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Abstract 

Although sphingosine 1-phosphate (S1P), a bioactive lipid derived from activated platelets, 

has a variety of physiologic effects on vessels, no reports have described the effect of S1P 

on the retinal circulation. We examined the effect and underlying mechanism of the 

vasomotor action of S1P on porcine retinal arterioles. The porcine retinal arterioles were 

isolated, cannulated, and pressurized without flow for in vitro study. S1P-induced diameter 

changes were recorded using videomicroscopic techniques. S1P elicited 

concentration-dependent (1 nM-10 μM) vasoconstriction of the retinal arterioles that was 

abolished by the S1P receptor 2 (S1PR2) antagonist JTE-013. S1P-induced 

vasoconstriction was abolished by the Rho kinase (ROCK) inhibitor H-1152 and was 

inhibited partly by the protein kinase C (PKC) inhibitor Gö-6983. The inhibition of 

phospholipase C by U73122 and L-type voltage-operated calcium channels (L-VOCCs) by 

nifedipine inhibited S1P-induced vasoconstriction; a combination of both inhibitors 

abolished S1P-induced vasoconstriction. Furthermore, inhibition of myosin light chain 

kinase (MLCK) by ML-9 significantly blocked S1P-induced vasoconstriction; further 

coadministration of ML-9 with H-1152 or Gö-6983 abolished S1P-induced 

vasoconstriction. The current data suggest that S1P elicits vasoconstriction of the retinal 

arterioles via S1PR2 in vascular smooth muscle cells and this vasoconstriction may be 

mediated by the Ca
2+

-sensitive pathway via activation of PKC leading to activation of 

ROCK and the Ca
2+

-dependent pathway via activation of L-VOCCs resulting in activation 

of MLCK.  
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1. Introduction 

Sphingosine 1-phosphate (S1P), a member of a large family of lipid metabolites 

called sphingolipids, induces a variety of biologic activities, such as immune responses 

(Spiegel and Milstien, 2011), inflammatory processes (van der Giet et al., 2008), organ 

perfusion (Bischoff et al., 2000b; Sumida and Stamer, 2010), and vascular 

development/maturation (Allende and Proia, 2002) in different organs (Schuchardt et al., 

2011) through various high-affinity G-protein-coupled receptors (S1PR). A previous 

clinical study reported that S1P is a very strong and robust predictor of the occurrence and 

severity of coronary stenosis (Deutschman et al., 2003). Although a previous clinical study 

showed that the plasma concentration of sphingosine, which is the precursor of S1P, was 

elevated in patients with type 2 diabetes (Gorska et al., 2005), it has not been clarified fully 

if S1P is associated with retinal vascular disorders, especially diabetic retinopathy, in which 

we previously found that retinal blood flow (RBF) is impaired (Nagaoka et al., 2010; 

Nagaoka and Yoshida, 2013). 

S1P also can modulate vascular tone through vasodilator and vasoconstrictor 

pathways mediated by S1PR expressed in vascular endothelium and smooth muscle cells, 

as shown in animal models (Bischoff et al., 2000a; Daum et al., 2009; Hemmings et al., 

2004). However, the expression profiles of the different S1P receptor subtypes may vary 

among different vessels (Alewijnse et al., 2004). Although some investigators have 

reported that S1P caused vasoconstriction in isolated rat mesenteric and intrarenal arterioles 

in vitro (Bischoff et al., 2000a) and reduced renal and mesenteric blood flow in 

anaesthetized rats (Bischoff et al., 2000b), S1P induced constriction of isolated cerebral 

arteries, whereas S1P did not produce constriction in rat aorta or peripheral arteries, 
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including the carotid and femoral arteries (Coussin et al., 2002; Salomone et al., 2003). 

Moreover, some previous studies have reported that S1P caused vasodilation of the aorta and 

mesenteric arterioles in rats (Dantas et al., 2003; Roviezzo et al., 2006) via production of 

nitric oxide, suggesting that the effects of S1P on vascular regulation vary greatly. In addition, 

previous animal experiments have shown that Ca
2+

-sensitization mechanisms such as the 

Rho kinase (ROCK) pathway via S1P receptor 2 (S1PR2) was involved with S1P-induced 

vasoconstriction in human coronary artery smooth muscle cells (Ohmori et al., 2003) and rat 

cerebral arteries but not aorta (Coussin et al., 2002). Taken together, these previous data 

suggested that the ability of S1P to act as a vasoactive mediator depends on the activation of 

associated signaling pathways and may vary in different organs.  

