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Abstract 25 

 26 

Irritable bowel syndrome (IBS) displays chronic abdominal pain or 27 

discomfort with altered defecation, and stress-induced altered gut motility 28 

and visceral sensation play an important role in the pathophysiology. 29 

Corticotropin-releasing factor (CRF) is a main mediator of stress responses 30 

and mediates these gastrointestinal functional changes. CRF in brain and 31 

periphery acts through two subtype receptors such as CRF receptor type 1 32 

(CRF1) and type 2 (CRF2), and activating CRF1 exclusively stimulates 33 

colonic motor function and induces visceral hypersensitivity. Meanwhile, 34 

recent several studies demonstrated that CRF2 has a counter regulatory 35 

action against CRF1, which may imply that CRF2 inhibits stress response 36 

induced by CRF1 in order to prevent it from going into an overdrive state. 37 

Colonic contractility and sensation may be explained by the state of the 38 

intensity of CRF1 signaling. CRF2 signaling may play a role in CRF1-39 

triggered enhanced colonic functions through modulation of CRF1 activity. 40 

Blocking CRF2 further enhances CRF-induced stimulation of colonic 41 

contractility and activating CRF2 inhibits stress-induced visceral 42 

sensitization. Therefore, we proposed the hypothesis, i.e. balance theory of 43 

CRF1 and CRF2 signaling as follows. Both CRF receptors may be activated 44 

simultaneously and the signaling balance of CRF1 and CRF2 may determine 45 

the functional changes of gastrointestinal tract induced by stress. CRF 46 

signaling balance might be abnormally shifted toward CRF1, leading to 47 

enhanced colonic motility and visceral sensitization in IBS. This theory may 48 
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lead to understand the pathophysiology and provide the novel therapeutic 49 

options targeting altered signaling balance of CRF1 and CRF2 in IBS. 50 

 51 

 52 

Key words: Irritable bowel syndrome; Corticotropin-releasing factor; receptor; 53 

Colonic motility; Visceral sensation  54 
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Introduction 55 

Irritable bowel syndrome (IBS) displays chronic abdominal pain or 56 

discomfort with altered defecation which is not explained by structural or 57 

biochemical abnormalities. The prevalence is quite higher in the general 58 

population (10 to 20%) [1-4], and it impairs patients’ quality of life and has an 59 

enormous economic impact including direct costs of health care use and 60 

indirect costs of absenteeism from work [2]. The pathophysiology of IBS has 61 

not been determined definitely but it is generally accepted that dysfunction 62 

of the bidirectional communication system between brain and gut, i.e. brain-63 

gut axis, contributes to the symptom generation [5, 6].  64 

Stress induces behavioral, neuroendocrine and autonomic responses, 65 

and corticotropin-releasing factor (CRF) is a main mediator of these responses 66 

in the brain-gut axis [7-13]. Stress also alters colonic motor and sensory 67 

functions, which are thought to play an important role in IBS pathophysiology 68 

[14-16]. Several animal and few human studies proved that CRF mediates 69 

these gut responses [16-19]. Administration of CRF alters colonic motility and 70 

increases plasma adrenocorticotropic hormone (ACTH), and these responses 71 

are exaggerated in IBS patients [17]. These lines of evidence suggest that 72 

altered brain-gut axis resulting from exaggerated response to CRF, leading to 73 

changes in colonic functions is thought to relevant to the pathophysiology of 74 

IBS.  75 

 In this paper, we will review the actions and mechanisms of central 76 

and peripheral CRF signaling in colonic motor and visceral sensory functions, 77 

and discuss the possible role of CRF signaling in the pathophysiology of IBS. 78 
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And we will also present the balance theory of CRF receptors signaling, which 79 

may well explain the actions of CRF in gastrointestinal (GI) functions. Finally, 80 

