

Asahikawa Medical University Repository http://amcor.asahikawa-med.ac.jp/

Journal of Gastroenterology (2015.5) :.

Corticotropin–releasing factor receptor type 1 and type 2 interaction in irritable bowel syndrome.

Tsukasa Nozu, Toshikatsu Okumura

1	Corticotropin-releasing factor receptor type 1 and type 2 interaction in
2	irritable bowel syndrome
3	
4	Tsukasa Nozu ¹ , Toshikatsu Okumura ²
5	
6	¹ Department of Regional Medicine and Education, Asahikawa Medical
7	University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
8	² Department of General Medicine, Asahikawa Medical University,
9	Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
10	
11	Address for corresponding:
12	Tsukasa Nozu, MD, PhD, FACP, FJSIM
13	Department of Regional Medicine and Education, Asahikawa Medical
14	University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, JAPAN
15	Ph; +81-166-68-2844
16	Fax; +81-166-68-2846
17	e-mail; tnozu@sea.plala.or.jp
18	
19	Running head: IBS and CRF signaling
20	
21	Word count; 4636
22	
23	
24	

25 Abstract

26

Irritable bowel syndrome (IBS) displays chronic abdominal pain or 27discomfort with altered defecation, and stress-induced altered gut motility 28and visceral sensation play an important role in the pathophysiology. 29Corticotropin-releasing factor (CRF) is a main mediator of stress responses 30 31and mediates these gastrointestinal functional changes. CRF in brain and periphery acts through two subtype receptors such as CRF receptor type 1 32(CRF1) and type 2 (CRF2), and activating CRF1 exclusively stimulates 33 34colonic motor function and induces visceral hypersensitivity. Meanwhile, recent several studies demonstrated that CRF2 has a counter regulatory 35action against CRF1, which may imply that CRF2 inhibits stress response 36 37 induced by CRF1 in order to prevent it from going into an overdrive state. Colonic contractility and sensation may be explained by the state of the 38 intensity of CRF1 signaling. CRF2 signaling may play a role in CRF1-39 40 triggered enhanced colonic functions through modulation of CRF1 activity. Blocking CRF2 further enhances CRF-induced stimulation of colonic 41 42contractility and activating CRF2 inhibits stress-induced visceral 43sensitization. Therefore, we proposed the hypothesis, i.e. balance theory of CRF1 and CRF2 signaling as follows. Both CRF receptors may be activated 44simultaneously and the signaling balance of CRF1 and CRF2 may determine 45the functional changes of gastrointestinal tract induced by stress. CRF 4647signaling balance might be abnormally shifted toward CRF1, leading to 48enhanced colonic motility and visceral sensitization in IBS. This theory may

49	lead to understand the pathophysiology and provide the novel therapeutic
50	options targeting altered signaling balance of CRF1 and CRF2 in IBS.
51	
52	
53	Key words: Irritable bowel syndrome; Corticotropin-releasing factor; receptor;
54	Colonic motility; Visceral sensation

55 Introduction

Irritable bowel syndrome (IBS) displays chronic abdominal pain or 56discomfort with altered defecation which is not explained by structural or 57biochemical abnormalities. The prevalence is quite higher in the general 58population (10 to 20%) [1-4], and it impairs patients' quality of life and has an 59enormous economic impact including direct costs of health care use and 60 indirect costs of absenteeism from work [2]. The pathophysiology of IBS has 61 not been determined definitely but it is generally accepted that dysfunction 6263 of the bidirectional communication system between brain and gut, i.e. brain-64 gut axis, contributes to the symptom generation [5, 6].

Stress induces behavioral, neuroendocrine and autonomic responses, 65and corticotropin-releasing factor (CRF) is a main mediator of these responses 66 in the brain-gut axis [7-13]. Stress also alters colonic motor and sensory 67 68 functions, which are thought to play an important role in IBS pathophysiology 69 [14-16]. Several animal and few human studies proved that CRF mediates 70 these gut responses [16-19]. Administration of CRF alters colonic motility and increases plasma adrenocorticotropic hormone (ACTH), and these responses 71are exaggerated in IBS patients [17]. These lines of evidence suggest that 7273altered brain-gut axis resulting from exaggerated response to CRF, leading to changes in colonic functions is thought to relevant to the pathophysiology of 74IBS. 75

In this paper, we will review the actions and mechanisms of central and peripheral CRF signaling in colonic motor and visceral sensory functions, and discuss the possible role of CRF signaling in the pathophysiology of IBS. And we will also present the balance theory of CRF receptors signaling, which
may well explain the actions of CRF in gastrointestinal (GI) functions. Finally,
the therapeutic role of CRF signaling according to this theory will be also
discussed.

83

84 CRF receptors and ligands

CRF is a 41-amino acid residue peptide which was originally isolated from ovine brain [20] and named for its property to stimulate anterior pituitary secretion of ACTH. During the last twenty years, three new mammalian CRF-related peptides, urocortins (Ucns) such as urocortin 1 (Ucn1), urocortin 2 (Ucn2), and urocortin 3 (Ucn3) have been characterized [21-24].

CRF and Ucns exert its action through the activation of two receptors, 9192 CRF receptor type 1 (CRF1) and type 2 (CRF2) [25, 26]. CRF receptors are 93 members of the G-protein coupled receptors family. The dominant mode of 94 signaling for both CRF1 and CRF2 is the Gs-coupled adenylate cyclasephosphokinase cascade [24]. However, CRF receptors coupled to other types 95 of G proteins have also been demonstrated [25, 27], and phospholipase C-96 97 protein kinase C and extracellular signal-regulated kinase-mitogen activated protein kinase cascades are also reported [25]. 98

Despite sharing 70% amino acid sequence similarity, CRF1 and
CRF2 display distinct characteristic affinities for CRF and Ucns [21-23].
CRF has a higher affinity (10- to 40-fold higher) for CRF1 than for
CRF2. Ucn1 binds CRF2 with 100-fold greater affinity than CRF, and

 $\mathbf{5}$

103 CRF1 with 6-fold greater affinity than CRF [21-23]. Ucn2 and Ucn3
104 exhibit high selectivity only for CRF2 [22, 23].

105

106 Role of CRF in stress-induced stimulation of colonic motor function

107Although no specific or consistent abnormal changes in GI motility definitely related to abdominal pain or discomfort are determined, many 108 studies reported altered colonic motility in IBS [14, 28, 29]. Several studies 109(but not all studies) showed accelerated colonic transit is observed in diarrhea 110 predominant IBS [29]. In addition, IBS patients display exaggerated motility 111 112response to stress as compared to healthy controls [18], suggesting the importance of stress and altered colonic motility in symptom generation in 113114IBS.

115

116 Central CRF receptors

117Various stressors such as psychological (water avoidance), physical 118 (restraint), or immunological (interleukin- 1β) accelerate colonic transit and stimulate colonic contractions in rodents [30-36]. Central administration of 119 CRF stimulates colonic motility such as reduced colonic transit time, 120stimulation of defecation and colonic contractions [33-37]. These responses 121122are blocked by central administration of a non-selective CRF receptor 123antagonist such as α -helical CRF(9-41) or astressin, and central administration of CRF mimics the responses [30, 31, 35, 38]. 124

125 Meanwhile, CRF1 and CRF2 are known to display the different 126 response in colonic motor function. CRF, Ucn1 or Ucn2 administered

intracerebroventricularly (icv), increases fecal pellet output, and Ucn1 has 127similar potency as CRF. However, Ucn 2 is about 10 and 8 times less potent 128than CRF and Ucn1, respectively in mice [39]. In addition, restraint stress or 129icv CRF-induced stimulation of pellet output and acceleration of distal colonic 130131transit were prevented by icv, a selective CRF1 antagonist, NBI-35965 but not by icv, a selective CRF2 antagonist, $astressin_2$ -B [40]. These results 132indicate that activation of brain CRF1 is involved in the stress-induced 133stimulation of colonic motor function. 134

Central CRF-induced altered motor function is independent from the 135136 activation of hypothalamic-pituitary-adrenal axis, because this response is observed in hypophysectomized rats [37]. Chlorisondamine or atropine but 137not bretylium blocked central CRF-induced stimulation of colonic transit, but 138vagotomy only reduced this response by 19% in rats [33, 34]. Meanwhile other 139study demonstrated vagotomy completely abolished this response by CRF 140[37]. Thus stimulation of central CRF receptors may activate vagal and sacral 141142parasympathetic neurons resulting in increased enteric nervous system activity, thereby stimulating colonic motor function. 143

In addition, central CRF or restraint stress-induced stimulation of defecation was blocked by peripheral administration of 5-hydroxytryptamine $(5-HT)_3$ antagonist or 5-HT₄ antagonist [38, 41]. Moreover, increase in 5-HT content in the feces of rat proximal colon by intracisternal (ic) CRF or restraint stress was observed and it was inhibited by ic, a selective CRF1 antagonist, NB1-27914. These results suggest that parasympathetic cholinergic activation of colonic 5-HT₃ and 5-HT₄ receptors also mediates the

151 action of CRF.

Microinjection of CRF into the specific brain nuclei reveals the 152responsive site to CRF. Mönnikes et al. showed it is localized in the 153hypothalamus (paraventricular nucleus; PVN, arcuate nucleus) and pontine 154areas, such as locus coeruleus (LC) [33, 34, 42]. These brain nuclei are known 155to be involved in CRF-induced anxiety and depression [43-45]. PVN contains 156numerous CRF like immunoreactive neurons and receptors, and sends direct 157projections to dorsal vagal complex and spinal preganglionic neurons 158controlling autonomic nervous system activity [46, 47]. LC noradrenergic 159160 neurons during stress can supply norepinephrine across the central nervous system and modulate the stress response [48]. Activation of LC by CRF 161162induces increased vigilance and anxiogenic behavior [49, 50]. These results may support the role of brain CRF receptors in the pathophysiology of IBS, 163164 because IBS patients are frequently comorbid with psychiatric disorders such as anxiety and depression [51], and display greater reactivity to stress [52]. 165

166 Water avoidance stress (WAS) induces numerous Fos-positive cells in PVN, LC, nucleus tractus solitarius (NTS), and the parasympathetic nucleus 167 of the lumbosacral spinal cord (L6-S1) in rats [30, 53]. Bilateral microinfusion 168of a-helical CRF(9-41) into the PVN before restraint or WAS abolished stress-169 induced alterations of colonic transit [33, 34]. These results further support 170the notion that stress or CRF activates PVN and LC, leading to stimulating 171colonic motor function mediated through vagal and sacral parasympathetic 172173neurons.

175 Peripheral CRF receptors

Intravenous (iv) administration of CRF induces the stimulation of 176pellet output and colonic transit with a potency similar to central injection 177(icv) in rats [38, 54, 55]. Peripherally injected CRF antagonist, α -helical 178 $CRF_{(9-41)}$ or astressin which does not cross the blood-brain barrier, blunts the 179stimulation of distal colonic transit and fecal pellet output induced by acute 180 wrap restraint or WAS in rats [38, 54-56]. Moreover, in in vitro studies, CRF 181increases distal colonic myoelectric activity [56], and Ucn1 or CRF stimulates 182contractions of colonic muscle strips [57, 58]. These results strongly suggest 183184 that CRF also acts peripheral CRF receptors to stimulate colonic motility.

