-dimensional conductors with M = 4, most of characteristics summarized in

Tabel I are explained within this framework, except for the vector shift observed in blue
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bronze. One plausible explanation is the excitation of soliton and antisoliton pairs [30].

Each excitation of the soliton and antisoliton pair has been observed as a discrete step [31].

Since similar steps have also been observed in o-TaS3 [32], further investigation must be

necessary to clarify the lock-in transition of CDWs.

V. CONCLUSION

In summary, we provide a unified view for the lock-in transition both in quasi-one- and

two-dimensional conductors, based on the difference of roles between even- and odd-order

terms in the free energy. The study of commensurate CDWs should be more focused, since

it must contain far richer physics than previously thought.
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FIG. 1. Phase diagram of o-TaS3 deduced from this study. Solid circles represent the intensity

of a commensurate CDW, Ic, normalized by the total intensity of both the commensurate and

incommensurate satellites, Iic + Ic. The commensurate CDW begins to develop at around 180 K

(solid line). The two q’s of the CDWs coexist until the system undergoes the lock-in transition at

a temperature between 30 K and 50 K (broken line). The insets are diffraction profiles of satellite

peaks at 30, 130, and 180 K.
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FIG. 2. Visualization of the fourth-order umklapp terms: ψ4, ψ2ψ2, and ψψ3; charge density wave

of commensurability index M = 4, and lattice potential (from top to bottom).
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FIG. 3. Umklapp process in M = 4 CDW, responsible to commensurability (left). Schematic

diagram of Bergmann’s condition (right) [15].
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