

Asahikawa Medical University Repository http://amcor.asahikawa-med.ac.jp/

Travel medicine and infectious disease. (2014.11) Volume 12, Issue 6, Part A :582-91.

Culinary delights and travel? A review of zoonotic cestodiases and metacestodiases.

Ito A, Budke CM

1	Special Issue "Zoonotic Diseases in Travelers" in Travel Medicine and Infectious
2	Diseases
3	
4	Invited submission TMAID-D-14-00032R2
5	
6	Review
7	
8	Culinary delights and travel? A review of zoonotic cestodiases and metacestodiases
9	
10	Akira Ito ^{1*} and Christine M Budke ²
10 11	Akira Ito ^{1*} and Christine M Budke ² ¹ Department of Parasitology, NTD Research Laboratory, Asahikawa Medical University,
10 11 12	Akira Ito ^{1*} and Christine M Budke ² ¹ Department of Parasitology, NTD Research Laboratory, Asahikawa Medical University, Asahikawa 078-8510, Japan
10 11 12 13	Akira Ito ^{1*} and Christine M Budke ² ¹ Department of Parasitology, NTD Research Laboratory, Asahikawa Medical University, Asahikawa 078-8510, Japan ² Department of Veterinary Integrative Biosciences, College of Veterinary Medicine &
10 11 12 13 14	Akira Ito ^{1*} and Christine M Budke ² ¹ Department of Parasitology, NTD Research Laboratory, Asahikawa Medical University, Asahikawa 078-8510, Japan ² Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A & M University, College Station, TX 77843-4458, US
10 11 12 13 14 15	Akira Ito ^{1*} and Christine M Budke ² ¹ Department of Parasitology, NTD Research Laboratory, Asahikawa Medical University, Asahikawa 078-8510, Japan ² Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A & M University, College Station, TX 77843-4458, US
10 11 12 13 14 15 16	Akira Ito ^{1*} and Christine M Budke ² ¹ Department of Parasitology, NTD Research Laboratory, Asahikawa Medical University, Asahikawa 078-8510, Japan ² Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A & M University, College Station, TX 77843-4458, US
10 11 12 13 14 15 16 17	Akira Ito ^{1*} and Christine M Budke ² ¹ Department of Parasitology, NTD Research Laboratory, Asahikawa Medical University, Asahikawa 078-8510, Japan ² Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A & M University, College Station, TX 77843-4458, US *Corresponding author. Tel.: +81 166 68 2686; fax: +81 166 68 2429.

19	Summary Due to increased globalization, food-borne parasitic infections are becoming
20	more prevalent worldwide, including in countries where these parasites and parasitic
21	diseases had previously been well controlled or eradicated. Improved sanitation,
22	health education, and establishment of appropriate food safety mechanisms can go a
23	long way towards the control of many these infections. However, food-borne parasitic
24	infections are still common diseases in developing countries, especially in rural areas.
25	As many of today's travelers are looking to explore more distant locations and partake
26	in the local cuisine, they may be at greater risk of acquiring a food-borne parasitic
27	infection, including those caused by a number of adult and larval tapeworms. This
28	review discusses fish and meat-borne tapeworms and zoonotic metacestodiases of
29	public health importance to both developing and developed countries, with a focus on
30	infection prevention in travelers.
31	
32	KEYWORDS

Fish tapeworm; Pork tapeworm; Beef tapeworm; Neurocysticercosis; Echinococcoses;
Sparganosis

35

36 Introduction

 $\mathbf{2}$

37	Food-borne parasitic infections can be a public health issue for travelers partaking in
38	local foods in endemic areas as well as for the local inhabitants. Some tapeworms also
39	have humans as definitive hosts and, therefore, can be brought from an endemic to a
40	non-endemic region via an infected person. In this article, the most common
41	food-borne tapeworm (cestode) infections are reviewed, focusing on travelers' health
42	issues [1].

44 1) Fish-borne cestode infections:

45Diphyllolobothriaisis is caused by humans ingesting the larval form of a number of species of fish tapeworms from the Family Diphyllobothriidae. After ingesting 46 infected undercooked fish, humans can develop adult tapeworms in their gastrointestinal 47tracts (diphyllobothriasis) (Figure 1). The most common cause of diphyllobothriasis 48 from freshwater fish is *Diphyllobothrium latum*, otherwise known as the fish tapeworm 49 or the broad tapeworm. In 1976, Hunter et al. [2] indicated that "D. latum was 50common in people living in the Baltic countries, the western USSR, Finland, parts of 51Scandinavia and in certain endemic foci in the US and Canada". Since this early study, 5253molecular analyses have revealed that the family Diphyllobothriidae includes several genus and species which can infect humans via the ingestion of freshwater or marine 54

fish (Table 1) [3-11]. Based on molecular evaluation, a number of parasites previously
classified as *D. latum* are now considered independent species. For example, work by
Yamane *et al.* [3] in Japan led to *Diphyllobothrium nihonkaiense* becoming a separate
species from *D. latum* [12-18].

A review by Wicht *et al.* [9] described 11 species of the genus *Diphyllobothrium* and 59one species of the genus *Diplogonoporus* as being human health risks. D. latum is 60 acquired from eating freshwater fish including pike, burbot, and perch. The other 61 62species of *Diphyllobothrium* are acquired from eating marine fish such as pacific 63 salmon [10]. Patients with diphyllobothriasis are frequently reported from a number of 64 Asian and Australasian countries, including Malaysia [8,19], Indonesia [20], Taiwan [5], and New Zealand [21]. Infection with *Diplogonoporus grandis* is relatively common 65 in Japan, but is less common in other countries [22-24]. Most infections with this 66 parasite have been attributed to eating uncooked or undercooked sardines. 67Morishita 68 [22] reviewed 40 human cases of *D. grandis* in Japan from 1892 to 1967. The majority of cases were middle-aged men. Most of the cases were not aware that they 69 were parasitized until they expelled the tapeworm naturally. It is believed that the 7071natural definitive hosts, for this parasite, are marine mammals, including whales, 72dolphins, and porpoises [25].