the therapeutic role of CRF signaling according to this theory will be also 81 

discussed.  82 

 83 

CRF receptors and ligands 84 

CRF is a 41-amino acid residue peptide which was originally isolated 85 

from ovine brain [20] and named for its property to stimulate anterior 86 

pituitary secretion of ACTH. During the last twenty years, three new 87 

mammalian CRF-related peptides, urocortins (Ucns) such as urocortin 1 88 

(Ucn1), urocortin 2 (Ucn2), and urocortin 3 (Ucn3) have been characterized 89 

[21-24].   90 

CRF and Ucns exert its action through the activation of two receptors, 91 

CRF receptor type 1 (CRF1) and type 2 (CRF2) [25, 26]. CRF receptors are 92 

members of the G-protein coupled receptors family. The dominant mode of 93 

signaling for both CRF1 and CRF2 is the Gs-coupled adenylate cyclase-94 

phosphokinase cascade [24]. However, CRF receptors coupled to other types 95 

of G proteins have also been demonstrated [25, 27], and phospholipase C-96 

protein kinase C and extracellular signal-regulated kinase-mitogen activated 97 

protein kinase cascades are also reported [25]. 98 

Despite sharing 70% amino acid sequence similarity, CRF1 and 99 

CRF2 display distinct characteristic affinities for CRF and Ucns [21-23]. 100 

CRF has a higher affinity (10- to 40-fold higher) for CRF1 than for 101 

CRF2. Ucn1 binds CRF2 with 100-fold greater affinity than CRF, and 102 
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CRF1 with 6-fold greater affinity than CRF [21-23]. Ucn2 and Ucn3 103 

exhibit high selectivity only for CRF2 [22, 23]. 104 

 105 

Role of CRF in stress-induced stimulation of colonic motor function 106 

Although no specific or consistent abnormal changes in GI motility 107 

definitely related to abdominal pain or discomfort are determined, many 108 

studies reported altered colonic motility in IBS [14, 28, 29]. Several studies 109 

(but not all studies) showed accelerated colonic transit is observed in diarrhea 110 

predominant IBS [29]. In addition, IBS patients display exaggerated motility 111 

response to stress as compared to healthy controls [18], suggesting the 112 

importance of stress and altered colonic motility in symptom generation in 113 

IBS. 114 

 115 

Central CRF receptors 116 

Various stressors such as psychological (water avoidance), physical 117 

(restraint), or immunological (interleukin-1β) accelerate colonic transit and 118 

stimulate colonic contractions in rodents [30-36]. Central administration of 119 

CRF stimulates colonic motility such as reduced colonic transit time, 120 

stimulation of defecation and colonic contractions [33-37]. These responses 121 

are blocked by central administration of a non-selective CRF receptor 122 

antagonist such as α-helical CRF(9-41) or astressin, and central administration 123 

of CRF mimics the responses [30, 31, 35, 38].  124 

Meanwhile, CRF1 and CRF2 are known to display the different 125 

response in colonic motor function. CRF, Ucn1 or Ucn2 administered 126 
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intracerebroventricularly (icv), increases fecal pellet output, and Ucn1 has 127 

similar potency as CRF. However, Ucn 2 is about 10 and 8 times less potent 128 

than CRF and Ucn1, respectively in mice [39]. In addition, restraint stress or 129 

icv CRF-induced stimulation of pellet output and acceleration of distal colonic 130 

transit were prevented by icv, a selective CRF1 antagonist, NBI-35965 but 131 

not by icv, a selective CRF2 antagonist, astressin2-B [40]. These results 132 

indicate that activation of brain CRF1 is involved in the stress-induced 133 

stimulation of colonic motor function.  134 

Central CRF-induced altered motor function is independent from the 135 

activation of hypothalamic–pituitary–adrenal axis, because this response is 136 

observed in hypophysectomized rats [37]. Chlorisondamine or atropine but 137 

not bretylium blocked central CRF-induced stimulation of colonic transit, but 138 

vagotomy only reduced this response by 19% in rats [33, 34]. Meanwhile other 139 

study demonstrated vagotomy completely abolished this response by CRF 140 

[37]. Thus stimulation of central CRF receptors may activate vagal and sacral 141 

parasympathetic neurons resulting in increased enteric nervous system 142 

activity, thereby stimulating colonic motor function. 143 

In addition, central CRF or restraint stress-induced stimulation of 144 

defecation was blocked by peripheral administration of 5-hydroxytryptamine 145 

(5-HT)3 antagonist or 5-HT4 antagonist [38, 41]. Moreover, increase in 5-HT 146 

content in the feces of rat proximal colon by intracisternal (ic) CRF or 147 

restraint stress was observed and it was inhibited by ic, a selective CRF1 148 

antagonist, NB1-27914. These results suggest that parasympathetic 149 

cholinergic activation of colonic 5-HT3 and 5-HT4 receptors also mediates the 150 
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action of CRF.  151 