Enhanced colonic motility induced by peripheral CRF is mediated 185through CRF1, which is supported by the following evidence. Peripheral 186187 administration of CRF reduces colonic transit time but Ucn2 or Ucn3 does not induce the response under the same conditions in rodents [59, 60]. 188189Intraperitoneal (ip) cortagine, a selective CRF1 agonist decreases the distal 190 colonic transit time, increases distal and transverse colonic contractility, increases defecation and induces watery diarrhea in rats [61]. In addition, ip 191administration of NBI-27914 or CP-154,526, a selective CRF1 antagonist 192abolishes the response by CRF [59, 60]. Since all now available CRF1 193 antagonists can cross the blood-brain barrier, these results do not indicate 194directly the role of peripheral CRF1. However, as described above, stress-195induced stimulation of defecation is abolished by non-selective CRF receptor 196 antagonists with peripheral limited action, and moreover, subcutaneous (sc) 197 198 injection of astressin₂-B does not alter accelerated distal colonic transit induced by restraint stress [60]. These results suggests that peripheral
injection of CRF- or stress-induced stimulating colonic motor function is
mediated through peripheral CRF1.

202 Recent studies demonstrated that the expression of CRF receptors 203and ligands in the colon in various cells such as neuronal (enteric nervous system), enterochromaffin (EC) and immune cells (mast cells, lymphocytes) 204in rodents and human [62-70]. Most of these studies also showed that CRF 205and Ucns are expressed in close proximity of the CRF receptors. Moreover, 206both EC cells and mast cells are not only a target of peripheral CRF to 207208stimulate the release of chemical mediators such as serotonin, etc., but also secrete CRF itself [69, 71-73]. Luminally released serotonin from EC cells 209210activates mucosal 5-HT₃ receptors located on the vagal afferents, which stimulates colonic motility via the vagovagal reflex [74]. These results suggest 211212that peripheral CRF and Ucns may form autocrine/paracrine loop, thereby 213modulating the motility.

214In addition, several studies suggested that colonic myenteric neurons are also possible action sites of peripheral CRF for the following reasons. Ip 215CRF induces colonic myenteric Fos expression through peripheral CRF1 and 216the nearly all Fos expressing cells are CRF1 immunoreactive [75]. Moreover, 217Fos activation by ip CRF is correlated with increased defecation [75]. Ucn1 218evokes the contractions of rat colonic smooth muscle strips, which are blocked 219by a selective CRF1 antagonist, antalarmine or the neuronal blocker, 220221tetrodotoxin [57]. Additionally, myenteric neurons in the guinea pig jejunum 222display an increased intracellular calcium concentration in response to CRF application, and this neuronal activation is mediated through CRF1 [76].

In contrast to these above results, Tsukamoto et al. [77] demonstrated 224that the stimulatory effect of peripherally administered CRF on colonic 225motility was abolished by truncal vagotomy, hexamethonium, atropine and ic 226astressin, and suggested the possibility that peripheral injection of CRF 227reaches the area postrema (AP) and activates the dorsal nucleus of vagus via 228229central CRF receptors, resulting in activation of the vagal efferent, leading to stimulating colonic motility. CRF does not penetrate to the brain but 230circumventricular organs including AP are relatively unprotected by the 231232blood-brain barrier [78].

There is also the evidence that peripheral injection of CRF activates 233234several brain nuclei such as PVN, central amygdala (CeA), NTS and AP [79, 80]. Additionally, CRF injection also induces Fos expression in lumbosacral 235236 spinal intermediolateral column and dorsal horn [80], which are known to 237contain cells that engage in ascending supraspinal projections to the NTS [81]. 238Moreover, it is also known that NTS receives a large proportion of efferents from AP [82]. CRF receptors are present on AP, and the cervical and 239subdiaphragmatic vagus [83, 84]. These results suggest that peripheral CRF 240may stimulate NTS possibly through humoral i.e. by directly activating AP, 241and/or neural mechanisms, i.e. through vagus afferents and/or ascending 242projections from lumbosacral spinal cord, then NTS may transfer convergent 243information to the dorsal nucleus of vagus [85], leading to modulating colonic 244motility. As described before, PVN is a responsive site to central CRF inducing 245246the stimulation of colonic motor function. In addition, as will be described

later, CeA is thought to be one of the responsive area to brain CRF inducing
visceral sensitization. In this context, we would emphasize that the possibility
of contribution of central pathways to modulating colonic functions by
peripheral administration of CRF has not been denied.

251

252 Role of CRF in stress-induced altered visceral sensation

It is now widely accepted that an altered visceral sensitivity plays an 253important role in the pathogenesis of IBS [14, 86, 87]. Previous studies 254indicate that 33-90% of IBS patients display increased visceral sensitivity to 255rectal balloon distention [88-93]. Several factors such as various methods 256determining the sensitivity etc. may contribute to the observed wide range of 257hypersensitivity, but in any event, these results also suggest that significant 258259portion of the patients does not develop visceral hypersensitivity in the basal state. Meanwhile, we and other researcher demonstrated that conditioning 260261such as repetitive colon or rectal distention induces visceral hypersensitivity 262in IBS patients regardless of the baseline sensitivity, and this response is not observed in healthy controls [94, 95], which may be a reliable marker for IBS. 263It was reported that visceral stimulation can be interpreted as stress to IBS 264265patients, because it evokes daily symptoms and negative emotion [86]. These 266lines of evidence further support the importance of stress and altered visceral 267sensation in pathophysiology of IBS.

268

269 Central CRF receptors

270

Several stress models evoke visceral hypersensitivity and this

response is blocked by central injection of CRF antagonist [96, 97]. Meanwhile, 271central administration (icv) of CRF induces visceral hypersensitivity to 272colorectal distention (CRD) in rats [96], which is mediated through CRF1 [98]. 273However, the studies evaluating the brain sites responsible for modulating 274visceral sensation has been limited so far. Kosoyan et al. [99] showed that LC 275neurons were activated by CRD or ic CRF, which was abolished by iv NBI-27627735965, which can cross the blood-brain barrier in rats, indicating that CRF1 signaling plays a role in visceral hypersensitivity through activating LC. 278

Su et al. [100] very recently demonstrated that CRF microinjected into CeA increased visceromotor response (VMR) to CRD and the response was blocked by injection of CP-15426, a selective CRF1 antagonist into this site. CRF-like immunoreactivity and gene expression in CeA are increased in response to CRD [101]. It is also known that amygdala is an important site contributing to the persistent pain inducing negative affective states such as fear, anxiety, and depression [102].

286These observations suggest the possibility of pathogenetic role of LC and CeA in IBS. CeA contains a high density of CRF neurons [103, 104], and 287these neurons project to the LC and increase their firing rate resulting in the 288stimulation of the ascending noradrenergic system [105]. The release of 289noradrenaline in the cortical and limbic rostral efferent projections from the 290LC or CeA [106] is known to induce arousal and anxiogenic responses along 291with hypervigilance to visceral input which is a commonly observed in IBS 292[107]. 293

294

Early maternal separation, which is one of the models of IBS

displaying visceral sensitization [108], induces heightened basal tone of CRF gene expression, increased levels of CRF and upregulation of CRF1 signal transduction in the specific brain area such as LC and CeA, leading to enhanced reactivity to stress in adult rats [109-112]. Therefore, LC and CeA may be responsive sites of brain CRF-CRF1 signaling and mediate stressinduced visceral sensitization.

301

302 Peripheral CRF receptors

Peripheral CRF1 signaling also contributes to the visceral 303 304 hypersensitivity. It was shown that WAS-induced visceral hyperalgesia was prevented by sc astressin [113]. We also demonstrated that CRD-induced 305 306 visceral hyperalgesia was prevented by ip astressin but not by ip astressin₂-B [58]. In addition, peripheral CRF1 activation by ip cortagine increased VMR 307 308 to CRD, which was blocked by ip astressin but not by icv [61]. These results 309 suggest that stress-induced visceral hypersensitivity is also mediated 310 through peripheral CRF1.

The definite action sites of peripheral CRF in modulating visceral sensation has not been determined. Since CRF receptors are proved to be expressed in dorsal root ganglia (DRG) [114], CRF may modulate visceral sensation through CRF receptors on spinal afferents directly.

As mentioned earlier, EC cells have CRF receptors and release serotonin through activating the receptors [65, 71]. Serotonin from EC cells is thought to contribute to visceral hypersensitivity through activating spinal afferents [115]. In addition, it became certain that mast cells of GI tract also 319play an important role in stress-induced visceral sensitization [116]. Partial restraint stress-induced colonic hypersensitivity is prevented by doxantrazole, 320 mast cell stabilizer in rats [96]. Mast cells have CRF receptors at their surface 321[66, 67] and their degranulation is triggered by peripheral CRF in GI tract 322323 [72]. They contain and release a large variety of mediators such as serotonin, prostaglandins and cytokines in response to various stimuli, and these 324mediators were demonstrated to activate visceral afferents or DRG neurons 325326 [117, 118], leading to induction of visceral sensitization. Therefore, peripheral CRF not only acts directly on visceral afferents but also indirectly through 327328 stimulating the release of chemicals from EC and mast cells leading to activating the afferents. 329

330 Meanwhile, acute stress-induced hypersensitivity to CRD was found to be linked to increase in colonic paracellular permeability [119]. Ait-331332 Belgnaoui et al. [119] demonstrated that restraint stress-induced increased 333 colonic permeability was blocked by ip α -helical CRF₍₉₋₄₁₎, and ip CRF 334 mimicked this response. Moreover, CRF-induced increased permeability was blocked by ip doxantrazole. Therefore visceral sensitization induced by 335 peripheral CRF signaling may result from altered colonic permeability 336 337 possibly through mast cell-dependent mechanisms.

338

A balance theory of CRF1 and CRF2 signaling to modulate colonic motor and visceral sensation

341 As described above, central and peripheral CRF-CRF1 signaling are 342 involved in the stimulatory action on colonic motility and sensation induced by stress. However, stress activates both CRF1 and CRF2 signaling. For example, restraint stress induces delayed gastric transit through CRF2 [60, 120], and simultaneously, it also results in the stimulation of colonic motility through CRF1 [40]. Stress may stimulate to release CRF and Ucns in brain and periphery, which could activate both CRF receptors according to the distinct affinity for each CRF receptor. Thus it is thought that CRF2 may also contribute to stress-induced altered colonic functions.