73	Fish tapeworm infections, especially with D. nihonkaienze and D. dendriticum, are
74	becoming more common, including in traditionally non-endemic countries in Europe
75	[26,27] and North America [28] where people eat raw fish that has been imported from
76	the Pacific Rim countries [10]. For example, <i>D. latum</i> has been reported from
77	non-endemic areas in Chile [29], Argentina [30], and Spain [31] and has been found in
78	freshwater fish from French, Italian and Swiss Alpine lakes [9,31-33] as well as in fish
79	from Canadian freshwater lakes [34,35]. Another species, D. pacificum, has recently
80	been confirmed in infected patients in Chile [29].
81	Due to available rapid freezing techniques, increased speed at which products are
82	shipped around the world, and an increasing demand for "sashimi" and "sushi",
83	fish-borne tapeworm infections are likely to become more common globally. Human
84	infection prevalence is dependent on the prevalence of the parasites in fish and local
85	food safety knowledge. While infections with fish tapeworms can be prevented
86	through proper cooking techniques and food safety education, cases will likely continue
87	to occur as long as raw fish remains a delicacy in many parts of the world [10,25].
88	
89	2) Meat-borne tapeworm infections

The beef tapeworm, Taenia saginata, and the pork tapeworm, Taenia solium, are 90

 $\mathbf{5}$

91	distributed globally. Humans are the definitive hosts for both of these parasites, with
92	cattle acting as the intermediate host of <i>T. saginata</i> and pigs acting as the intermediate
93	host of <i>T. solium</i> (Figure 2). Humans become infected by ingesting cysts in
94	undercooked infected meat. For <i>T. solium</i> , humans may also become infected with the
95	larval form if they ingest food contaminated with parasite eggs shed in the feces of an
96	infected person, resulting in cystic lesions in the central nervous system
97	(neurocysticercosis) or other parts of the body (cysticercosis). Prevalence of these
98	tapeworms will vary regionally due to beef and pork preparation and consumption
99	habits, which may be linked to religious observations. One study indicated that dogs
100	may also be suitable intermediate hosts for <i>T. solium</i> , therefore, undercooked dog meat
101	may also be a food safety hazard in endemic areas [36].
102	A third species of human <i>Taenia</i> has been reported from Asia ("Asian <i>Taenia</i> ") [37].
103	In the past, parasitologists had been puzzled by the fact that T. saginata proglottids were
104	expelled from people who ate pork, but not beef in the Philippines, Indonesia, and
105	Taiwan [37-44]. This newly described parasite appears to be very similar in structure
106	to <i>T. saginata</i> , but requires pigs as the intermediate hosts rather than cattle (Figure 2)
107	[37,42,44]. This new parasite was eventually given the name <i>Taenia asiatica</i> by Eom
108	and Rim [45,46]. However, recent molecular studies, in Thailand and China, have

109	identified tapeworms that are hybrids of <i>T. saginata</i> and <i>T. asiatica</i> [47-49], leading to
110	the question of whether or not <i>T. asiatica</i> is truly as independent species. Furthermore,
111	Fan [37] reported that metacestodes of "Taiwan <i>Taenia</i> " (= <i>T. asiatica</i>) were established
112	in the liver of not only pigs but also of cattle [50]. Since both pigs and cattle may
113	potentially be infected with <i>T. asiatica</i> [37], ingestion of uncooked liver from pigs or
114	cattle could be a possible source for human infection.
115	Data from rural and remote areas in Sichuan Province, China [51,52] and refugees'
116	villages in Thailand [53] suggest that infection with <i>T. asiatica</i> is still quite rare. Field
117	surveys using serology to detect antibody responses to antigens [54] have confirmed
118	infection with T. solium (the majority of cases), T. hydatigena, and mixed T. solium and
119	<i>T. hydatigena</i> infections in pigs from China [51,52], Indonesia (Swastika et al.
120	unpublished) and Thailand (Kusolsuk et al. unpublished). To date, these studies have
121	not identified pigs infected with T. asiatica.
122	Eom et al. [55] reported that T. asiatica was present in Japan based on identification
123	of this species from infected Japanese citizens. However, travel histories were not
124	taken on these patients. Indigenous <i>T. asiatica</i> cases, in Japan, were first confirmed in
125	Tokyo in 2010 [56,57]. All taeniasis cases in Japan, except for those cases caused by T_{1}
126	asiatica in Tokyo [56,57], are believed to have been imported from other endemic

 $\overline{7}$

127 countries [58].

128	Cultural and religious preferences, regarding meat preparation and consumption,
129	most likely play a role in the transmission of <i>T. solium</i> , <i>T. saginata</i> , and <i>T. asiatica</i> [44].
130	Taeniases caused by these three species are rather common in remote and rural areas in
131	countries where meat inspection is limited and home slaughtering practices are routinely
132	conducted. However, global travel and immigration can result in travelers to endemic
133	countries becoming infected as well as travelers and immigrants from endemic countries
134	potentially introducing the parasites into non-endemic regions [56,59,60].
135	
136	3) Other miscellaneous tapeworm infections from local foods
137	While Taenia species result in the majority of human adult tapeworm cases globally,
138	there are a number of other cestodes that can infect humans. For example, adult
139	tapeworm infections may be acquired from eating "backyard" chickens, snails, snakes
140	or frogs infected with Mesocestoides lineatus [61-65] or Spirometra erinacei [65].
141	While most patients infected with S. erinacei only develop the larval stage (sparganosis),
142	a small proportion of infected individuals develop adult tapeworms [66].
143	The cestodes Hymenolepis nana (the dwarf tapeworm) and Hymenolepis diminuta
144	(the rat taneworm) are known to infect humans through eating beetles containing the

145	cysticercoid larvae of these parasites. <i>H. nana</i> can be transmitted via the ingestion of
146	eggs shed in the feces of a human tapeworm carrier. While infected humans typically
147	develop adult tapeworms in their gastrointestinal tracts, H. nana infections may cause
148	serious disseminated disease, especially in immuno-compromised individuals [67,68].
149	Recently, numerous outbreaks of <i>H. nana</i> infections have been reported in children in
150	Africa and South America [69-73], indicating that this parasite may be an emerging
151	public health issue in endemic regions.

153 4) The role of meat inspection

Even countries with the most stringent meat hygiene requirements may experience 154155occasional outbreaks of food-borne parasitic infections [57,59,60]. For example, the recent popularity of "organic pork" in some European countries has the potential for 156increasing the risk of *T. solium* infection through allowing pigs to root and graze in 157areas that have been contaminated by a tapeworm carrier. This is especially true in 158regions with large immigrant populations from endemic countries who work in the 159agricultural sector [56,58-60]. Illegal meat markets have also resulted in taeniasis 160 161outbreaks in low endemicity areas [58]. For example, in Tokyo, Japan, an outbreak of T. asiatica occurred in 2010 due to this practice [56-58]. As cysticerci of T. asiatica 162

163	appear as white milk spots on the liver surface and are similar in appearance to lesions
164	caused by the larval stage of the pig roundworm Ascaris suum [37], pigs with these liver
165	lesions should always be inspected with extra care in areas where T. asiatica is known
166	to occur [56-58].
167	
168	5) Symptoms and treatment of intestinal tapeworm infections
169	Intestinal cestode infections usually do not produce severe clinical signs and many
170	tapeworm carriers do not know that they are infected until they start to pass tapeworm
171	segments. Individuals with very heavy infections may experience abdominal pain,
172	anorexia, nausea, diarrhea, and weight loss. Intestinal tapeworm infections are usually
173	treated with antihelminthic drugs such as praziquantel, albendazole, or niclosamide.
174	Chinese traditional medicines have also been used by tapeworm sufferers [51,52].
175	
176	6) Prevention of food-borne parasite infections in travelers
177	The simplest way for a traveler to avoid becoming infected with food-borne parasitic
178	infections is simply not to eat uncooked or undercooked fish or meat or even unwashed
179	fruits or vegetables but this advice is likely to fall on deaf ears. Recent sustainable

180 education of local people to cook pork and viscera in Samosir Island, Indonesia has