Microinjection of CRF into the specific brain nuclei reveals the 152 

responsive site to CRF. Mönnikes et al. showed it is localized in the 153 

hypothalamus (paraventricular nucleus; PVN, arcuate nucleus) and pontine 154 

areas, such as locus coeruleus (LC) [33, 34, 42]. These brain nuclei are known 155 

to be involved in CRF-induced anxiety and depression [43-45]. PVN contains 156 

numerous CRF like immunoreactive neurons and receptors, and sends direct 157 

projections to dorsal vagal complex and spinal preganglionic neurons 158 

controlling autonomic nervous system activity [46, 47]. LC noradrenergic 159 

neurons during stress can supply norepinephrine across the central nervous 160 

system and modulate the stress response [48]. Activation of LC by CRF 161 

induces increased vigilance and anxiogenic behavior [49, 50]. These results 162 

may support the role of brain CRF receptors in the pathophysiology of IBS, 163 

because IBS patients are frequently comorbid with psychiatric disorders such 164 

as anxiety and depression [51], and display greater reactivity to stress [52]. 165 

Water avoidance stress (WAS) induces numerous Fos-positive cells in 166 

PVN, LC, nucleus tractus solitarius (NTS), and the parasympathetic nucleus 167 

of the lumbosacral spinal cord (L6-S1) in rats [30, 53]. Bilateral microinfusion 168 

of α-helical CRF(9-41) into the PVN before restraint or WAS abolished stress-169 

induced alterations of colonic transit [33, 34]. These results further support 170 

the notion that stress or CRF activates PVN and LC, leading to stimulating 171 

colonic motor function mediated through vagal and sacral parasympathetic 172 

neurons. 173 

  174 
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Peripheral CRF receptors 175 

 Intravenous (iv) administration of CRF induces the stimulation of 176 

pellet output and colonic transit with a potency similar to central injection 177 

(icv) in rats [38, 54, 55]. Peripherally injected CRF antagonist, α-helical 178 

CRF(9-41) or astressin which does not cross the blood-brain barrier, blunts the 179 

stimulation of distal colonic transit and fecal pellet output induced by acute 180 

wrap restraint or WAS in rats [38, 54-56]. Moreover, in in vitro studies, CRF 181 

increases distal colonic myoelectric activity [56], and Ucn1 or CRF stimulates 182 

contractions of colonic muscle strips [57, 58]. These results strongly suggest 183 

that CRF also acts peripheral CRF receptors to stimulate colonic motility. 184 

Enhanced colonic motility induced by peripheral CRF is mediated 185 

through CRF1, which is supported by the following evidence. Peripheral 186 

administration of CRF reduces colonic transit time but Ucn2 or Ucn3 does not 187 

induce the response under the same conditions in rodents [59, 60]. 188 

Intraperitoneal (ip) cortagine, a selective CRF1 agonist decreases the distal 189 

colonic transit time, increases distal and transverse colonic contractility, 190 

increases defecation and induces watery diarrhea in rats [61]. In addition, ip 191 

administration of NBI-27914 or CP-154,526, a selective CRF1 antagonist 192 

abolishes the response by CRF [59, 60]. Since all now available CRF1 193 

antagonists can cross the blood-brain barrier, these results do not indicate 194 

directly the role of peripheral CRF1. However, as described above, stress-195 

induced stimulation of defecation is abolished by non-selective CRF receptor 196 

antagonists with peripheral limited action, and moreover, subcutaneous (sc) 197 

injection of astressin2-B does not alter accelerated distal colonic transit 198 
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induced by restraint stress [60]. These results suggests that peripheral 199 

injection of CRF- or stress-induced stimulating colonic motor function is 200 

mediated through peripheral CRF1.     201 

Recent studies demonstrated that the expression of CRF receptors 202 

and ligands in the colon in various cells such as neuronal (enteric nervous 203 

system), enterochromaffin (EC) and immune cells (mast cells, lymphocytes) 204 

in rodents and human [62-70]. Most of these studies also showed that CRF 205 

and Ucns are expressed in close proximity of the CRF receptors. Moreover, 206 

both EC cells and mast cells are not only a target of peripheral CRF to 207 

stimulate the release of chemical mediators such as serotonin, etc., but also 208 

secrete CRF itself [69, 71-73]. Luminally released serotonin from EC cells 209 

activates mucosal 5-HT3 receptors located on the vagal afferents, which 210 

stimulates colonic motility via the vagovagal reflex [74]. These results suggest 211 

that peripheral CRF and Ucns may form autocrine/paracrine loop, thereby 212 

modulating the motility. 213 

In addition, several studies suggested that colonic myenteric neurons 214 

are also possible action sites of peripheral CRF for the following reasons. Ip 215 