In fact, we and other researchers showed that activation of peripheral 350 CRF2 by peripheral administration of selective CRF2 agonist such as 351352sauvagine or Ucn2 blocked repetitive CRD-induced visceral hyperalgesia in rats [58, 114, 121], suggesting that CRF2 signaling may have a counter action 353to CRF1 in modulating visceral sensation. Moreover, recently this counter 354action was also observed in modulation of colonic motility. Gourcerol et al. 355 [62] showed that ip Ucn2 inhibited ip CRF-induced stimulation of defecation 356357 and ip $astressin_2$ -B further enhanced the response in rats. Moreover, 358restraint stress-induced stimulation of colonic contractions and WAS-induced stimulation of pellet output were prevented by ip Ucn2. 359

Acute stress induces integrated responses to maintain homeostasis and warrant survival of organisms. In the absence of proper counter regulation, the stress response runs in an overdrive state that can become maladaptive and fatal [122]. In this context, existence of counter action by CRF2 signaling may be suitable for the survival of organisms under stressful condition.

366

In this context, we hypothesized as follows. Colonic contractility and

sensation may be explained by the state of the intensity of CRF1 signaling.
CRF2 signaling may play a role in CRF1-triggered enhanced colonic functions
through modulation of CRF1 activity. The signaling balance of CRF1 and
CRF2 might determine the functional colonic changes induced by stress. We
designated this hypothesis as balance theory of CRF1 and CRF2 signaling.

We [58] have very recently demonstrated several results supporting the hypothesis. Ip CRF increased the colonic contractions and selective CRF1 stimulation by cortagine also increased the contractility in rats. Blocking or activating peripheral CRF2 by itself did not alter the basal contractility, while blocking CRF2 enhanced the response by CRF. These results may be explained by the following (schematic illustrations are shown in Fig. 1).

378 In the basal condition, both types of CRF signaling are not activated (Fig. 1a). CRF activates both CRF1 and CRF2, and CRF has a much higher 379 affinity for CRF1 [21-23]. CRF induces strong activation of CRF1 signaling 380 381prevailing over the inhibition by CRF2 signaling, leading to stimulation of 382colonic contractility (Fig. 1b). CRF1 agonist stimulates colonic contractility without modulation of CRF2 signaling (Fig. 1c). The CRF2 agonist or 383 antagonist by itself does not change colonic contractility because of a lack of 384 activation of CRF1 signaling (Fig. 1d and e). Meanwhile, CRF2 antagonist 385386 induces disinhibition of CRF1 signaling, and enhances the stimulatory action 387 of colonic contractility by CRF (Fig. 1f). The signaling balance of CRF1 and CRF2 may determine the state of colonic contractions (Fig. 1g). Moreover, this 388 389 hypothesis was also tested in in vitro study using colonic muscle strips. CRF 390 evoked the contractions of strips and Ucn2 abolished this response [58].

We also showed the results regarding visceral sensation which was consistent with the hypothesis in that paper. Namely, CRD induced visceral sensitization which was blocked by ip astressin. Ip cortagine enhanced but Ucn2 abolished the response. Meanwhile, ip CRF did not alter CRD-induced sensitization, but ip CRF together with CRF2 blocking further enhanced the response by CRD. These results may be explained by the balance theory as follows.

CRD may activate peripheral CRF1 and induce CRF1-dependent 398 visceral sensitization. Then CRF1 agonist further enhances and CRF2 399 400 agonist reduces the response induced by CRD. When exogenous CRF is administered in this condition, both signaling are activated simultaneously 401 402 and increases the signal intensity in addition to the one induced by CRD. Although CRF has higher affinity for CRF1, activating CRF2 by ip CRF may 403 404 be enough to suppress the intensity of CRF1 signaling in modulation of 405visceral sensation, resulting that an overall response by exogenous CRF is 406 not remarkable. Therefore CRF2 blocking with ip CRF further enhances the sensitization by disinhibition of CRF1 signaling. 407

The balance theory could explain well CRF and stress-induced altered colonic functions as described above, and moreover, we also suggested that peripheral CRF-induced altered gastric contractility may follow the same rule [123]. In this context, CRF-induced altered upper and lower GI functions might be explained by the theory.

The balance may be determined by the injected or released peptides during stress such as CRF and Ucns, and expression profile of CRF1 and 415CRF2 may also contribute to the signaling balance. CRF1 and CRF2 receptors are expressed in colon, and stress such as open field or CRD alters these 416 receptor expression [124], suggesting the dominant signaling may depend on 417the mode of stress. 418

419

420

The mechanisms of interaction between CRF1 and CRF2 signaling

421How does the CRF2 signaling modulate the CRF1 signaling? Several studies showed the following evidence. 422

Liu et al. [125] demonstrated in myenteric plexus of guinea pig colon 423424that CRF1 was mainly expressed in ganglion cell somas and CRF2 was expressed in varicose nerve fibers. CRF1 and CRF2 evoked depolarization of 425426 different types of myenteric neurons. In addition, they also suggested immunohistochmically that CRF2 might be expressed at pre-synaptic 427428transmitter release sites. Therefore it is possible to think that CRF2 might 429regulate a neurotransmitter release, thereby modulating the neuronal 430activity induced by CRF1.

Gourcerol et al. showed that CRF1 and CRF2 were colocalized in the 431colonic myenteric plexus and CRF2 was expressed with neuronal nitric oxide 432in rats. On the basis of these results, they speculated the possibility that 433434inhibits CRF1 signaling through the release of inhibitory CRF2 neurotransmitter such as nitric oxide [62]. 435

These above findings may be possible mechanisms of the CRF1 and 436 437 CRF2 interaction in modulating colonic motility. Meanwhile, there are also 438the results suggesting the mechanisms in modulating visceral sensation. CRF2 is proved to be expressed in DRG, and CRD induces activation of splanchnic afferents in in vitro experiment using colorectal preparation with the attached mesenteric artery and splanchnic afferent nerve, which is blunted by intra-arterial injection of Ucn2 [114]. In this context, CRF may modulate visceral sensation through CRF receptors on spinal afferents, and the interaction of CRF1 and CRF2 might occur in this level.

As described before, EC cells and mast cells are targets of CRF. Both cells have CRF1 and CRF2 [65-67] and the mediators released from these targets can modulate the visceral sensation. Therefore, CRF1 and CRF2 interaction may also occur at these cells, possibly in cellular level. Gourcerol et al. speculated that CRF2 activation may share intracellular signaling targets of CRF1, leading to inhibition of CRF1 signaling [62].

The rationale of our proposed theory was only suggested by the studies regarding peripheral CRF receptors-induced altered GI functions. It would be possible that the actions induced by central CRF or ones other than GI response, such as endocrine, immune, autonomic, behavioral response, etc. are also explained by the balance theory. Further studies are needed.

456

457 CRF signaling as a therapeutic target for IBS

IBS have exaggerated responsivity 458patients of the gut, neuroendocrine and the brain to stress [6, 18, 126, 127]. Stress induces onset 459and/or exaggeration of GI symptoms in the majority of IBS patients [128, 129]. 460In addition, as described above so far, altered colonic motility and visceral 461 sensation induced by CRF-CRF1 signaling are thought to play a key role in 462

463 the pathophysiology of IBS.

464 Exaggerated stress response in IBS patients may be explained by the abnormal expression of CRF receptors and their function. In animal studies, 465466 differential alterations of the receptors expression in colon are observed 467between Sprague Dawley and Wister Kyoto (WKY) rats, which may explain the high stress susceptibility of WKY rats [124]. WKY rats are stress-468 469 sensitive strain, which spontaneously exhibit a high anxiety phenotype and altered stress responses [130], and display visceral hypersensitivity [131] and 470increased stress-related defecation [132]. Recently, it was also demonstrated 471472that genetic polymorphisms and haplotypes of CRF1 are associate with IBS and related bowel patterns [133]. Single-nucleotide polymorphisms in the 473474regulatory region of the CRF1 gene might influence the expression of CRF1 [134] and generation of CRF1 variants with distinct structural and signaling 475476 properties [25, 135].

In any event, altered stress response in IBS may be due to increased CRF-CRF1 signaling. In other words, CRF signaling balance might be abnormally shifted toward CRF1 in IBS, particularly diarrhea-predominant type, according to our balance theory (Fig 2a). In this context, blocking CRF1 signaling is thought to be effective in treating IBS (Fig. 2b).

Contrary to expectation, clinical trials in IBS-diarrhea predominant female patients did not show any significant beneficial effect of CRF1 antagonist, pexacerfont (BMS-562086) in IBS symptoms [136]. However, this result does not deny the usefulness of CRF1 antagonist itself. Tested dose of the compound might not be optimal for the treatment. Additionally, IBS patients may be heterogeneous population. Even in diarrhea-predominant IBS, colonic accelerated transit is not consistent feature [29]. CRF1 antagonist might be effective only in the subpopulation of IBS patients, having exaggerated response to CRF-CRF1 signaling. Further studies with different protocol are needed to examine the effectiveness.

492 Our proposed theory also suggests that in addition to CRF1 493antagonist, CRF2 agonist may be a promising tool in treating IBS by resetting the abnormally shifted signaling balance to normal state (Fig. 2c). CRF2 in 494 brain induces anxiolysis, while anxiety-related behavior is mediated through 495496 CRF1 [137]. Thus CRF2 agonist might be also beneficial for the comorbid psychological abnormality of IBS patients. Since stimulation of CRF2 reduces 497gastric emptying in rats [138], it might induce dyspeptic symptoms. Therefore 498 CRF2 agonist with high organ selectivity, i.e. only targeted for colon and brain 499 500might be needed for clinical application.

The pathogenesis of IBS is thought to be multifactorial. We only mentioned colonic motility and visceral sensation, but also altered intestinal barrier [139], microbiota [140], low grade inflammation [141], abnormal pain processing in brain [142], etc. are known to contribute to the pathophysiology. Recent studies show that these factors are also able to be modulated by CRF signaling [72, 143-145]. These observations may further support the rationale of application of CRF receptors-related drugs for the treatment.

508

509 Conclusions

510

Altered colonic motility and visceral sensation are thought to

contribute to generation of IBS symptoms and CRF-CRF1 signaling plays a 511512pivotal role in the pathophysiology of IBS through modulating these functions. In addition, CRF2 signaling is also demonstrated to modulate CRF and 513stress-induced altered colonic functions, and it has a counter regulatory 514515action against CRF1. We proposed a balance theory of CRF1 and CRF2 516signaling, i.e. both CRF receptors would be activated during stress simultaneously, and the signaling balance may determine the functional 517changes in GI tract. This theory is useful for understanding the 518pathophysiology of IBS and may also provide the novel therapeutic options 519targeting altered signaling balance of CRF1 and CRF2 in IBS. 520

521

522 Acknowledgments

Work in the authors' laboratory is supported by a Grant-in-Aid for Scientific
Research from the Japanese Ministry of Education, Culture, Sports, Science,
and Technology.