181	shown drastic decrease in the number of tapeworm carriers [74]. However, enjoying
182	local cuisine is viewed by many as an integral part of the travel experience. In
183	addition, while not consuming meat can prevent a person from becoming infected with
184	certain parasitic disease, including cestodiases and trichinosis, there are other parasites
185	such as soil transmitted helminthes that can be found on fresh vegetation. Therefore,
186	the next best way to prevent food-borne parasitic infections is to make sure that fish,
187	meat and vegetables are appropriately cooked and reach a temperature high enough to
188	kill any parasite larvae or eggs.
189	
190	7) Larval cestode infections: cysticercosis, echinococcosis, sparganosis
190 191	 7) Larval cestode infections: cysticercosis, echinococcosis, sparganosis a) Cysticercosis: Neurocysticercosis, caused by invasion of the central nervous system
190 191 192	 7) Larval cestode infections: cysticercosis, echinococcosis, sparganosis a) Cysticercosis: Neurocysticercosis, caused by invasion of the central nervous system by the larval stage of <i>T. solium</i>, is a leading cause of epilepsy in regions where pigs are
190 191 192 193	 <i>T T T T T T T T T T</i>
190 191 192 193 194	 7) Larval cestode infections: cysticercosis, echinococcosis, sparganosis a) Cysticercosis: Neurocysticercosis, caused by invasion of the central nervous system by the larval stage of <i>T. solium</i>, is a leading cause of epilepsy in regions where pigs are raised extensively with access to human fecal material and where meat inspection is lacking (Figure 2) [75]. In addition to epilepsy, patients with neurocysticercosis may
190 191 192 193 194 195	 7) Larval cestode infections: cysticercosis, echinococcosis, sparganosis a) Cysticercosis: Neurocysticercosis, caused by invasion of the central nervous system by the larval stage of <i>T. solium</i>, is a leading cause of epilepsy in regions where pigs are raised extensively with access to human fecal material and where meat inspection is lacking (Figure 2) [75]. In addition to epilepsy, patients with neurocysticercosis may experience severe chronic headaches as well as other neurological signs. While
190 191 192 193 194 195 196	 7) Larval cestode infections: cysticercosis, echinococcosis, sparganosis a) Cysticercosis: Neurocysticercosis, caused by invasion of the central nervous system by the larval stage of <i>T. solium</i>, is a leading cause of epilepsy in regions where pigs are raised extensively with access to human fecal material and where meat inspection is lacking (Figure 2) [75]. In addition to epilepsy, patients with neurocysticercosis may experience severe chronic headaches as well as other neurological signs. While clinical signs associated with neurocysticercosis can be severe, patients may be
 190 191 192 193 194 195 196 197 	 7) Larval cestode infections: cysticercosis, echinococcosis, sparganosis a) Cysticercosis: Neurocysticercosis, caused by invasion of the central nervous system by the larval stage of <i>T. solium</i>, is a leading cause of epilepsy in regions where pigs are raised extensively with access to human fecal material and where meat inspection is lacking (Figure 2) [75]. In addition to epilepsy, patients with neurocysticercosis may experience severe chronic headaches as well as other neurological signs. While clinical signs associated with neurocysticercosis can be severe, patients may be asymptomatic for many years or for the remainder of their lives [76].

199	shed in the feces of a parasite carrier, a risk factor for cysticercosis/neurocysticercosis is
200	a person infected with the adult form of <i>T. solium</i> in the household [77,78].
201	Individuals with cysticercosis can either become infected via food contaminated by a
202	tapeworm carrier or can be tapeworm carriers that infect themselves due to poor hand
203	hygiene [79,80]. However, since it can take years for symptoms to occur and for a
204	patient to be diagnosed, the actual method of infection for individual patients is often
205	unknown. Molecular analyses are beginning to be used to identify the regional origin
206	of an infection when patients have a travel history that may have allowed for exposure
207	in numerous geographic locations [65,81,82].
208	In addition to endemic areas in sub-Saharan Africa, South America, and many parts
209	of Asia, cysticercosis cases are now becoming identified in regions previously believed
210	to be free of the parasite. For example, in Bali, Indonesia, when patients were treated
211	with the drug praziquantel for what was presumed to be T. saginata infections, some of
212	these individuals developed seizures [44]. It was later determined that these
213	individuals were co-infected with <i>T. saginata</i> adult worms and the larval form of <i>T</i> .
214	solium, resulting in neurocysticercosis. In non-endemic countries in Europe and North
215	America, numerous cases of neurocysticercosis are also being detected in individuals
216	who either emigrated from an endemic region or had a history of travel to an endemic

217 region [79].

235	there are, in fact, cases infected with this <i>Echinococcus</i> species. Another newly
236	described species is E. shiquicus, which has only been found on the Tibetan plateau of
237	western China [91]. The only known definitive host, for this species, is the Tibetan
238	fox (Vulpes ferrilata). No human cases have been identified as being infected with this
239	pathogen, but similar to E. felidis, this may be due to cases of E. shiquicus being
240	previously attributed to another species of Echinococcus.
241	Among the 9 known species of the genus Echinococcus, E. granulosus sensu stricto
242	and <i>E. multilocularis</i> are the most prevalent globally and cause the most human cases.
243	However, recent studies indicate that echinococcosis due to E. canadensis may be more
244	common than previously believed and care should be taken to differentiate infections
245	with E. granulosus sensu stricto and E. canadensis [92,93]. E granulosus sensu stricto
246	is typically maintained in a cycle between dogs and sheep, whereas E. canadensis is
247	maintained in a cycle between wolves (Canis lupus) and domestic livestock and/or wild
248	ungulates [94]. In contrast, <i>E. multilocularis</i> is typically maintained between wild
249	canids such as red fox (Vulpes vulpes) and/or wolves and small mammals [94].
250	Humans become infected after ingesting parasite eggs shed in the feces of an infected
251	domestic or wild canid, resulting in cystic lesions that primarily develop in the liver or
252	lungs [95]. Infection can occur from ingesting parasite eggs that were on the hands of

253	the food preparer or from ingestion of food (e.g., vegetables or wild berries) that were
254	contaminated directly from an infected dog or wild canid. Urbanization may be, in
255	part, responsible for the second infection route as wildlife, such as red foxes, are
256	increasing found in urban settings in Europe [96-102]. Diagnosis of echinococcosis is
257	often made via diagnostic imaging (e.g., abdominal ultrasound, computed tomographic
258	scan, magnetic resonance imaging) in conjunction with serological evaluation with
259	tests such as imunochromatography (ADAMU-AE, ADAMU-CE, ICST Co. Ltd.,
260	Saitama, Japan) [103-105] (Figure 3).
261	c) Sparganosis: As summarized in Table 1, adventurous eaters may be at risk for
262	infection with less common cestodes through the ingestion of amphibians and reptiles
263	[65,66,106-111]. For example, sparganosis, which is caused by the larval stage of <i>S</i> .
264	erinacei, has been associated with eating snakes in Asia, but may also be acquired
265	through ingestion of frogs or backyard chicken [65,66,106-110].
266	
267	8) Symptoms, treatment and prevention of larval cestode infections
268	Symptoms associated with larval cestode infections are dependent on the location of the
269	larval stage of the parasite. T. solium cysticercosis has variable clinical signs
270	depending on the location of the cysts, with cysts located in the central nervous system