CRF induces colonic myenteric Fos expression through peripheral CRF1 and 216 

the nearly all Fos expressing cells are CRF1 immunoreactive [75]. Moreover, 217 

Fos activation by ip CRF is correlated with increased defecation [75]. Ucn1 218 

evokes the contractions of rat colonic smooth muscle strips, which are blocked 219 

by a selective CRF1 antagonist, antalarmine or the neuronal blocker, 220 

tetrodotoxin [57]. Additionally, myenteric neurons in the guinea pig jejunum 221 

display an increased intracellular calcium concentration in response to CRF 222 
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application, and this neuronal activation is mediated through CRF1 [76]. 223 

In contrast to these above results, Tsukamoto et al. [77] demonstrated 224 

that the stimulatory effect of peripherally administered CRF on colonic 225 

motility was abolished by truncal vagotomy, hexamethonium, atropine and ic 226 

astressin, and suggested the possibility that peripheral injection of CRF 227 

reaches the area postrema (AP) and activates the dorsal nucleus of vagus via 228 

central CRF receptors, resulting in activation of the vagal efferent, leading to 229 

stimulating colonic motility. CRF does not penetrate to the brain but 230 

circumventricular organs including AP are relatively unprotected by the 231 

blood-brain barrier [78].  232 

There is also the evidence that peripheral injection of CRF activates 233 

several brain nuclei such as PVN, central amygdala (CeA), NTS and AP [79, 234 

80]. Additionally, CRF injection also induces Fos expression in lumbosacral 235 

spinal intermediolateral column and dorsal horn [80], which are known to 236 

contain cells that engage in ascending supraspinal projections to the NTS [81]. 237 

Moreover, it is also known that NTS receives a large proportion of efferents 238 

from AP [82]. CRF receptors are present on AP, and the cervical and 239 

subdiaphragmatic vagus [83, 84]. These results suggest that peripheral CRF 240 

may stimulate NTS possibly through humoral i.e. by directly activating AP, 241 

and/or neural mechanisms, i.e. through vagus afferents and/or ascending 242 

projections from lumbosacral spinal cord, then NTS may transfer convergent 243 

information to the dorsal nucleus of vagus [85], leading to modulating colonic 244 

motility. As described before, PVN is a responsive site to central CRF inducing 245 

the stimulation of colonic motor function. In addition, as will be described 246 
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later, CeA is thought to be one of the responsive area to brain CRF inducing 247 

visceral sensitization. In this context, we would emphasize that the possibility 248 

of contribution of central pathways to modulating colonic functions by 249 

peripheral administration of CRF has not been denied.  250 

 251 

Role of CRF in stress-induced altered visceral sensation 252 

It is now widely accepted that an altered visceral sensitivity plays an 253 

important role in the pathogenesis of IBS [14, 86, 87]. Previous studies 254 

indicate that 33-90% of IBS patients display increased visceral sensitivity to 255 

rectal balloon distention [88-93]. Several factors such as various methods 256 

determining the sensitivity etc. may contribute to the observed wide range of 257 

hypersensitivity, but in any event, these results also suggest that significant 258 

portion of the patients does not develop visceral hypersensitivity in the basal 259 

state. Meanwhile, we and other researcher demonstrated that conditioning 260 

such as repetitive colon or rectal distention induces visceral hypersensitivity 261 

in IBS patients regardless of the baseline sensitivity, and this response is not 262 

observed in healthy controls [94, 95], which may be a reliable marker for IBS. 263 

It was reported that visceral stimulation can be interpreted as stress to IBS 264 

patients, because it evokes daily symptoms and negative emotion [86]. These 265 

lines of evidence further support the importance of stress and altered visceral 266 

sensation in pathophysiology of IBS. 267 

 268 

Central CRF receptors 269 

Several stress models evoke visceral hypersensitivity and this 270 
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response is blocked by central injection of CRF antagonist [96, 97]. Meanwhile, 271 

central administration (icv) of CRF induces visceral hypersensitivity to 272 

colorectal distention (CRD) in rats [96], which is mediated through CRF1 [98]. 273 

However, the studies evaluating the brain sites responsible for modulating 274 

visceral sensation has been limited so far. Kosoyan et al. [99] showed that LC 275 

neurons were activated by CRD or ic CRF, which was abolished by iv NBI-276 

35965, which can cross the blood-brain barrier in rats, indicating that CRF1 277 

signaling plays a role in visceral hypersensitivity through activating LC. 278 

Su et al. [100] very recently demonstrated that CRF microinjected 279 

into CeA increased visceromotor response (VMR) to CRD and the response 280 

was blocked by injection of CP-15426, a selective CRF1 antagonist into this 281 

site. CRF-like immunoreactivity and gene expression in CeA are increased in 282 

response to CRD [101]. It is also known that amygdala is an important site 283 

contributing to the persistent pain inducing negative affective states such as 284 

fear, anxiety, and depression [102].  285 

These observations suggest the possibility of pathogenetic role of LC 286 

and CeA in IBS. CeA contains a high density of CRF neurons [103, 104], and 287 

these neurons project to the LC and increase their firing rate resulting in the 288 

stimulation of the ascending noradrenergic system [105]. The release of 289 

noradrenaline in the cortical and limbic rostral efferent projections from the 290 