526

527 Conflict of interest

528 The authors declare that they have no conflict of interest.

530	References

532	1.	Lovell RM, Ford AC. Global prevalence of and risk factors for irritable
533		bowel syndrome: a meta-analysis. Clin Gastroenterol Hepatol.
534		2012;10:712-21, e1-4.
535		
536	2.	Drossman DA, Li Z, Andruzzi E, et al. U.S. householder survey of
537		functional gastrointestinal disorders. Prevalence, sociodemography,
538		and health impact. Dig Dis Sci. 1993;38:1569-80.
539		
540	3.	Saito YA, Schoenfeld P, Locke GR, 3rd. The epidemiology of irritable
541		bowel syndrome in North America: a systematic review. Am J
542		Gastroenterol. 2002;97:1910-5.
543		
544	4.	Lau EM, Chan FK, Ziea ET, et al. Epidemiology of irritable bowel
545		syndrome in Chinese. Dig Dis Sci. 2002;47:2621-4.
546		
547	5.	Cryan JF, O'Mahony SM. The microbiome-gut-brain axis: from bowel
548		to behavior. Neurogastroenterol Motil. 2011;23:187-92.
549		
550	6.	Fukudo S, Nomura T, Muranaka M, et al. Brain-gut response to
551		stress and cholinergic stimulation in irritable bowel syndrome. A
552		preliminary study. J Clin Gastroenterol. 1993;17:133-41.
553		

554	7.	Heinrichs SC, Menzaghi F, Merlo Pich E, et al. The role of CRF in
555		behavioral aspects of stress. Ann N Y Acad Sci. 1995;771:92-104.
556		
557	8.	Owens MJ, Nemeroff CB. Physiology and pharmacology of
558		corticotropin-releasing factor. Pharmacol Rev. 1991;43:425-73.
559		
560	9.	Turnbull AV, Rivier C. Corticotropin-releasing factor (CRF) and
561		endocrine responses to stress: CRF receptors, binding protein, and
562		related peptides. Proc Soc Exp Biol Med. 1997;215:1-10.
563		
564	10.	Karalis K, Sano H, Redwine J, et al. Autocrine or paracrine
565		inflammatory actions of corticotropin-releasing hormone in vivo.
566		Science. 1991;254:421-3.
567		
568	11.	McInturf SM, Hennessy MB. Peripheral administration of a
569		corticotropin-releasing factor antagonist increases the vocalizing and
570		locomotor activity of isolated guinea pig pups. Physiol Behav.
571		1996;60:707-10.
572		
573	12.	Schafer M, Mousa SA, Zhang Q, et al. Expression of corticotropin-
574		releasing factor in inflamed tissue is required for intrinsic peripheral
575		opioid analgesia. Proc Natl Acad Sci U S A. 1996;93:6096-100.
576		
577	13.	Taché Y, Mönnikes H, Bonaz B, et al. Role of CRF in stress-related

578		alterations of gastric and colonic motor function. Ann N Y Acad Sci.
579		1993;697:233-43.
580		
581	14.	Drossman DA, Camilleri M, Mayer EA, et al. AGA technical review on
582		irritable bowel syndrome. Gastroenterology. 2002;123:2108-31.
583		
584	15.	Lee YJ, Park KS. Irritable bowel syndrome: emerging paradigm in
585		pathophysiology. World J Gastroenterol. 2014;20:2456-69.
586		
587	16.	Taché Y, Martínez V, Wang L, et al. CRF_1 receptor signaling pathways
588		are involved in stress-related alterations of colonic function and
589		viscerosensitivity: implications for irritable bowel syndrome. Br J
590		Pharmacol. 2004;141:1321-30.
591		
592	17.	Fukudo S, Nomura T, Hongo M. Impact of corticotropin-releasing
593		hormone on gastrointestinal motility and adrenocorticotropic
594		hormone in normal controls and patients with irritable bowel
595		syndrome. Gut. 1998;42:845-9.
596		
597	18.	Sagami Y, Shimada Y, Tayama J, et al. Effect of a corticotropin
598		releasing hormone receptor antagonist on colonic sensory and motor
599		function in patients with irritable bowel syndrome. Gut. 2004;53:958-
600		64.
601		

602	19.	Nozu T, Kudaira M. Corticotropin-releasing factor induces rectal
603		hypersensitivity after repetitive painful rectal distention in healthy
604		humans. J Gastroenterol. 2006;41:740-4.
605		
606	20.	Vale W, Spiess J, Rivier C, et al. Characterization of a 41-residue
607		ovine hypothalamic peptide that stimulates secretion of corticotropin
608		and beta-endorphin. Science. 1981;213:1394-7.
609		
610	21.	Vaughan J, Donaldson C, Bittencourt J, et al. Urocortin, a
611		mammalian neuropeptide related to fish urotensin I and to
612		corticotropin-releasing factor. Nature. 1995;378:287-92.
613		
614	22.	Reyes TM, Lewis K, Perrin MH, et al. Urocortin II: a member of the
615		corticotropin-releasing factor (CRF) neuropeptide family that is
616		selectively bound by type 2 CRF receptors. Proc Natl Acad Sci U S A.
617		2001;98:2843-8.
618		
619	23.	Lewis K, Li C, Perrin MH, et al. Identification of urocortin III, an
620		additional member of the corticotropin-releasing factor (CRF) family
621		with high affinity for the CRF2 receptor. Proc Natl Acad Sci U S A.
622		2001;98:7570-5.
623		
624	24.	Hauger RL, Grigoriadis DE, Dallman MF, et al. International Union
625		of Pharmacology. XXXVI. Current status of the nomenclature for

626		receptors for corticotropin-releasing factor and their ligands.
627		Pharmacol Rev. 2003;55:21-6.
628		
629	25.	Hillhouse EW, Grammatopoulos DK. The molecular mechanisms
630		underlying the regulation of the biological activity of corticotropin-
631		releasing hormone receptors: implications for physiology and
632		pathophysiology. Endocr Rev. 2006;27:260-86.
633		
634	26.	Perrin MH, Vale WW. Corticotropin releasing factor receptors and
635		their ligand family. Ann N Y Acad Sci. 1999;885:312-28.
636		
637	27.	Blank T, Nijholt I, Grammatopoulos DK, et al. Corticotropin-releasing
638		factor receptors couple to multiple G-proteins to activate diverse
639		intracellular signaling pathways in mouse hippocampus: role in
640		neuronal excitability and associative learning. J Neurosci.
641		2003;23:700-7.
642		
643	28.	Soares RL. Irritable bowel syndrome: a clinical review. World J
644		Gastroenterol. 2014;20:12144-60.
645		
646	29.	Lee OY. Asian motility studies in irritable bowel syndrome. J
647		Neurogastroenterol Motil. 2010;16:120-30.
648		
649	30.	Bonaz B, Taché Y. Water-avoidance stress-induced c-fos expression in

650		the rat brain and stimulation of fecal output: role of corticotropin-
651		releasing factor. Brain Res. 1994;641:21-8.
652		
653	31.	Lenz HJ, Raedler A, Greten H, et al. Stress-induced gastrointestinal
654		secretory and motor responses in rats are mediated by endogenous
655		corticotropin-releasing factor. Gastroenterology. 1988;95:1510-7.
656		
657	32.	Fargeas MJ, Fioramonti J, Bueno L. Central action of interleukin 1
658		beta on intestinal motility in rats: mediation by two mechanisms.
659		Gastroenterology. 1993;104:377-83.
660		
661	33.	Mönnikes H, Schmidt BG, Raybould HE, et al. CRF in the
662		paraventricular nucleus mediates gastric and colonic motor response
663		to restraint stress. Am J Physiol Gastrointest Liver Physiol.
664		1992;262:G137-43.
665		
666	34.	Mönnikes H, Schmidt BG, Taché Y. Psychological stress-induced
667		accelerated colonic transit in rats involves hypothalamic
668		corticotropin-releasing factor. Gastroenterology. 1993;104:716-23.
669		
670	35.	Martínez V, Rivier J, Wang L, et al. Central injection of a new
671		corticotropin-releasing factor (CRF) antagonist, astressin, blocks
672		CRF- and stress-related alterations of gastric and colonic motor
673		function. J Pharmacol Exp Ther. 1997;280:754-60.

675	36.	Nakade Y, Fukuda H, Iwa M, et al. Restraint stress stimulates colonic
676		motility via central corticotropin-releasing factor and peripheral 5-
677		HT_3 receptors in conscious rats. Am J Physiol Gastrointest Liver
678		Physiol. 2007;292:G1037-44.
679		
680	37.	Lenz HJ, Burlage M, Raedler A, et al. Central nervous system effects
681		of corticotropin-releasing factor on gastrointestinal transit in the rat.
682		Gastroenterology. 1988;94:598-602.
683		
684	38.	Miyata K, Ito H, Fukudo S. Involvement of the 5 -HT $_3$ receptor in
685		CRH-induce defecation in rats. Am J Physiol Gastrointest Liver
686		Physiol. 1998;274:G827-31.
687		
688	39.	Martínez V, Wang L, Million M, et al. Urocortins and the regulation of
689		gastrointestinal motor function and visceral pain. Peptides.
690		2004;25:1733-44.
691		
692	40.	Martínez V, Wang L, Rivier J, et al. Central CRF, urocortins and
693		stress increase colonic transit via CRF1 receptors while activation of
694		CRF2 receptors delays gastric transit in mice. J Physiol.
695		2004;556:221-34.
696		
697	41.	Ataka K, Kuge T, Fujino K, et al. Wood creosote prevents CRF-

698		induced motility via 5 -HT $_3$ receptors in proximal and 5 -HT $_4$ receptors
699		in distal colon in rats. Auton Neurosci. 2007;133:136-45.
700		
701	42.	Mönnikes H, Schmidt BG, Tebbe J, et al. Microinfusion of
702		corticotropin releasing factor into the locus coeruleus/subcoeruleus
703		nuclei stimulates colonic motor function in rats. Brain Res.
704		1994;644:101-8.
705		
706	43.	Raadsheer FC, Hoogendijk WJ, Stam FC, et al. Increased numbers of
707		corticotropin-releasing hormone expressing neurons in the
708		hypothalamic paraventricular nucleus of depressed patients.
709		Neuroendocrinology. 1994;60:436-44.
710		
711	44.	Weiss JM, Stout JC, Aaron MF, et al. Depression and anxiety: role of
712		the locus coeruleus and corticotropin-releasing factor. Brain Res Bull.
713		1994;35:561-72.
714		
715	45.	Arborelius L, Skelton KH, Thrivikraman KV, et al. Chronic
716		administration of the selective corticotropin-releasing factor 1
717		receptor antagonist CP-154,526: behavioral, endocrine and
718		neurochemical effects in the rat. J Pharmacol Exp Ther.
719		2000;294:588-97.
720		
721	46.	Luiten PG, ter Horst GJ, Karst H, et al. The course of paraventricular

722		hypothalamic efferents to autonomic structures in medulla and spinal
723		cord. Brain Res. 1985;329:374-8.
724		
725	47.	Silverman AJ, Hou-Yu A, Chen WP. Corticotropin-releasing factor
726		synapses within the paraventricular nucleus of the hypothalamus.
727		Neuroendocrinology. 1989;49:291-9.
728		
729	48.	Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic
730		system: modulation of behavioral state and state-dependent cognitive
731		processes. Brain Res Brain Res Rev. 2003;42:33-84.
732		
733	49.	Butler PD, Weiss JM, Stout JC, et al. Corticotropin-releasing factor
734		produces fear-enhancing and behavioral activating effects following
735		infusion into the locus coeruleus. J Neurosci. 1990;10:176-83.
736		
737	50.	Koob GF. Corticotropin-releasing factor, norepinephrine, and stress.
738		Biol Psychiatry. 1999;46:1167-80.
739		
740	51.	Garakani A, Win T, Virk S, et al. Comorbidity of irritable bowel
741		syndrome in psychiatric patients: a review. Am J Ther. 2003;10:61-7.
742		
743	52.	American Gastroenterology Association. American
744		Gastroenterological Association medical position statement: irritable
745		bowel syndrome. Gastroenterology. 2002;123:2105-7.