271	tending to cause the most severe disease, including epilepsy, severe chronic headaches
272	and stroke [84,112-115]. In contrast, cysts located in other body systems, such as
273	subcutaneous cysts, can be relatively benign. Infection with Echinococcus spp. can
274	present as hepatic disease, due to cysts in the liver, and can be misdiagnosed as hepatic
275	cancer by physicians in non-endemic regions that are not familiar with this parasitic
276	zoonosis. Clinical manifestations associated with echinococcosis are often due to the
277	larval cysts pressing on surrounding anatomic structures, secondary bacterial infection
278	of the cysts, or anaphylaxis caused by the rupture of a cyst. Creeping eruption, caused
279	by S. erinacei, can result in pruritic lesions as the larval stage migrates in the
280	subcutaneous layer of the skin [65,66,106,107].
281	Epilepsy-associated neurocysticercosis is often treated with anti-seizure
282	medication. Antiparasitic drugs such as praziquantel or albendazole are often
283	accompanied by administration of a corticosteroid [112-118]. Surgery for
284	cysticercosis may be an option dependent on cyst location [119]. Active
285	Echinococcus cysts may be treated with albendazole, surgical intervention or a
286	combination of both, while some cases can be monitored without the need for
287	intervention [120-122]. Sparganosis is usually treated with praziquantel and/or
288	surgical intervention to remove the larvae.

290	Conclusions					
291	There are numerous cestodes that can result in food-borne parasitic infections via the					
292	ingestion of infected fish and meats or contaminated vegetation. Through					
293	globalization, travelers and immigrants are often at a greater risk for acquiring					
294	food-borne parasitic infections or bringing parasites to new locations. In essence,					
295	parasites can be considered "travelers" as they are conveyed around in the world in					
296	people and animals as well as via meat, fish, and contaminated vegetation.					
297	Appropriate meat inspection and food hygiene practices can go a long way to					
298	preventing many of these infections. However, no food can ever be guaranteed to be					
299	absolutely safe and travelers, as well as individuals living in countries that are endemic					
300	for these parasites, must remain ever vigilant.					
301						
302	Conflict of interest					
303	None.					
304						
305	Funding					
306	The studies on cestode infections carried out by Ito have been supported by					

307	Grants-in-Aid for international collaboration research funds from the Japan Society for
308	the Promotion of Science (JSPS) (1994- 2015), by JSPS-Asia/Africa Scientific Platform
309	Fund (2006-2011), the Special Coordination Fund for Promoting Science and
310	Technology from the Ministry of Education, Culture, Sports, Science & Technology,
311	Japan (MEXT) (2003-2005, 2010-2012), and the MEXT-Translational Research Fund
312	(2007-2011).
313	
314	References
315	[1] Liu D. Molecular Detection of Foodborne Pathogens, Boca Raton, CRC Press,
316	2009. p.1–879.
317	[2] Hunter GW, Swartzwelder JC, Clyde DF. Chapter 54. Cestodes. In: Hunter GW,
318	Swartzwelder JC, Clyde DF, editors. Tropical Medicine, 5th ed. Philadelphia,
319	Saunders; 1976. p.593-621.
320	[3] Yamane Y, Kamo H, Bylund G, Wikgren BJ. Diphyllobothrium nihonkaiense sp.
321	nov (Cestoda: Diphyllobothriidae)-revised identification of Japanese broad
322	tapeworm. Shimane J Med Sci 1986; 10:29–48.
323	[4] Maki J, Sakagami H, Kuwada M, Caceres A, Sekiya H, Tamai E. Infections with
324	gestrointestinal parasitic helminths indigenous to Japan and their treatment

325	historically studies in an attempt to control the diseases in countries where they are
326	still rampant: (1) the Jomon to Edo period. Yakushigaku Zasshi 2009; 44:18-23.
327	[5] Lou HY, Tsai PC, Chang CC, Lin YH, Lioa CW, Kao TC, et al. A case of human
328	diphyllobothriasis in northern Taiwan after eating raw fish fillets. J Microbiol
329	Immunol Infect 2007; 40:452–456.
330	[6] Dick TA, Nelson PA, Choudhury A. Diphyllobothriasis: Update on human cases,
331	foci, patterns and sources of human infections and future considerations. Southeast
332	Asian J Trop Med Public Health 2001; 32 (Suppl 2):59–76.
333	[7] Lee KW, Suhk HC, Pai KS, Shin HJ, Jung SY, Han ET, et al. Diphyllobothrium
334	latum infection after eating domestic salmon flesh. Korean J Parasitol 2001;
335	39:319–321.
336	[8] Rohela M, Jamaiah I, Chan KW, Yusoff WS. Diphyllobothriasis: the first case
337	report from Malaysia. Southeast Asian J Trop Med Public Health 2002; 33:229-
338	230.
339	[9] Wicht B, Peduzzi R, Year H, Dupouy-Camet J. Diphyllobothrium. In: Liu D editor.
340	Molecular Detection of Human Parasitic Pathogens, Boca Raton, CRC Press; 2013.
341	p.237–244.
342	[10] Arizono N, Yamada M, Nakamura-Uchiyama F, Ohnishi K. Diphyllobothriasis

343	associated with eating raw pacific salmon. Emerg Infect Dis 2009; 15:866-870.
344	[11] Yamane Y, Shiwaku K. Diphyllobothrium nihonkaiense and other marine-origin
345	cestodes. In: Otsuru M, Kamegai S, Hayashi S, editors. Progress of Medical
346	Parasitology in Japan, Tokyo, Meguro Parasitological Museum; 2003. vol. 8,
347	p.245–259.
348	[12] Park JK, Kim KH, Kang S, Jeon HK, Kim JH, Littlewood DT, et al.
349	Characterization of the mitochondrial genome of Diphyllobothrium latum
350	(Cestoda: Pseudophyllidea) implications for the phylogeny of eucestodes.
351	Parasitology 2007; 134:749–759.
352	[13] Nakao M, Abmed D, Yamasaki H, Ito A. Mitochondrial genomes of the human
353	broad tapeworms Diphyllobothrium latum and Diphyllobothrium nihonkaiense
354	(Cestoda: Diphyllobothriidae). Parasitol Res 2007; 101:233-236.
355	[14] Year H, Estan C, Delaunay P, Gari-Toussaint M, Dupouy-Camet J, Marty P.
356	Putative Diphyllobothrium nihonkaiense acquired from a Pacific salmon
357	(Oncorhynchus keta) eaten in France; genomic identification and case report.
358	Parasitol Int 2006; 55:45–49.
359	[15] Yamasaki H, Nakaya K, Nakao M, Sako Y, Ito A. Significance of molecular
360	diagnosis using histopathological specimens in cestode zoonoses. Trop Med Health

361 2007; 35:307–321.