LC or CeA [106] is known to induce arousal and anxiogenic responses along 291 

with hypervigilance to visceral input which is a commonly observed in IBS 292 

[107]. 293 

Early maternal separation, which is one of the models of IBS 294 
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displaying visceral sensitization [108], induces heightened basal tone of CRF 295 

gene expression, increased levels of CRF and upregulation of CRF1 signal 296 

transduction in the specific brain area such as LC and CeA, leading to 297 

enhanced reactivity to stress in adult rats [109-112]. Therefore, LC and CeA 298 

may be responsive sites of brain CRF-CRF1 signaling and mediate stress-299 

induced visceral sensitization.  300 

 301 

Peripheral CRF receptors 302 

Peripheral CRF1 signaling also contributes to the visceral 303 

hypersensitivity. It was shown that WAS-induced visceral hyperalgesia was 304 

prevented by sc astressin [113]. We also demonstrated that CRD-induced 305 

visceral hyperalgesia was prevented by ip astressin but not by ip astressin2-306 

B [58]. In addition, peripheral CRF1 activation by ip cortagine increased VMR 307 

to CRD, which was blocked by ip astressin but not by icv [61]. These results 308 

suggest that stress-induced visceral hypersensitivity is also mediated 309 

through peripheral CRF1. 310 

The definite action sites of peripheral CRF in modulating visceral 311 

sensation has not been determined. Since CRF receptors are proved to be 312 

expressed in dorsal root ganglia (DRG) [114], CRF may modulate visceral 313 

sensation through CRF receptors on spinal afferents directly. 314 

As mentioned earlier, EC cells have CRF receptors and release 315 

serotonin through activating the receptors [65, 71]. Serotonin from EC cells 316 

is thought to contribute to visceral hypersensitivity through activating spinal 317 

afferents [115]. In addition, it became certain that mast cells of GI tract also 318 
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play an important role in stress-induced visceral sensitization [116]. Partial 319 

restraint stress-induced colonic hypersensitivity is prevented by doxantrazole, 320 

mast cell stabilizer in rats [96]. Mast cells have CRF receptors at their surface 321 

[66, 67] and their degranulation is triggered by peripheral CRF in GI tract 322 

[72]. They contain and release a large variety of mediators such as serotonin, 323 

prostaglandins and cytokines in response to various stimuli, and these 324 

mediators were demonstrated to activate visceral afferents or DRG neurons 325 

[117, 118], leading to induction of visceral sensitization. Therefore, peripheral 326 

CRF not only acts directly on visceral afferents but also indirectly through 327 

stimulating the release of chemicals from EC and mast cells leading to 328 

activating the afferents. 329 

Meanwhile, acute stress-induced hypersensitivity to CRD was found 330 

to be linked to increase in colonic paracellular permeability [119]. Ait-331 

Belgnaoui et al. [119] demonstrated that restraint stress-induced increased 332 

colonic permeability was blocked by ip α-helical CRF(9-41), and ip CRF 333 

mimicked this response. Moreover, CRF-induced increased permeability was 334 

blocked by ip doxantrazole. Therefore visceral sensitization induced by 335 

peripheral CRF signaling may result from altered colonic permeability 336 

possibly through mast cell-dependent mechanisms. 337 

 338 

A balance theory of CRF1 and CRF2 signaling to modulate colonic motor and 339 

visceral sensation 340 

As described above, central and peripheral CRF-CRF1 signaling are 341 

involved in the stimulatory action on colonic motility and sensation induced 342 
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by stress. However, stress activates both CRF1 and CRF2 signaling. For 343 

example, restraint stress induces delayed gastric transit through CRF2 [60, 344 

120], and simultaneously, it also results in the stimulation of colonic motility 345 

through CRF1 [40]. Stress may stimulate to release CRF and Ucns in brain 346 

and periphery, which could activate both CRF receptors according to the 347 

distinct affinity for each CRF receptor. Thus it is thought that CRF2 may also 348 

contribute to stress-induced altered colonic functions. 349 

 In fact, we and other researchers showed that activation of peripheral 350 

CRF2 by peripheral administration of selective CRF2 agonist such as 351 

sauvagine or Ucn2 blocked repetitive CRD-induced visceral hyperalgesia in 352 

rats [58, 114, 121], suggesting that CRF2 signaling may have a counter action 353 