7_{-}

747	53.	Million M, Wang L, Martínez V, et al. Differential Fos expression in
748		the paraventricular nucleus of the hypothalamus, sacral
749		parasympathetic nucleus and colonic motor response to water
750		avoidance stress in Fischer and Lewis rats. Brain Res. 2000;877:345-
751		53.
752		
753	54.	Castagliuolo I, Lamont JT, Qiu B, et al. Acute stress causes mucin
754		release from rat colon: role of corticotropin releasing factor and mast
755		cells. Am J Physiol Gastrointest Liver Physiol. 1996;271:G884-92.
756		
757	55.	Williams CL, Peterson JM, Villar RG, et al. Corticotropin-releasing
758		factor directly mediates colonic responses to stress. Am J Physiol
759		Gastrointest Liver Physiol. 1987;253:G582-6.
760		
761	56.	Maillot C, Million M, Wei JY, et al. Peripheral corticotropin-releasing
762		factor and stress-stimulated colonic motor activity involve type 1
763		receptor in rats. Gastroenterology. 2000;119:1569-79.
764		
765	57.	Kimura T, Amano T, Uehara H, et al. Urocortin I is present in the
766		enteric nervous system and exerts an excitatory effect via cholinergic
767		and serotonergic pathways in the rat colon. Am J Physiol Gastrointest
768		Liver Physiol. 2007;293:G903-10.
769		

770	58.	Nozu T, Takakusaki K, Okumura T. A balance theory of peripheral
771		corticotropin-releasing factor receptor type 1 and type 2 signaling to
772		induce colonic contractions and visceral hyperalgesia in rats.
773		Endocrinology. 2014;155:4655-64.
774		
775	59.	Martínez V, Wang L, Rivier JE, et al. Differential actions of
776		peripheral corticotropin-releasing factor (CRF), urocortin II, and
777		urocortin III on gastric emptying and colonic transit in mice: role of
778		CRF receptor subtypes 1 and 2. J Pharmacol Exp Ther. 2002;301:611-
779		7.
780		
781	60.	Million M, Maillot C, Saunders P, et al. Human urocortin II, a new
782		CRF-related peptide, displays selective CRF ₂ -mediated action on
783		gastric transit in rats. Am J Physiol Gastrointest Liver Physiol.
784		2002;282:G34-40.
785		
786	61.	Larauche M, Gourcerol G, Wang L, et al. Cortagine, a CRF1 agonist,
787		induces stresslike alterations of colonic function and visceral
788		hypersensitivity in rodents primarily through peripheral pathways.
789		Am J Physiol Gastrointest Liver Physiol. 2009;297:G215-27.
790		
791	62.	Gourcerol G, Wu SV, Yuan PQ, et al. Activation of corticotropin-
792		releasing factor receptor 2 mediates the colonic motor coping response
793		to acute stress in rodents. Gastroenterology. 2011;140:1586-96, e1-6.

795	63.	Yuan PQ, Wu SV, Wang L, et al. Corticotropin releasing factor in the
796		rat colon: expression, localization and upregulation by endotoxin.
797		Peptides. 2010;31:322-31.
798		
799	64.	Chatzaki E, Crowe PD, Wang L, et al. CRF receptor type 1 and 2 $$
800		expression and anatomical distribution in the rat colon. J Neurochem.
801		2004;90:309-16.
802		
803	65.	von Mentzer B, Murata Y, Ahlstedt I, et al. Functional CRF receptors
804		in BON cells stimulate serotonin release. Biochem Pharmacol.
805		2007;73:805-13.
806		
807	66.	Theoharides TC, Donelan JM, Papadopoulou N, et al. Mast cells as
808		targets of corticotropin-releasing factor and related peptides. Trends
809		Pharmacol Sci. 2004;25:563-8.
810		
811	67.	Wallon C, Yang PC, Keita AV, et al. Corticotropin-releasing hormone
812		(CRH) regulates macromolecular permeability via mast cells in
813		normal human colonic biopsies in vitro. Gut. 2008;57:50-8.
814		
815	68.	Audhya T, Jain R, Hollander CS. Receptor-mediated
816		immunomodulation by corticotropin-releasing factor. Cell Immunol.
817		1991;134:77-84.

819	69.	Kawahito Y, Sano H, Kawata M, et al. Local secretion of corticotropin-
820		releasing hormone by enterochromaffin cells in human colon.
821		Gastroenterology. 1994;106:859-65.
822		
823	70.	Muramatsu Y, Fukushima K, Iino K, et al. Urocortin and
824		corticotropin-releasing factor receptor expression in the human
825		colonic mucosa. Peptides. 2000;21:1799-809.
826		
827	71.	Wu SV, Yuan PQ, Lai J, et al. Activation of Type 1 CRH receptor
828		isoforms induces serotonin release from human carcinoid BON-1N
829		cells: an enterochromaffin cell model. Endocrinology. 2011;152:126-37.
830		
831	72.	Overman EL, Rivier JE, Moeser AJ. CRF induces intestinal epithelial
832		barrier injury via the release of mast cell proteases and TNF-alpha.
833		
		PLoS One. 2012;7:e39935.
834		PLoS One. 2012;7:e39935.
834 835	73.	PLoS One. 2012;7:e39935. Kempuraj D, Papadopoulou NG, Lytinas M, et al. Corticotropin-
	73.	
835	73.	Kempuraj D, Papadopoulou NG, Lytinas M, et al. Corticotropin-
835 836	73.	Kempuraj D, Papadopoulou NG, Lytinas M, et al. Corticotropin- releasing hormone and its structurally related urocortin are
835 836 837	73.	Kempuraj D, Papadopoulou NG, Lytinas M, et al. Corticotropin- releasing hormone and its structurally related urocortin are synthesized and secreted by human mast cells. Endocrinology.
835 836 837 838	73.	Kempuraj D, Papadopoulou NG, Lytinas M, et al. Corticotropin- releasing hormone and its structurally related urocortin are synthesized and secreted by human mast cells. Endocrinology.

Physiol Regul Integr Comp Physiol. 2003;284:R1269-76.

843

Yuan PQ, Million M, Wu SV, et al. Peripheral corticotropin releasing 75.844factor (CRF) and a novel CRF₁ receptor agonist, stressin₁-A activate 845 846 CRF₁ receptor expressing cholinergic and nitrergic myenteric neurons selectively in the colon of conscious rats. Neurogastroenterol Motil. 847 2007;19:923-36. 848 849 76. Bisschops R, Vanden Berghe P, Sarnelli G, et al. CRF-induced calcium 850 851 signaling in guinea pig small intestine myenteric neurons involves CRF-1 receptors and activation of voltage-sensitive calcium channels. 852 Am J Physiol Gastrointest Liver Physiol. 2006;290:G1252-60. 853

854

Tsukamoto K, Nakade Y, Mantyh C, et al. Peripherally administered
CRF stimulates colonic motility via central CRF receptors and vagal
pathways in conscious rats. Am J Physiol Regul Integr Comp Physiol.
2006;290:R1537-41.

859

860 78. Perrin MH, Donaldson CJ, Chen R, et al. Cloning and functional
861 expression of a rat brain corticotropin releasing factor (CRF) receptor.
862 Endocrinology. 1993;133:3058-61.

863

864 79. Wang L, Martínez V, Vale W, et al. Fos induction in selective
865 hypothalamic neuroendocrine and medullary nuclei by intravenous

866		injection of urocortin and corticotropin-releasing factor in rats. Brain
867		Res. 2000;855:47-57.
868		
869	80.	Maillot C, Wang L, Million M, et al. Intraperitoneal corticotropin-
870		releasing factor and urocortin induce Fos expression in brain and
871		spinal autonomic nuclei and long lasting stimulation of colonic
872		motility in rats. Brain Res. 2003;974:70-81.
873		
874	81.	Menetrey D, De Pommery J. Origins of Spinal Ascending Pathways
875		that Reach Central Areas Involved in Visceroception and
876		Visceronociception in the Rat. Eur J Neurosci. 1991;3:249-59.
877		
878	82.	Hay M, Bishop VS. Interactions of area postrema and solitary tract in
879		the nucleus tractus solitarius. Am J Physiol Heart Circ Physiol.
880		1991;260:H1466-73.
881		
882	83.	Van Pett K, Viau V, Bittencourt JC, et al. Distribution of mRNAs
883		encoding CRF receptors in brain and pituitary of rat and mouse. J
884		Comp Neurol. 2000;428:191-212.
885		
886	84.	Mercer JG, Lawrence CB, Copeland PA. Corticotropin-releasing factor
887		binding sites undergo axonal transport in the rat vagus nerve. J
888		Neuroendocrinol. 1992;4:281-6.
889		

.

890	85.	Davis SF, Derbenev AV, Williams KW, et al. Excitatory and inhibitory
891		local circuit input to the rat dorsal motor nucleus of the vagus
892		originating from the nucleus tractus solitarius. Brain Res.
893		2004;1017:208-17.
894		
895	86.	Mertz H, Naliboff B, Munakata J, et al. Altered rectal perception is a
896		biological marker of patients with irritable bowel syndrome.
897		Gastroenterology. 1995;109:40-52.
898		
899	87.	Mayer EA, Raybould HE. Role of visceral afferent mechanisms in
900		functional bowel disorders. Gastroenterology. 1990;99:1688-704.
901		
902	88.	van der Veek PP, Van Rood YR, Masclee AA. Symptom severity but
903		not psychopathology predicts visceral hypersensitivity in irritable
904		bowel syndrome. Clin Gastroenterol Hepatol. 2008;6:321-8.
905		
906	89.	Kuiken SD, Lindeboom R, Tytgat GN, et al. Relationship between
907		symptoms and hypersensitivity to rectal distension in patients with
908		irritable bowel syndrome. Aliment Pharmacol Ther. 2005;22:157-64.
909		
910	90.	Mayer EA, Gebhart GF. Basic and clinical aspects of visceral
911		hyperalgesia. Gastroenterology. 1994;107:271-93.
912		
913	91.	Posserud I, Syrous A, Lindstrom L, et al. Altered rectal perception in