- 362 [16] Wicht B, de Marval F, Peduzzi R. Diphyllobothrium nihonkaiense (Yamane et al.,
- 3631986) in Switzerland: first molecular evidence and case reports. Parasitol Int 2007;
- **364 56:195–199**.
- 365 [17] Wicht B, Yanagida T, Scholtz T, Ito A, Jimenez JA, Brabec J. Multiplex PCR for
- 366 differential identification of broad tapeworms (Cestoda: Diphyllobothrium)
- infecting humans. J Clin Microbiol 2010; 48:3111–3116.
- 368 [18] Cabello FC. Salmon aquaculture and transmission of the fish tapeworm. Emerg
- 369 Infect Dis 2007; 13:169–171.
- 370 [19] Rohela M, Jamaiah I, Goh KL, Nissapatom V. A second case of diphyllobothriasis
- in Malaysia. Southeast Asian J Trop Med Public Health 2006; 37:896–898.
- [20] Margono SS, Sutjahyono RW, Kurniawan A, Nakao M, Mulyani T, Wandra T, Ito A.
- 373 Diphyllobothriasis and sparganosis in Indonesia. Trop Med Health 2007; 35:301–
- **374 305**.
- 375 [21] Yamasaki H, Kuramochi T. A case of *Diphyllobothrium nihonkaiense* infection
- 376 possibly linked to salmon consumption in New Zealand. Parasitol Res 2009;
- 377 105:583–586.
- 378 [22] Morishita K. Diplogonoporus grandis (R. Branchard, 1894). In: Morishita K,

379	Komiya Y, Matsubayashi H, editors. Progress of Medical Parasitology in Japan,
380	Tokyo, Meguro Parasitological Museum; 1972. vol. 4, p.489–512.
381	[23] Kino H, Hori W, Kobayashi H, Nakamura N, Nagasawa K. A mass occurrence of
382	human infection with Diplogonoporus grandis (Cestoda: Diphyllobothriidae) in
383	Shizuoka Prefecture, central Japan. Parasitol Int 2002; 51:73–79.
384	[24] Arizono N, Fukumoto S, Tademoto S, Yamada M, Uchikawa R, Tegoshi T,
385	Kuramochi T. Diplogonoporiasis in Japan: genetic analysis of five clinical isolates.
386	Parasitol Int 2008; 57:212–216.
387	[25] Craig PS, Ito A. Intestinal cestodes. Current Opinion in Infect Dis 2007; 20:524–
388	532.
389	[26] de Marvel F, Gottstein B, Weber M, Wicht B. Imported diphyllobothriasis in
390	Switzerland: molecular methods to define a clinical case of <i>Diphyllobothrium</i>
391	infections as Diphyllobothrium dendriticum, August 2010. Euro Surveill
392	2013;18(3).
393	[27] Wicht B, Ruggeri-Bernardi N, Yanagida T, Nakao M, Peduzzi R, Ito A. Inter- and
394	intra-specific characterization of tapeworms of the genus Diphyllobothrium
395	(Cestoda: Diphylloboriidea) from Switzerland, using nuclear and mitochondrial
396	DNA targets. Parasitol Int 2009; 59:35–39.

- 397 [28] Wicht B, Sholz T, Peduzzi R, Kuchta R. First record of human infection with the
- 398 tapeworm *Diphyllobothrium nihonkaiense* in North America. Am J Trop Med Hyg
- **399 2008**; **78**:**235**–**238**.
- 400 [29] Mercado R, Yamasaki H, Kato M, Munoz V, Sagua H, Torres P, et al. Molecular
- 401 identification of the *Diphyllobothrium* species causing diphyllobothriasis in
- 402 Chilean patients. Parasitol Res 2010; 106:995–1000.
- 403 [30] Cargnelutti DE, Salomón MC. Human diphyllobothriosis. A case in non-endemic
- 404 area of Argentina. Medicina (B Aires) 2012; 72:40–42 (in Spanish).
- 405 [31] Esteban JG, Muñoz-Antoli C, Borras M, Colomina J, Toledo R. Human infection
- 406 by a "fresh tapeworm", *Diphyllobothrium latum*, in a non-endemic country.
- 407 Infection 2014; 42:191–194.
- 408 [32] Dupouy-Camet J, Peduzzi R. Current situation of human diphyllobothriasis in
- 409 Europe. Euro Surveill 2004; 9:31–35.
- 410 [33] Year H, Estran C, Delaunay P, Gari-Toussaint M, Depoy-Camet J, Marty P. Putative
- 411 *Diphyllobothrium nihonkaiense* acquired from a Pacific salmon (*Oncorhynchus*
- 412 *keta*) eaten in France; genomic identification and case report. Parasitol Int 2006;
- 413 55:45–49.
- 414 [34] Jenkins EJ, Schurer JM, Gesy KM. Old problems on a new playing field: Helminth

zoonoses transmitted among dogs, wildlife, and people in a changing northern

416 climate.	Vet Parasitol 2	2011; 182:54–69.
--------------	-----------------	------------------

- 417 [35] Jenkins EJ, Castrodale LJ, de Rosemond SJ, Dixon BR, Elmore SA, Gesy KM, et
- 418 al. Tradition and transition: parasitic zoonoses of people and animals in Alaska,
- 419 northern Canada, and Greenland. Adv Parasitol 2013; 82:33–204.
- 420 [36] Ito A, Putra MI, Subahar R, Sato MO, Okamoto M, Sako Y, et al. Dogs as
- 421 alternative intermediate hosts of *Taenia solium* in Papua (Irian Jaya), Indonesia

422 confirmed by highly specific ELISA and immunoblot using native and

- 423 recombinant antigens and mitochondrial DNA analysis. J Helminthol 2002;
- 424 76:311–314.
- 425 [37] Fan PC. Taiwan *Taenia* and taeniasis. Parasitol Today 1988; 4:86–88.
- 426 [38] Yokogawa S. On the taeniasis saginata among the aborigines in Taiwan. Nippon
- 427 Gakujutsu Kyokai Hokoku 1935; 10:497–500 (in Japanese).
- 428 [39] Huang SW, Lin CY, Khaw OK. Studies on *Taenia* species prevalence among the
- 429 aborigines in Wulai District, Taiwan. Bull Inst Zool Acad Sinica 1966; 5:87–91.
- 430 [40] Fan PC, Chung WC, Chan CH, Wong MM, Wu CC, Hsu MC, et al. Studies on
- 431 taeniasis in Taiwan III. Preliminary report on experimental infecton of Taiwan
- 432 *Taenia* in domestic animals. Proc 1st Sino-American Symp 1987; 1:119–125.