to CRF1 in modulating visceral sensation. Moreover, recently this counter 354 

action was also observed in modulation of colonic motility. Gourcerol et al. 355 

[62] showed that ip Ucn2 inhibited ip CRF-induced stimulation of defecation 356 

and ip astressin2-B further enhanced the response in rats. Moreover, 357 

restraint stress-induced stimulation of colonic contractions and WAS-induced 358 

stimulation of pellet output were prevented by ip Ucn2. 359 

Acute stress induces integrated responses to maintain homeostasis 360 

and warrant survival of organisms. In the absence of proper counter 361 

regulation, the stress response runs in an overdrive state that can become 362 

maladaptive and fatal [122]. In this context, existence of counter action by 363 

CRF2 signaling may be suitable for the survival of organisms under stressful 364 

condition. 365 

In this context, we hypothesized as follows. Colonic contractility and 366 
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sensation may be explained by the state of the intensity of CRF1 signaling. 367 

CRF2 signaling may play a role in CRF1-triggered enhanced colonic functions 368 

through modulation of CRF1 activity. The signaling balance of CRF1 and 369 

CRF2 might determine the functional colonic changes induced by stress. We 370 

designated this hypothesis as balance theory of CRF1 and CRF2 signaling.   371 

We [58] have very recently demonstrated several results supporting 372 

the hypothesis. Ip CRF increased the colonic contractions and selective CRF1 373 

stimulation by cortagine also increased the contractility in rats. Blocking or 374 

activating peripheral CRF2 by itself did not alter the basal contractility, while 375 

blocking CRF2 enhanced the response by CRF. These results may be 376 

explained by the following (schematic illustrations are shown in Fig. 1). 377 

In the basal condition, both types of CRF signaling are not activated 378 

(Fig. 1a). CRF activates both CRF1 and CRF2, and CRF has a much higher 379 

affinity for CRF1 [21-23]. CRF induces strong activation of CRF1 signaling 380 

prevailing over the inhibition by CRF2 signaling, leading to stimulation of 381 

colonic contractility (Fig. 1b). CRF1 agonist stimulates colonic contractility 382 

without modulation of CRF2 signaling (Fig. 1c). The CRF2 agonist or 383 

antagonist by itself does not change colonic contractility because of a lack of 384 

activation of CRF1 signaling (Fig. 1d and e). Meanwhile, CRF2 antagonist 385 

induces disinhibition of CRF1 signaling, and enhances the stimulatory action 386 

of colonic contractility by CRF (Fig. 1f). The signaling balance of CRF1 and 387 

CRF2 may determine the state of colonic contractions (Fig. 1g). Moreover, this 388 

hypothesis was also tested in in vitro study using colonic muscle strips. CRF 389 

evoked the contractions of strips and Ucn2 abolished this response [58]. 390 
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We also showed the results regarding visceral sensation which was 391 

consistent with the hypothesis in that paper. Namely, CRD induced visceral 392 

sensitization which was blocked by ip astressin. Ip cortagine enhanced but 393 

Ucn2 abolished the response. Meanwhile, ip CRF did not alter CRD-induced 394 

sensitization, but ip CRF together with CRF2 blocking further enhanced the 395 

response by CRD. These results may be explained by the balance theory as 396 

follows. 397 

CRD may activate peripheral CRF1 and induce CRF1-dependent 398 

visceral sensitization. Then CRF1 agonist further enhances and CRF2 399 

agonist reduces the response induced by CRD. When exogenous CRF is 400 

administered in this condition, both signaling are activated simultaneously 401 

and increases the signal intensity in addition to the one induced by CRD. 402 

Although CRF has higher affinity for CRF1, activating CRF2 by ip CRF may 403 

be enough to suppress the intensity of CRF1 signaling in modulation of 404 

visceral sensation, resulting that an overall response by exogenous CRF is 405 

not remarkable. Therefore CRF2 blocking with ip CRF further enhances the 406 

sensitization by disinhibition of CRF1 signaling.  407 

The balance theory could explain well CRF and stress-induced altered 408 

colonic functions as described above, and moreover, we also suggested that 409 

peripheral CRF-induced altered gastric contractility may follow the same rule 410 