914		irritable bowel syndrome is associated with symptom severity.
915		Gastroenterology. 2007;133:1113-23.
916		
917	92.	Prior A, Sorial E, Sun W-M, et al. Irritable bowel syndrome:
918		differences between patients who show rectal sensitivity and those
919		who do not. Eur J Gastroenterol Hepatol. 1993;5:343-9.
920		
921	93.	Bouin M, Plourde V, Boivin M, et al. Rectal distention testing in
922		patients with irritable bowel syndrome: sensitivity, specificity, and
923		predictive values of pain sensory thresholds. Gastroenterology.
924		2002;122:1771-7.
925		
926	94.	Nozu T, Kudaira M, Kitamori S, et al. Repetitive rectal painful
927		distention induces rectal hypersensitivity in patients with irritable
928		bowel syndrome. J Gastroenterol. 2006;41:217-22.
929		
930	95.	Munakata J, Naliboff B, Harraf F, et al. Repetitive sigmoid
931		stimulation induces rectal hyperalgesia in patients with irritable
932		bowel syndrome. Gastroenterology. 1997;112:55-63.
933		
934	96.	Gué M, Del Rio-Lacheze C, Eutamene H, et al. Stress-induced
935		visceral hypersensitivity to rectal distension in rats: role of CRF and
936		mast cells. Neurogastroenterol Motil. 1997;9:271-9.
937		

938	97.	Schwetz I, McRoberts JA, Coutinho SV, et al. Corticotropin-releasing
939		factor receptor 1 mediates acute and delayed stress-induced visceral
940		hyperalgesia in maternally separated Long-Evans rats. Am J Physiol
941		Gastrointest Liver Physiol. 2005;289:G704-12.
942		
943	98.	Greenwood-Van Meerveld B, Johnson AC, Cochrane S, et al.
944		Corticotropin-releasing factor 1 receptor-mediated mechanisms
945		inhibit colonic hypersensitivity in rats. Neurogastroenterol Motil.
946		2005;17:415-22.
947		
948	99.	Kosoyan HP, Grigoriadis DE, Taché Y. The CRF(1) receptor
949		antagonist, NBI-35965, abolished the activation of locus coeruleus
950		neurons induced by colorectal distension and intracisternal CRF in
951		rats. Brain Res. 2005;1056:85-96.
952		
953	100.	Su J, Tanaka Y, Muratsubaki T, et al. Injection of corticotropin-
954		releasing hormone into the amygdala aggravates visceral nociception
955		and induces noradrenaline release in rats. Neurogastroenterol Motil.
956		2015;27:30-9.
957		
958	101.	Kim SH, Han JE, Hwang S, et al. The expression of corticotropin-
959		releasing factor in the central nucleus of the amygdala, induced by
960		colorectal distension, is attenuated by general anesthesia. J Korean
961		Med Sci. 2010;25:1646-51.

963	102.	Neugebauer V, Li W, Bird GC, et al. The amygdala and persistent
964		pain. Neuroscientist. 2004;10:221-34.
965		
966	103.	Phelps EA, LeDoux JE. Contributions of the amygdala to emotion
967		processing: from animal models to human behavior. Neuron.
968		2005;48:175-87.
969		
970	104.	De Francesco PN, Valdivia S, Cabral A, et al. Neuroanatomical and
971		functional characterization of CRF neurons of the amygdala using a
972		novel transgenic mouse model. Neuroscience. 2015;289C:153-65.
973		
974	105.	Gray TS, Bingaman EW. The amygdala: corticotropin-releasing factor,
975		steroids, and stress. Crit Rev Neurobiol. 1996;10:155-68.
976		
977	106.	Kravets JL, Reyes BA, Unterwald EM, et al. Direct targeting of
978		peptidergic amygdalar neurons by noradrenergic afferents: linking
979		stress-integrative circuitry. Brain Struct Funct. 2015;220:541-58.
980		
981	107.	Berridge CW. Noradrenergic modulation of arousal. Brain Res Rev.
982		2008;58:1-17.
983		
984	108.	Coutinho SV, Plotsky PM, Sablad M, et al. Neonatal maternal
985		separation alters stress-induced responses to viscerosomatic

986		nociceptive stimuli in rat. Am J Physiol Gastrointest Liver Physiol.
987		2002;282:G307-16.
988		
989	109.	Nemeroff CB. Neurobiological consequences of childhood trauma. J
990		Clin Psychiatry. 2004;65 Suppl 1:18-28.
991		
992	110.	Ladd CO, Thrivikraman KV, Huot RL, et al. Differential
993		neuroendocrine responses to chronic variable stress in adult Long
994		Evans rats exposed to handling-maternal separation as neonates.
995		Psychoneuroendocrinology. 2005;30:520-33.
996		
997	111.	Francis DD, Caldji C, Champagne F, et al. The role of corticotropin-
998		releasing factornorepinephrine systems in mediating the effects of
999		early experience on the development of behavioral and endocrine
1000		responses to stress. Biol Psychiatry. 1999;46:1153-66.
1001		
1002	112.	Kalinichev M, Easterling KW, Plotsky PM, et al. Long-lasting changes
1003		in stress-induced corticosterone response and anxiety-like behaviors
1004		as a consequence of neonatal maternal separation in Long-Evans
1005		rats. Pharmacol Biochem Behav. 2002;73:131-40.
1006		
1007	113.	Larauche M, Bradesi S, Million M, et al. Corticotropin-releasing
1008		factor type 1 receptors mediate the visceral hyperalgesia induced by
1009		repeated psychological stress in rats. Am J Physiol Gastrointest Liver

Physiol. 2008;294:G1033-40. 1010 1011 Million M, Wang L, Wang Y, et al. CRF₂ receptor activation prevents 114. 10121013 colorectal distension induced visceral pain and spinal ERK1/2 1014phosphorylation in rats. Gut. 2006;55:172-81. 1015Mawe GM, Coates MD, Moses PL. Review article: intestinal serotonin 1016115. signalling in irritable bowel syndrome. Aliment Pharmacol Ther. 1017 2006;23:1067-76. 1018 1019 van den Wijngaard RM, Klooker TK, de Jonge WJ, et al. Peripheral 1020116. relays in stress-induced activation of visceral afferents in the gut. 1021 Auton Neurosci. 2010;153:99-105. 1022 1023 1024 117. Barbara G, Wang B, Stanghellini V, et al. Mast cell-dependent 1025excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology. 2007;132:26-37. 1026 1027Cremon C, Carini G, Wang B, et al. Intestinal serotonin release, 1028 118. sensory neuron activation, and abdominal pain in irritable bowel 1029 syndrome. Am J Gastroenterol. 2011;106:1290-8. 1030 1031 Ait-Belgnaoui A, Bradesi S, Fioramonti J, et al. Acute stress-induced 1032 119. 1033 hypersensitivity to colonic distension depends upon increase in

1034		paracellular permeability: role of myosin light chain kinase. Pain.
1035		2005;113:141-7.
1036		
1037	120.	Nakade Y, Tsuchida D, Fukuda H, et al. Restraint stress augments
1038		postprandial gastric contractions but impairs antropyloric
1039		coordination in conscious rats. Am J Physiol Regul Integr Comp
1040		Physiol. 2006;290:R616-24.
1041		
1042	121.	Million M, Maillot C, Adelson DA, et al. Peripheral injection of
1043		sauvagine prevents repeated colorectal distension-induced visceral
1044		pain in female rats. Peptides. 2005;26:1188-95.
1045		
1046	122.	Chrousos GP. Stress and disorders of the stress system. Nat Rev
1047		Endocrinol. 2009;5:374-81.
1048		
1049	123.	Nozu T, Tsuchiya Y, Kumei S, et al. Peripheral corticotropin-releasing
1050		factor (CRF) induces stimulation of gastric contractions in freely
1051		moving conscious rats: role of CRF receptor types 1 and 2.
1052		Neurogastroenterol Motil. 2013;25:190-7.
1053		
1054	124.	O'malley D, Julio-Pieper M, Gibney SM, et al. Differential stress-
1055		induced alterations of colonic corticotropin-releasing factor receptors
1056		in the Wistar Kyoto rat. Neurogastroenterol Motil. 2010;22:301-11.
1057		

1058	125.	Liu S, Ren W, Qu MH, et al. Differential actions of urocortins on
1059		neurons of the myenteric division of the enteric nervous system in
1060		guinea pig distal colon. Br J Pharmacol. 2010;159:222-36.
1061		
1062	126.	Posserud I, Agerforz P, Ekman R, et al. Altered visceral perceptual
1063		and neuroendocrine response in patients with irritable bowel
1064		syndrome during mental stress. Gut. 2004;53:1102-8.
1065		
1066	127.	Fukudo S, Kanazawa M, Kano M, et al. Exaggerated motility of the
1067		descending colon with repetitive distention of the sigmoid colon in
1068		patients with irritable bowel syndrome. J Gastroenterol. 2002;37
1069		Suppl 14:145-50.
1070		
1071	128.	Fukudo S, Suzuki J. Colonic motility, autonomic function, and
1072		gastrointestinal hormones under psychological stress on irritable
1073		bowel syndrome. Tohoku J Exp Med. 1987;151:373-85.
1074		
1075	129.	Tanaka Y, Kanazawa M, Fukudo S, et al. Biopsychosocial model of
1076		irritable bowel syndrome. J Neurogastroenterol Motil. 2011;17:131-9.
1077		
1078	130.	Rittenhouse PA, Lopez-Rubalcava C, Stanwood GD, et al. Amplified
1079		behavioral and endocrine responses to forced swim stress in the
1080		Wistar-Kyoto rat. Psychoneuroendocrinology. 2002;27:303-18.
1081		