433	[41] Simanjuntak GM, Margono SS, Okamoto M, Ito A. Taeniasis/cysticercosis in
434	Indonesia as an emerging disease. Parasitol Today 2007; 13:321–323.
435	[42] Ito A, Nakao M, Wandra T. Human taeniasis and cysticercosis in Asia. Lancet
436	2003; 362:1918–1920.
437	[43] Nishiyama T, Araki T. Cysticercosis cellulosae—Clinical features and
438	epidemiology. In: Otsuru M, Kamegai S, Hayashi S, editors. Progress of Medical
439	Parasitology in Japan, Tokyo, Meguro Parasitological Museum; 2003. vol. 8,
440	p.281–292.
441	[44] Wandra T, Ito A, Swastika K, Dharmawan NS, Sako Y, Okamoto M. Taeniases and
442	cysticercosis in Indonesia: past and present situations. Parasitology 2013;
443	140:1608–1616.
444	[45] Eom KS, Rim HJ. Morphologic descriptions of <i>Taenia asiatica</i> spn. Korean J
445	Parasitol 1993; 31:1–6.
446	[46] Flisser A, Craig PS, Ito A. Chapter 51. Taenia solium, Taenia saginata and Taenia
447	asiatica. In: Palmer SR, Lord Soulsby, Torgerson PR, Brown DWG, editors.
448	Oxford Textbook of Zoonoses. 2nd ed. Oxford, Oxford Univ Press; 2011. p.627-
449	644.
450	[47] Okamoto M, Nakao M, Blair D, Anantaphruti MT, Waikagul J, Ito A. Evidence of

- 451 hybridization between *Taenia saginata* and *Taenia asiatica*. Parasitol Int 2010;
 452 59:70–74.
- 453 [48] Yamane K, Suzuki Y, Tachi E, Li TY, Chen XW, Nakao M, et al. Recent
- 454 hybridization between *Taenia asiatica* and *Taenia saginata*. Parasitol Int 2012;
 455 61:351–355.
- 456 [49] Yamane K, Yanagida T, Li T, Chen X, Dekumyoy P, Waikagul J, et al. Complicated
- 457 relationships between *Taenia saginata* and *Taenia asiatica* and their hybrids.
- 458 Parasitology 2013; 140:1595–1601.
- 459 [50] Fan PC, Soh CT, Kosin E. Pig as a favorable intermediate host of a possible new

460 species of *Taenia* in Asia. Yonsei Rep Trop Med 1990; 21:39–58.

- 461 [51] Li T, Craig PS, Ito A, Chen X, Qiu D, Qiu J, et al. Taeniasis/cysticercosis in a
- 462 Tibetan population in Sichuan Province, China. Acta Trop 2006; 100:223–231.
- 463 [52] Li T, Chen X, Yanagida T, Wang H, Long C, Sako Y, et al. Detection of human
- taeniases in Tibetan endemic areas, China. Parasitology 2013; 140:1602–1607.
- 465 [53] Conlan JV, Vongxay K, Khamlome B, Dorny P, Sripa B, Elliot A, et al. A
- 466 cross-sectional study of *Taenia solium* in a multiple taeniid-endemic region reveals
- 467 competition may be protective. Am J Trop Med Hyg 2012; 87:281–291.
- 468 [54] Sako Y, Itoh S, Okamoto M, Nakaya K, Ito A. Simple and reliable preparation of

immunodiagnostic antigens for *Taenia solium* cysticercosis. Parasitology 2013;

- 470 140:1589–1594.
- 471 [55] Eom KS, Jeon HK, Rim HJ. Geographical distribution of *Taenia asiatica* and
- 472 related species. Korean J Parasitol 2009; 47:S115–S124.
- 473 [56] Yanagida T, Sako Y, Nakao M, Nakaya K, Ito A. Taeniasis and cysticercosis due
- to *Taenia solium* in Japan. Parasit Vectors 2012; 5:18.
- 475 [57] Yamasaki H. Current status and perspectives of cysticercosis and taeniasis in Japan.
- 476 Korean J Parasitol 2013; 51:19–29.
- 477 [58] Ito A. Taeniasis and cysticercosis in Asia and the Pacific. In: Tada I, editor. Global
- trends in parasitic diseases, Tokyo, Ishiyaku Publishers; 2006. p.54–57 (in
- 479 Japanese).
- 480 [59] McFadden AM, Heath DD, Morley CM, Dorny P. Investigation of an outbreak of
- 481 *Taenia saginata* cysts (*Cysticercus bovis*) in dairy cattle from two farms. Vet
- 482 Parasitol 2011; 176:177–184.
- 483 [60] Dorny P, Praet N. *Taenia saginata* in Europe. Vet Parasitol 2007; 149: 22–24.
- 484 [61] Morishita T, Nagase K, Moriyama K, Matsumoto Y. The 11th case of human
- 485 infection with *Mesocestoides lineatus* in Japan. Jpn J Parasitol 1975; 24:353–356
- 486 (in Japanese).

487	[62] Ohtomo H, Hioki A, Ito A, Kajita K, Ishizuka T, Miura K, et al. The 13th human
488	case of the infection with Mesocestoides lineatus in Japan treated with
489	paromomycin sulfate. Jpn J Antibiotics 1983; 34:632-637 (in Japanse with English
490	summary).
491	[63] Fan SQ. First case of Mesocestoides lineatus infection in China. Chinese J Parasitol
492	Parasitic Dis 1988; 6:310.
493	[64] Eom KS, Kim SH, Rim HJ. Second case of human infection with Mesocestoides
494	lineatus in Korea. Korean J Parasitol 1992; 30:147–150.
495	[65] Morishita K. Rare human tapeworms reported from Japan. In: Morishita K,
496	Komiya Y, Matsubayashi H, editors. Progress of Medical Parasitology in Japan,
497	Tokyo, Meguro Parasitological Museum; 2003. vol. 4, p.466–488.
498	[66] Uchida A. Spirometra erinaceieuropaei (1) Biology. In: Otsuru M, Kamegai S,
499	Hayashi S, editors. Progress of Medical Parasitology in Japan, Tokyo, Meguro
500	Parasitological Museum; 2003. vol. 8, p.261–272.
501	[67] Santamaria-Fries M, Fajardo L-G LF, Sogin ML, Olson PD, Relman DA. Lethal
502	infection by a previously unrecognized metazoan parasite. Lancet 1996;
503	347:1797–1801.
504	[68] Olson PD, Yoder K, Fajardo L-G LF, Marty AM, van de Pas S, Olivier C, et al.

- 505 Lethal invasive cestodiases in immunosuppressed patients. J Infect Dis 2003;
 506 187:1962–1966.
- 507 [69] Zumaguero-Ríos JL, Sarracent-Pérez J, Rojas-García E, Rojas-Rivero L,
- 508 Martínez-Tovilla Y, Valero MA, et al. Fascioliasis and intestinal parasitoses
- affecting schoolchildren in Atlixco, Puebla Satte, Mexico: epidemiology and
- treatment with nitazoxanide. PLoS Negl Trop Dis 2013; 7:e2553.
- 511 [70] Abou-Zeid AH, Abkar TA & Mohamed RO. Schistosomiasis and soil-transmitted
- helminths among an adult population in a war affected area, Southern Kordofan
 state, Sudan. Parasit Vectors 2012; 5:133.
- [71] Nxasana N, Baba K, Bhat V, Vasaikar S. Prevalence of intestinal parasites in
- 515 primary school children of Mthatha, eastern cape province, South Africa. Ann
- 516 Med Health Sci Res 2013; 3:511–516.
- 517 [72] Mbae CK, Nokes J, Mulinge E, Nyambura J, Waruru A, Kariuki S. Intestinal
- 518 parasitic infections in children presenting with diarrhoea in outpatient and inpatient
- 519 settings in an informal settlement of Nairobi, Kenya. BMC Infect Dis 2013;
- 520 13:243.
- [73] Gelaw A, Anagaw B, Nigussie B, Silesh B, Yirga A, Alem M, et al. Prevalence of
 intestinal parasitic infections and risk factors among schoolchildren at the