[123]. In this context, CRF-induced altered upper and lower GI functions 411 

might be explained by the theory.  412 

The balance may be determined by the injected or released peptides 413 

during stress such as CRF and Ucns, and expression profile of CRF1 and 414 
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CRF2 may also contribute to the signaling balance. CRF1 and CRF2 receptors 415 

are expressed in colon, and stress such as open field or CRD alters these 416 

receptor expression [124], suggesting the dominant signaling may depend on 417 

the mode of stress.  418 

 419 

The mechanisms of interaction between CRF1 and CRF2 signaling 420 

How does the CRF2 signaling modulate the CRF1 signaling? Several 421 

studies showed the following evidence. 422 

Liu et al. [125] demonstrated in myenteric plexus of guinea pig colon 423 

that CRF1 was mainly expressed in ganglion cell somas and CRF2 was 424 

expressed in varicose nerve fibers. CRF1 and CRF2 evoked depolarization of 425 

different types of myenteric neurons. In addition, they also suggested 426 

immunohistochmically that CRF2 might be expressed at pre-synaptic 427 

transmitter release sites. Therefore it is possible to think that CRF2 might 428 

regulate a neurotransmitter release, thereby modulating the neuronal 429 

activity induced by CRF1. 430 

Gourcerol et al. showed that CRF1 and CRF2 were colocalized in the 431 

colonic myenteric plexus and CRF2 was expressed with neuronal nitric oxide 432 

in rats. On the basis of these results, they speculated the possibility that 433 

CRF2 inhibits CRF1 signaling through the release of inhibitory 434 

neurotransmitter such as nitric oxide [62].  435 

These above findings may be possible mechanisms of the CRF1 and 436 

CRF2 interaction in modulating colonic motility. Meanwhile, there are also 437 

the results suggesting the mechanisms in modulating visceral sensation. 438 
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CRF2 is proved to be expressed in DRG, and CRD induces activation of 439 

splanchnic afferents in in vitro experiment using colorectal preparation with 440 

the attached mesenteric artery and splanchnic afferent nerve, which is 441 

blunted by intra-arterial injection of Ucn2 [114]. In this context, CRF may 442 

modulate visceral sensation through CRF receptors on spinal afferents, and 443 

the interaction of CRF1 and CRF2 might occur in this level. 444 

As described before, EC cells and mast cells are targets of CRF. Both 445 

cells have CRF1 and CRF2 [65-67] and the mediators released from these 446 

targets can modulate the visceral sensation. Therefore, CRF1 and CRF2 447 

interaction may also occur at these cells, possibly in cellular level. Gourcerol 448 

et al. speculated that CRF2 activation may share intracellular signaling 449 

targets of CRF1, leading to inhibition of CRF1 signaling [62].  450 

The rationale of our proposed theory was only suggested by the 451 

studies regarding peripheral CRF receptors-induced altered GI functions. It 452 

would be possible that the actions induced by central CRF or ones other than 453 

GI response, such as endocrine, immune, autonomic, behavioral response, etc. 454 

are also explained by the balance theory. Further studies are needed. 455 

 456 

CRF signaling as a therapeutic target for IBS 457 

IBS patients have exaggerated responsivity of the gut, 458 

neuroendocrine and the brain to stress [6, 18, 126, 127]. Stress induces onset 459 

and/or exaggeration of GI symptoms in the majority of IBS patients [128, 129]. 460 

In addition, as described above so far, altered colonic motility and visceral 461 

sensation induced by CRF-CRF1 signaling are thought to play a key role in 462 
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the pathophysiology of IBS.  463 

Exaggerated stress response in IBS patients may be explained by the 464 

abnormal expression of CRF receptors and their function. In animal studies, 465 

differential alterations of the receptors expression in colon are observed 466 

between Sprague Dawley and Wister Kyoto (WKY) rats, which may explain 467 

the high stress susceptibility of WKY rats [124]. WKY rats are stress-468 

sensitive strain, which spontaneously exhibit a high anxiety phenotype and 469 

altered stress responses [130], and display visceral hypersensitivity [131] and 470 

increased stress-related defecation [132]. Recently, it was also demonstrated 471 

that genetic polymorphisms and haplotypes of CRF1 are associate with IBS 472 

and related bowel patterns [133]. Single-nucleotide polymorphisms in the 473 

regulatory region of the CRF1 gene might influence the expression of CRF1 474 

[134] and generation of CRF1 variants with distinct structural and signaling 475 

properties [25, 135].  476 

In any event, altered stress response in IBS may be due to increased 477 

CRF-CRF1 signaling. In other words, CRF signaling balance might be 478 

abnormally shifted toward CRF1 in IBS, particularly diarrhea-predominant 479 

type, according to our balance theory (Fig 2a). In this context, blocking CRF1 480 