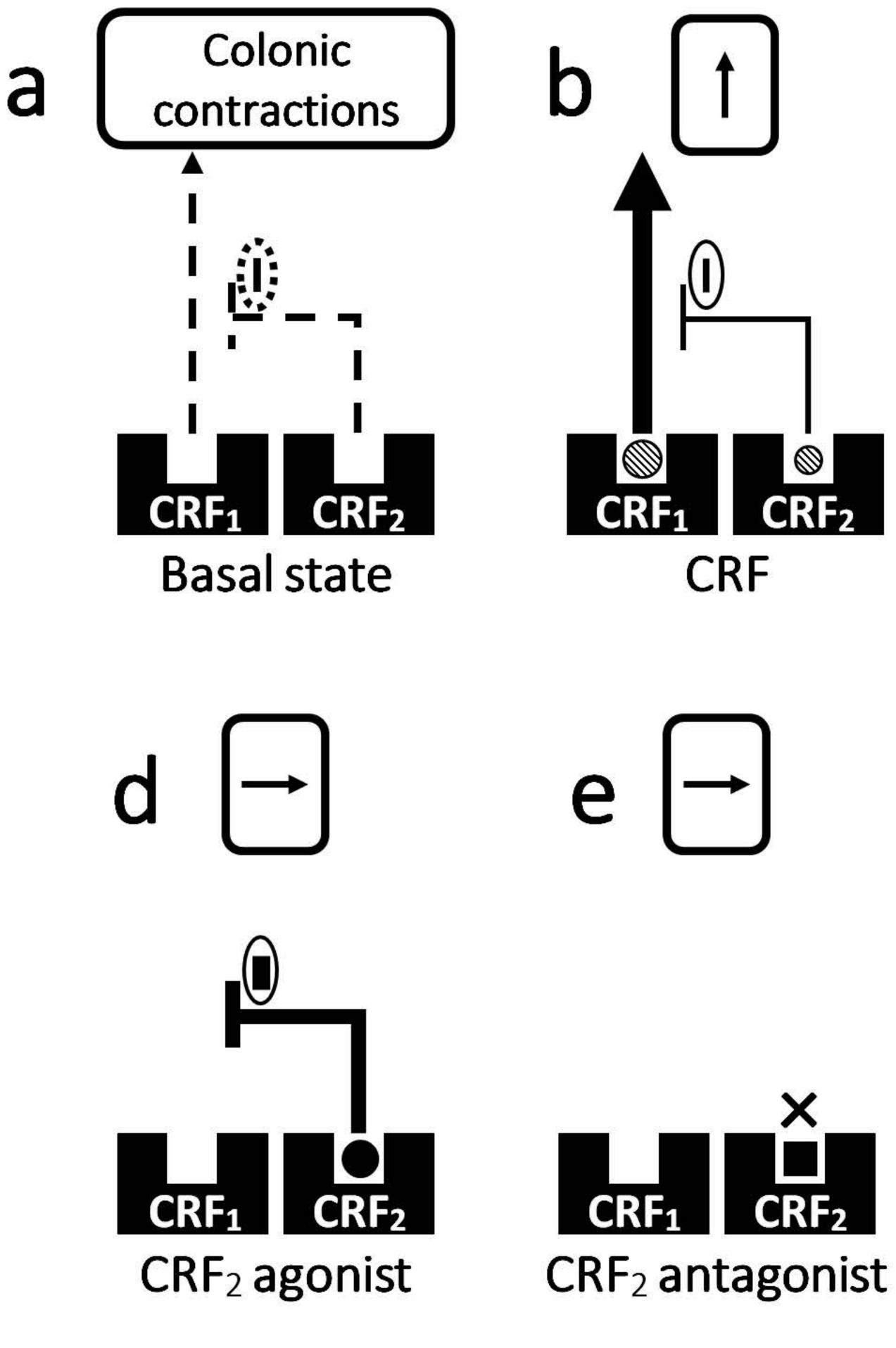
1082	131.	Gunter WD, Shepard JD, Foreman RD, et al. Evidence for visceral
1083		hypersensitivity in high-anxiety rats. Physiol Behav. 2000;69:379-82.
1084		
1085	132.	Courvoisier H, Moisan MP, Sarrieau A, et al. Behavioral and
1086		neuroendocrine reactivity to stress in the WKHA/WKY inbred rat
1087		strains: a multifactorial and genetic analysis. Brain Res. 1996;743:77-
1088		85.
1089		
1090	133.	Sato N, Suzuki N, Sasaki A, et al. Corticotropin-releasing hormone
1091		receptor 1 gene variants in irritable bowel syndrome. PLoS One.
1092		2012;7:e42450.
1093		
1094	134.	Hsu DT, Mickey BJ, Langenecker SA, et al. Variation in the
1095		corticotropin-releasing hormone receptor 1 (CRHR1) gene influences
1096		fMRI signal responses during emotional stimulus processing. J
1097		Neurosci. 2012;32:3253-60.
1098		
1099	135.	Markovic D, Grammatopoulos DK. Focus on the splicing of secretin
1100		GPCRs transmembrane-domain 7. Trends Biochem Sci. 2009;34:443-
1101		52.
1102		
1103	136.	Sweetser S, Camilleri M, Linker Nord SJ, et al. Do corticotropin
1104		releasing factor-1 receptors influence colonic transit and bowel
1105		function in women with irritable bowel syndrome? Am J Physiol

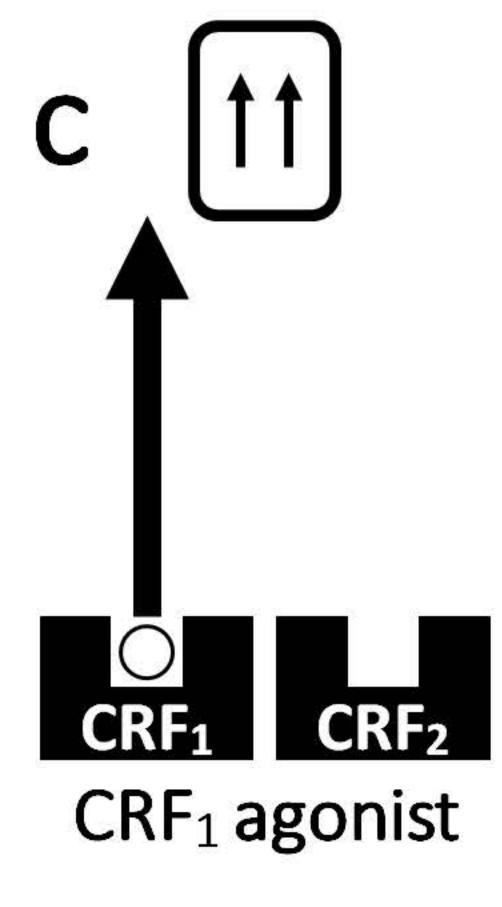
1106		Gastrointest Liver Physiol. 2009;296:G1299-306.
1107		
1108	137.	Suda T, Kageyama K, Sakihara S, et al. Physiological roles of
1109		urocortins, human homologues of fish urotensin I, and their receptors.
1110		Peptides. 2004;25:1689-701.
1111		
1112	138.	Nozu T, Martínez V, Rivier J, et al. Peripheral urocortin delays gastric
1113		emptying: role of CRF receptor 2. Am J Physiol Gastrointest Liver
1114		Physiol. 1999;276:G867-74.
1115		
1116	139.	Barbara G, Zecchi L, Barbaro R, et al. Mucosal permeability and
1117		immune activation as potential therapeutic targets of probiotics in
1118		irritable bowel syndrome. J Clin Gastroenterol. 2012;46 Suppl:S52-5.
1119		
1120	140.	Kassinen A, Krogius-Kurikka L, Makivuokko H, et al. The fecal
1121		microbiota of irritable bowel syndrome patients differs significantly
1122		from that of healthy subjects. Gastroenterology. 2007;133:24-33.
1123		
1124	141.	Chadwick VS, Chen W, Shu D, et al. Activation of the mucosal
1125		immune system in irritable bowel syndrome. Gastroenterology.
1126		2002;122:1778-83.
1127		
1128	142.	Labus JS, Dinov ID, Jiang Z, et al. Irritable bowel syndrome in
1129		female patients is associated with alterations in structural brain

1130		networks. Pain. 2014;155:137-49.
1131		
1132	143.	Larauche M, Kiank C, Taché Y. Corticotropin releasing factor
1133		signaling in colon and ileum: regulation by stress and
1134		pathophysiological implications. J Physiol Pharmacol. 2009;60 Suppl
1135		7:33-46.
1136		
1137	144.	Mayer EA, Savidge T, Shulman RJ. Brain-gut microbiome
1138		interactions and functional bowel disorders. Gastroenterology.
1139		2014;146:1500-12.
1140		
1141	145.	Labus JS, Hubbard CS, Bueller J, et al. Impaired emotional learning
1142		and involvement of the corticotropin-releasing factor signaling system
1143		in patients with irritable bowel syndrome. Gastroenterology.
1144		2013;145:1253-61, e1-3.
1145		
1146		