- 523 University of Gonda Community School, Northwest Ethiopia: a cross-sectional
 524 study. BMC Public Health 2013; 13:304.
- 525 [74] Wandra T, Depary AA, Sutisna P, Margono SS, Suroso T, Okamoto M, et al.
- Taeniasis and cysticercosis in Bali and North Sumatra, Indonesia. Parasitol Int
 2006; 55:S155–S160.
- 528 [75] Ito A, Takayanagui OM, Sako Y, Sato MO, Odashima NS, Yamasaki H, et al.
- 529 Neurocysticercosis: clinical manifestation, neuroimaging, serology and molecular
- 530 confirmation of histopathologic specimens. Southeast Asian J Trop Med Public
- 531 Health 2006; 37 (suppl 3):74–81.
- 532 [76] Yanagida T, Yuzawa I, Joshi DD, Sako Y, Nakao M, Nakaya K, et al.
- 533 Neurocysticercosis: assessing where the infection was acquired? J Travel Med
- 534 2010; 17:206–208.
- 535 [77] Flisser A, 2002. Risk factors and control measures for taeniosis/cysticercosis. In:
- 536 Craig P, Pawlowski Z, editors. Cestode Zoonoses: Echinococcosis and
- 537 Cysticercosis, an Emergent and Global Problem, Amsterdam, IOS Press; NATO
- 538 Science Series, vol. 341. p.335–342.
- 539 [78] Ito A. Cysticercosis. In: Kanazawa I, Nagai R, Asano K, editors. Today's
- 540 Diagnosis 7th ed. Tokyo, Igakushoin 2014; in press (in Japanese).

- 541 [79] Fabiani S, Bruschi F. Neurocysticercosis in Europe: still a public health concern
- not only for imported cases. Acta Trop 2013; 128:18–26.
- [80] Lua PL, Neni WS. Awareness, knowledge, and attitudes with respect to epilepsy:
- an investigation in relation to health-related quality of life within a Malaysian
- 545 setting. Epilepsy Behav 2011; 21:248–254.
- [81] Nakao M, Okamoto M, Sako Y, Yamasaki H, Nakaya K, Ito A. A phylogenetic
- 547 hypothesis for the distribution of two genotypes of the pig tapeworm *Taenia solium*.
- 548 Parasitology 2002; 124:657–662.
- 549 [82] Jongwutiwes U, Yanagida T, Ito A, Kline SE. Isolated intradural-extramedullary

spinal cysticercosis: a case report. J Travel Med 2011; 18:284–287.

- [83] Kobayashi K, Nakamura-Uchiyama F, Nishiguchi T, Isoda K, Kokubo Y, Ando K,
- et al. Rare case of disseminated cysticercosis and taeniasis in a Japanese traveler
- after returning from India. Am J Trop Med Hyg 2013; 89:58–62.
- [84] Del Brutto OH, Rajshekhar V, White AC, Jr., Tsang VC, Nash TE, Takayanagui
- 555 OM, et al. Proposed diagnostic criteria for neurocysticercosis. Neurology
- 556 2001;57:177–183.
- 557 [85] Sako Y, Nakao M, Ikejima T, Piao XZ, Nakaya K, Ito A. Molecular
- 558 characterization and diagnostic value of *Taenia solium* low-molecular-weight

antigen genes. J Clin Microbiol 2000; 38:4439–4444.

560	[86] <mark>Sako</mark>	Y, Itoh S,	Okamoto	М,	Nakaya K	, Ito A.	Simple a	nd reliable	preparation	of
-----	------------------------	------------	---------	----	----------	----------	----------	-------------	-------------	----

- 561 immunodiagnostic antigens for *Taenia solium* cysticercosis. Parasitology 2013;
- 562140:1589–1594.
- 563 [87] Nakao M, Lavikainen A, Yanagida T, Ito A. Phylogenetic systematics of the genus
- *Echinococcus* (Cestoda: Taeniidae). Int J Parasitol 2013; 43:1017–1029.
- 565 [88] Nakao M, Yanagida T, Konyaev S, Lavikainen A, Odnokurtsev VA, Ito A.
- 566 Molecular phylogeny of the genus *Echinococcus* (Cestoda: Taeniidae) with
- 567 emphasis on relationships among *Echinococcus canadensis* genotypes.
- 568 Parasitology 2013; 140:1625–1636.
- 569 [89] Rojas CA, Romig T, Lightowlers MW. Echinococcus granulosus sensu lato
- 570 genotypes infecting humans–review of current knowledge. Int J Parasitol 2014;
- **571 44:9–18**.
- [90] Hüttner M, Nakao M, Wassemann T, Siefert L, Boomker JD, Dinkel A, et al.
- 573 Genetic characterization and phylogenetic position of *Echinococcus felidis*
- 574 (Cestoda: Taeniidae). Int J Parasitol 2008; 38:861–868.
- 575 [91] Xiao N, Qiu J, Nakao M, Li T, Yang W, Chen X, et al. *Echinococcus shiquicus* n.
- 576 sp., a taeniid cestode from Tibetan fox and plateau pika in China. Int J Parasitol

577 2005; 35:693–701.

- 578 [92] Ito A, Dorjsuren T, Davaasuren A, Yanagida T, Sako Y, Nakaya K, et al. Cystic
- 579 echinococcoses in Mongolia: molecular identification, serology and risk factors.
- 580 PLoS Negl Trop Dis 2014; 8: e2937.
- 581 [93] Jabbar A, Narankhajid M, Nolan MJ, Jex AR, Campbell BE, Gasser RB. A first
- 582 insight into the genotypes of *Echinococcus granulosus* from humans in Mongolia.
- 583 Mol Cell Probes 2011; 25:49–54.
- [94] Ito A, Chuluunbaatar G, Yanagida T, Davaasuren A, Sumiya B, Asakawa M, et al.
- 585 *Echinococcus* species from red foxes, corsac foxes, and wolves in Mongolia.
- 586 Parasitology 2013; 140:1648–1654.
- 587 [95] Nakamura K, Ito A, Yara S, Haranaga S, Hibiya K, Hirayasu T, et al. A case of
- 588 pulmonary and hepatic cystic echinococcosis of CE1 stage in a healthy Japanese
- 589 female that was suspected to have been acquired during her stay in the United
- 590 Kingdom. Am J Trop Med Hyg 2011; 85:456–459.
- 591 [96] Eckert J, Deplazes P. Biological, epidemiological, and clinical aspects of
- echinococcosis, a zoonosis of increasing concern. Clin Microbiol Rev 2004;
- 593 17:107–135.
- 594 [97] Deplazes P. Ecology and epidemiology of *Echinococcus multilocularis* in Europe.