signaling is thought to be effective in treating IBS (Fig. 2b). 481 

Contrary to expectation, clinical trials in IBS-diarrhea predominant 482 

female patients did not show any significant beneficial effect of CRF1 483 

antagonist, pexacerfont (BMS-562086) in IBS symptoms [136]. However, this 484 

result does not deny the usefulness of CRF1 antagonist itself. Tested dose of 485 

the compound might not be optimal for the treatment. Additionally, IBS 486 

21 
 



patients may be heterogeneous population. Even in diarrhea-predominant 487 

IBS, colonic accelerated transit is not consistent feature [29]. CRF1 488 

antagonist might be effective only in the subpopulation of IBS patients, 489 

having exaggerated response to CRF-CRF1 signaling. Further studies with 490 

different protocol are needed to examine the effectiveness.   491 

Our proposed theory also suggests that in addition to CRF1 492 

antagonist, CRF2 agonist may be a promising tool in treating IBS by resetting 493 

the abnormally shifted signaling balance to normal state (Fig. 2c). CRF2 in 494 

brain induces anxiolysis, while anxiety-related behavior is mediated through 495 

CRF1 [137]. Thus CRF2 agonist might be also beneficial for the comorbid 496 

psychological abnormality of IBS patients. Since stimulation of CRF2 reduces 497 

gastric emptying in rats [138], it might induce dyspeptic symptoms. Therefore 498 

CRF2 agonist with high organ selectivity, i.e. only targeted for colon and brain 499 

might be needed for clinical application. 500 

The pathogenesis of IBS is thought to be multifactorial. We only 501 

mentioned colonic motility and visceral sensation, but also altered intestinal 502 

barrier [139], microbiota [140], low grade inflammation [141], abnormal pain 503 

processing in brain [142], etc. are known to contribute to the pathophysiology. 504 

Recent studies show that these factors are also able to be modulated by CRF 505 

signaling [72, 143-145]. These observations may further support the rationale 506 

of application of CRF receptors-related drugs for the treatment.   507 

 508 

Conclusions 509 

Altered colonic motility and visceral sensation are thought to 510 
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contribute to generation of IBS symptoms and CRF-CRF1 signaling plays a 511 

pivotal role in the pathophysiology of IBS through modulating these functions. 512 

In addition, CRF2 signaling is also demonstrated to modulate CRF and 513 

stress-induced altered colonic functions, and it has a counter regulatory 514 

action against CRF1. We proposed a balance theory of CRF1 and CRF2 515 

signaling, i.e. both CRF receptors would be activated during stress 516 

simultaneously, and the signaling balance may determine the functional 517 

changes in GI tract. This theory is useful for understanding the 518 

pathophysiology of IBS and may also provide the novel therapeutic options 519 

targeting altered signaling balance of CRF1 and CRF2 in IBS. 520 
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Figure legends 1148 

 1149 

Figure 1. 1150 

Schematic illustration of our theory on the mechanism of peripheral CRF-1151 

induced stimulation of colonic contractions. In the basal condition, both CRF1 1152 

and CRF2 signaling are not activated (a). CRF activates both CRF1 and CRF2 1153 

with higher affinity for CRF1. Thus CRF induces strong activation of CRF1 1154 

signaling prevailing over the inhibition by CRF2 signaling, resulting in 1155 

enhanced colonic contractility (b). CRF1 agonist stimulates colonic 1156 

contractility without interference of CRF2 signaling (c). The CRF2 agonist or 1157 

antagonist does not change colonic contractility because of a lack of the 1158 

activated CRF1 signaling (d and e). Meanwhile, CRF2 antagonist induces 1159 

disinhibition of CRF1 signaling, and enhances the stimulatory action of 1160 

colonic contractility by CRF (f). The signaling balance of CRF1 and CRF2 may 1161 

determine the state of colonic contractions (g). 1162 

 1163 

Figure 2. 1164 

The signaling balance of CRF1 and CRF2 might be abnormally shifted toward 1165 

CRF1 by endogenously released CRF receptor ligands, i.e. CRF and Ucns, 1166 

leading to enhanced colonic motility and visceral sensitization in IBS (a). 1167 

According to the balance theory, both CRF1 antagonist and CRF2 agonist may 1168 

be useful in treating IBS. CRF1 antagonist inhibits CRF1 signaling resulting 1169 

in normalizing the signaling balance (b). CRF2 agonist increases the signal 1170 

intensity of CRF2 in addition to the one induced by endogenous CRF2 ligands, 1171 
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thereby resetting signaling balance to normal state (c).   1172 

 1173 
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