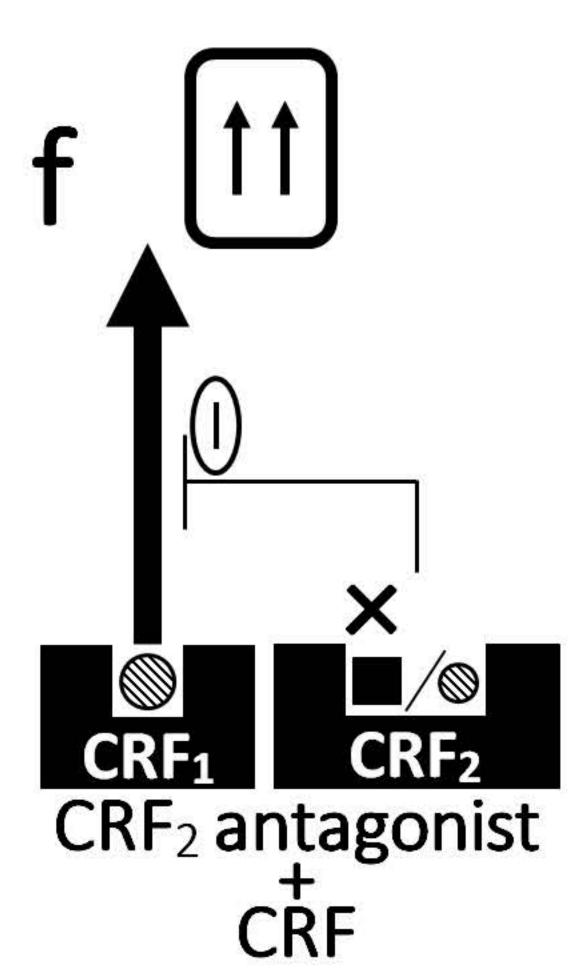
1148 Figure legends

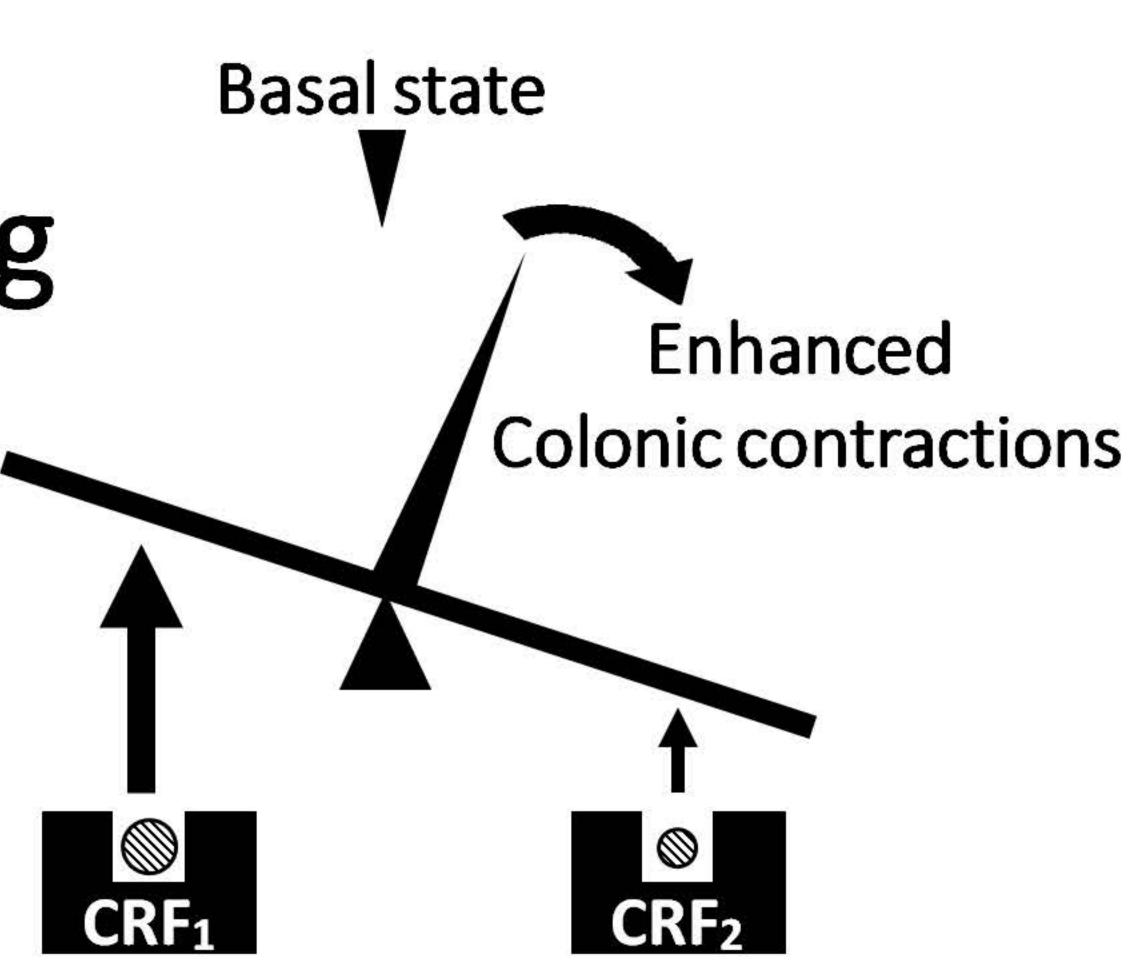
1149

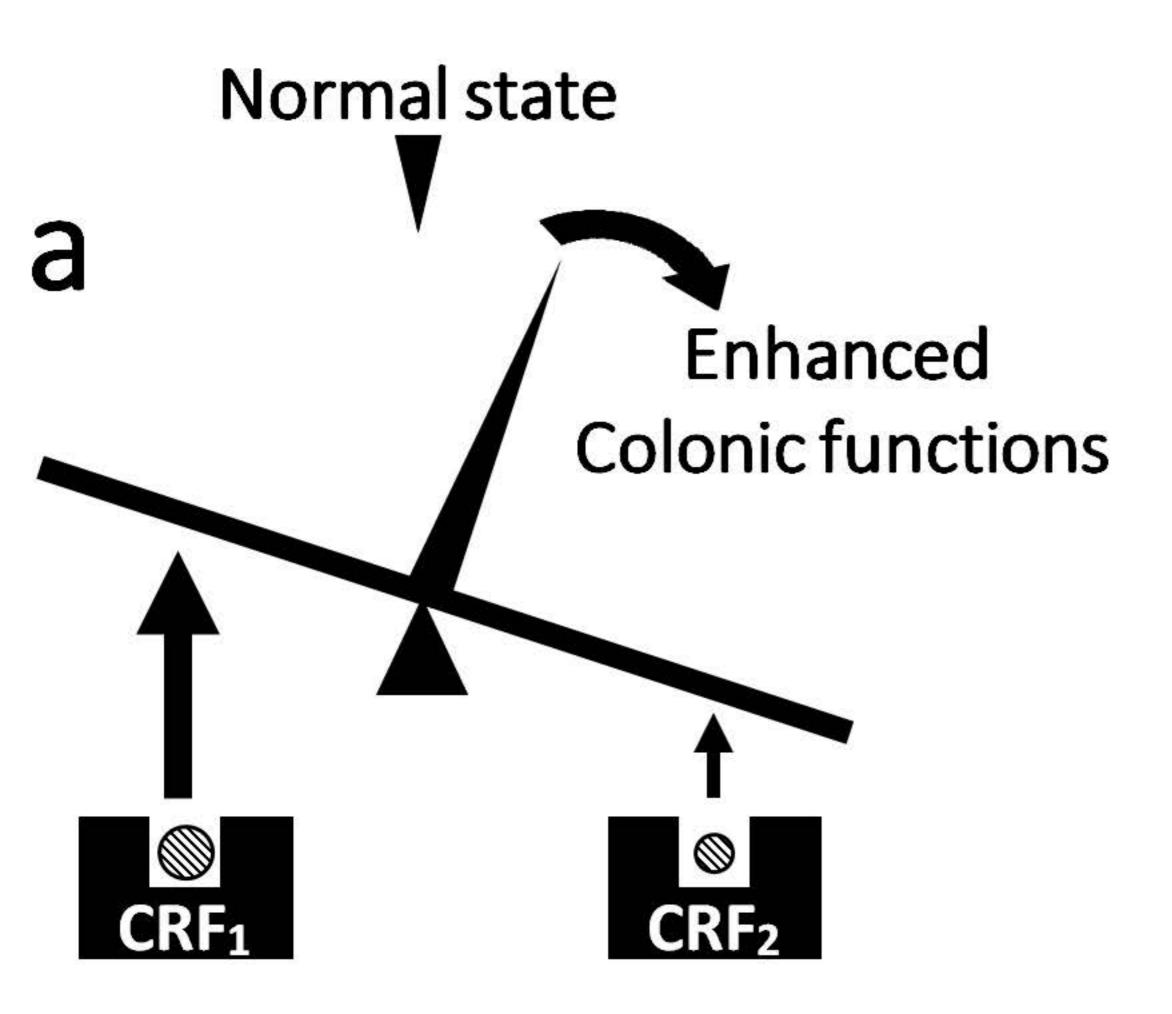

1150 Figure 1.

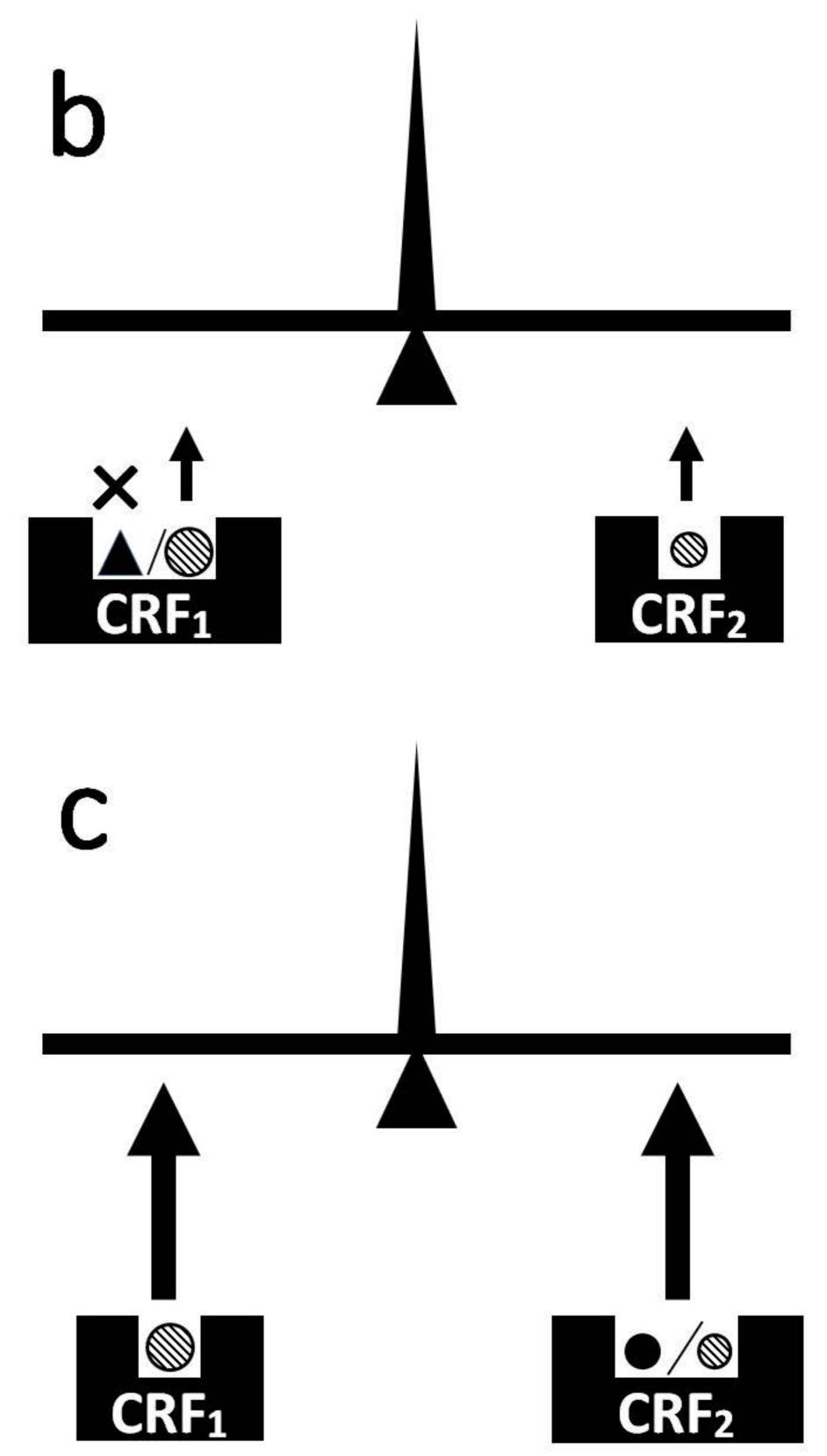

Schematic illustration of our theory on the mechanism of peripheral CRF-1151induced stimulation of colonic contractions. In the basal condition, both CRF1 1152and CRF2 signaling are not activated (a). CRF activates both CRF1 and CRF2 1153with higher affinity for CRF1. Thus CRF induces strong activation of CRF1 1154signaling prevailing over the inhibition by CRF2 signaling, resulting in 1155enhanced colonic contractility (b). CRF1 agonist stimulates colonic 11561157contractility without interference of CRF2 signaling (c). The CRF2 agonist or antagonist does not change colonic contractility because of a lack of the 1158activated CRF1 signaling (d and e). Meanwhile, CRF2 antagonist induces 1159disinhibition of CRF1 signaling, and enhances the stimulatory action of 1160 colonic contractility by CRF (f). The signaling balance of CRF1 and CRF2 may 11611162determine the state of colonic contractions (g).

1163


1164 Figure 2.


The signaling balance of CRF1 and CRF2 might be abnormally shifted toward CRF1 by endogenously released CRF receptor ligands, i.e. CRF and Ucns, leading to enhanced colonic motility and visceral sensitization in IBS (a). According to the balance theory, both CRF1 antagonist and CRF2 agonist may be useful in treating IBS. CRF1 antagonist inhibits CRF1 signaling resulting in normalizing the signaling balance (b). CRF2 agonist increases the signal intensity of CRF2 in addition to the one induced by endogenous CRF2 ligands, 1172 thereby resetting signaling balance to normal state (c).





Endogenous ligands

- CRF1 antagonist
- CRF2 agonist