- 595 Parassitologia 2006; 48:37–39.
- 596 [98] Hegglin D, Deplazes P. Control strategy for *Echinococcus multilocularis*. Emerg
- 597 Infect Dis 2008; 14:1626–1628.
- 598 [99] Antolová D, Reiterová K, Miterpáková M, Dinkel A, Dubinský P. The first finding
- 599 of *Echinococcus multilocularis* in dogs in Slovakia: an emerging risk for spreading
- 600 of infection. Zoonoses Public Health 2009; 56:53–58.
- 601 [100] Romig T. Echinococcus multilocularis in Europe—state of the art. Vet Res
- 602 Commun 2009; 33:S31–S34.
- [101] Romig T, Dinkel A, Mackenstedt U. The present situation of echinococcosis in
- Europe. Parasitol Int 2006; 55:S187–S191.
- 605 [102] Schneider R, Aspock H, Auer H. Unexpected increase of alveolar echinococcosis,
- 606 Austria, 2011. Emerg Infect Dis 2013; 19:475–477.
- 607 [103] Sako Y, Fukuda K, Kobayashi Y, Ito A. Development of an
- 608 immunochromatographic test to detect antibodies against recombinant Em18 for
- diagnosis of alveolar echinococcosis. J Clin Microbiol 2009; 47:252–254.
- 610 [104] Knapp J, Sako Y, Grenouille F, Bresson-Hadni S, Richou C, Gbaguidi-Haore H, et
- al. Comparison of various serological tests for the diagnosis of alveolar
- 612 echinococcosis in France. Parasite 2014; in press.

- [105] Ito A. Echinococcoses as zoonoses. Gastrointestinal Res 2013; 21:111–117 (in
- 614 Japanese).
- [106] Tappe D, Berger L, Haenpler A, Mantau B, Racz P, Harder Y, et al. Case report:
- 616 Molecular diagnosis of subcutaneous *Spirometra erinaceieuropaei* sparganosis in a
- G17 Japanese immigrant. Am J Trop Med Hyg 2013; 88:198–202.
- 618 [107] Schauer F, Poppert S, Technau-Hafsi K, Mockenhaupt M, Muntau B, Häcker G,
- 619 et al. Travel-acquired subcutaneous *Sparganum proliferum* infection diagnosed by
- 620 molecular methods. Br J Dermatol 2014; 170:741–743.
- 621 [108] Wiwanitkit V. A review of human sparganosis in Thailand. Int J Infect Dis 2005;
- 622 9:312–316.
- 623 [109] Anantaphruti MT, Nawa Y, Vanvanitchai Y. Human sparganosis in Thailand: an
- 624 overview. Acta Trop 2011; 118:171–175.
- [110] Li M, Song H, Li C, Lin H, Xie W, Lin R, Zhu X. Sparganosis in mainland China.
- 626 Int J Infect Dis 2011; 15:e154–e156.
- 627 [111] Okabe K. Taenia and taeniasis. In: Morishita K, Komiya Y, Matsubayashi H,
- 628 editors. Progress of Medical Parasitology in Japan, Tokyo, Meguro Parasitological
- 629 Museum; 1972. vol. 4, p.513–532.
- 630 [112] Del Brutoo OH. Clinical management of neurocysticercosis. Expert Rev

631 Neurother 2014; 14:389–396.

- [113] Mewara A, Goyal K, Sehgal R. Neurocysticercosis: a disease of neglect. Trop
 Parasitol 2013; 3:106–113.
- 634 [114] Takayanagui OM, Odashima NS, Bonato PS, Lima JE, Lanchote VL. Medical
- 635 management of neurocysticercosis. Expert Opin Pharmacother 2011; 12:2845–
 636 2856.
- [115] Takayanagui OM. Neurocysticercosis. Arg Neuropsiguiatr 2013; 71: 710–713.
- [116] Ito A, Li TY, Chen XW, Long CP, Yanagida T, Nakao M, et al. Minireview on
- 639 chemotherapy of taeniasis and cysticercosis due to *Taenia solium* in Asia, and a

case report with 20 tapeworms. Tropical Biomedicine 2013; 30:164–173.

- [117] Romo ML, Carpio A, Kelvin EA. Routine drug and food interactions during
- antihelminthic treatment of neurocysticercosis: a reason for the variable efficacy of
- albendazole and praziquantel? J Clin Pharmacol 2014; 54:361–367.
- [118] Shoji H, Hirai T, Shirakura T, Takuma T, Okino T, Wakatsuki Y, et al. A case of
- 645 cysticercosis with multiple lesions in the brain and femoral muscles.
- 646 Kansenshogaku ZSasshi 2013; 87:608–612 (in Japanese with English abstract).
- [119] Swastika K, Dewiyani CI, Yanagida T, Sako Y, Sudamaja M, Sutisna P, et al. An
- 648 ocular cysticercosis in Bali, Indonesia caused by *Taenia solium* Asian genotype.

649 Parasitol Int 2012; 61:378–380.

650	[120] Ishikawa Y, Sako Y, Itoh S, Ohtake T, Kohgo Y, Matsuno T, et al. Serological
651	monitoring of progression of alveolar echinococcosis with multi-organ
652	involvement using recombinant Em18. J Clin Microbiol 2009; 47:3191-3196.
653	[121] Bresson-Hadni S, Blagosklonov O, Knapp J, Grenouillet F, Sako Y, Delabrousse
654	E, et al. Should possible recurrence forbid liver transplantation in patients with
655	end-stage alveolar echinococcosis? A 20-yr follow up. Liver Transpl 2011;
656	17:855–865.
657	[122] Brunetti E, Kern P, Vuitton DA, Writing Panel for the WHO-IWGE. Expert
658	consensus for the diagnosis and treatment of cystic and alveolar echinococcosis in
659	humans. Acta Trop 2010; 114:1–16.
660	
661	
662	
663	Figure Legends
664	
665	Figure 1. Life cycle of <i>Diphyllobothrium</i> spp. (from CDC, Atlanta, no need to get
666	permission).

668	Figure 2. Life cycle of three human taeniid tapeworms, <i>Taenia solium</i> , <i>T. saginata</i> and <i>T.</i>
669	asiatica (modified from CDC). Photos of ocular cysticercosis, neurocysticercosis, and
670	massive taeniasis due to <i>T. solium</i> are from [119], [75] and [116], respectively.
671	
672	Figure 3. Commercially available rapid serodiagnostic kits for alveolar echinococcosis
673	(ADAMU-AE), cystic echinococcosis (ADAMU-CE) and cysticercosis (ADAMU-CC),
674	(ICST Co. Ltd., Saitama, Japan). P: positive, N: negative. One drop of fresh blood is
675	sufficient to get a result within 20 minutes [78,103-105]. These kits will be licensed by
676	the Ministry of Health, Japan.
677	
678	Figure 4. Life cycle of <i>Echinococcus granulosus</i> sensu stricto (from CDC). All
679	Echinococcus species complete their life cycles using herbivorous or omnivorous

680 intermediate hosts and carnivorous definitive hosts.