It is worth noting that there was no study to examine the effect of S1P on the retinal 

microcirculation. Moreover, the cellular signaling pathway responsible for the direct impact 

of S1P on vascular tone in the retinal microcirculation has not been examined. In the 

current study, we evaluated the effect of S1P on the retinal arterioles and the underlying 

signaling mechanisms involved in this vasomotor activity using isolated vessels. 

 

2. Materials and Methods 

2.1 Animal preparation 

The Animal Care Committee of Asahikawa Medical University approved all animal 

procedures, which were performed according to the Association for Research in Vision and 

Ophthalmology Statement for the Use of Animals in Ophthalmic and Vision Research. The 

eyes of pigs (age, 16-24 weeks; weight, 15-25 kg) of either sex were enucleated 

immediately after the animals were killed in a local abattoir and transported to the 
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laboratory in a moist chamber on ice. The procedure used for harvesting eyes has been 

described previously (Omae et al., 2012).  

2.2 Isolation and cannulation of microvessels 

The techniques used to identify, isolate, cannulate, pressurize, and visualize the 

retinal microvessels have been described previously (Hein et al., 2009). Briefly, the isolated 

retinal arterioles (~100 μm in situ) were cannulated with a pair of glass micropipettes and 

pressurized to 55 cmH2O intraluminal pressure without flow using two independent 

pressure reservoir systems (Kuo et al., 1990). The vasomotor activity of the isolated vessels 

was recorded continuously throughout the experiments using videomicroscopic techniques 

(Hein et al., 2005). Our immunohistochemical analysis suggested that our preparation did 

not retain neuroglial tissue surrounding the VSMCs (data not shown). 

2.3 Experimental protocols 

2.3.1 Control experiment  

Cannulated arterioles were bathed in physiologic saline solution (PSS) (in mM, NaCl 

145.0, KCl 4.7, CaCl2 2.0, MgSO4 1.17, NaH2PO4 1.2, glucose 5.0, pyruvate 2.0, EDTA 

0.02, and MOPS [3-(N-morpholino)propanesulfonic acid] 3.0) at 36°C to 37°C to allow 

development (~30-40 minutes) of basal tone. In one series of studies, the vasomotor 

response to cumulative extraluminal administration of S1P (1 nM-10 μM) (Hoefer et al., 

2010) then was constructed based on evidence that the S1P concentrations in the plasma 

have been reported in the high nanomolar range (Alewijnse et al., 2004; Yatomi et al., 

1997). The vessels were exposed to each concentration of agonist for 3 to 5 minutes until a 

stable diameter was established. As a result of the responses to the concentration of each 

agonist, the concentration-response curve was obtained. After measurement of the control 



Kamiya et al.--7 

 

 

concentration response of S1P without drugs, the vessels were washed with PSS to allow 

the basal tone to redevelop. The vasoconstriction elicited by S1P was re-examined after 30 

minutes to confirm the response reproducibility (n=8).  

To elucidate the signaling mechanisms involved in the retinal arteriolar constriction 

induced by S1P, we performed the following series of experiments. We evaluated the 

relative roles of S1PR 1-3 in the retinal arteriolar response to S1P after the vessels were 

incubated with respective antagonists sodium 4-[(4-butoxyphenyl)thio]-2′

-[{4-[(heptylthio)methyl]-2-hydroxyphenyl}(hydroxy)methyl]biphenyl-3-sulfonate 

(compound 5, 1 μM) (Yonesu et al., 2010), JTE-013 (1 μM) (Hoefer et al., 2010), and 

suramin (100 μM) (Hedemann et al., 2004) before S1P was added. In another series of 

studies, we examined the involvement of L-type voltage-operated calcium channels 

(L-VOCCs) and the activation of ROCK, protein kinase C (PKC), phospholipase C (PLC), 

and myosin light chain kinase (MLCK) as signaling molecules in the S1P-induced 

vasoconstriction. The arterioles with tone were incubated in normal PSS-albumin 

containing the dihydropyridine L-VOCC blocker nifedipine (1 µM) (Hong et al., 2004), the 

ROCK inhibitor H-1152 (3 µM) (Potts et al., 2012), the PKC inhibitor Gö-6983 (3 µM) 

(Potts et al., 2012), the PLC inhibitor U73122 (1 μM) (Coussin et al., 2002), and the 

MLCK inhibitor ML-9 (10 μM) (Zhou and Murthy, 2004) before administration of S1P. 

Because H-1152 (3 µM), nifedipine (1 µM), and ML-9 (10 µM) reduced the vascular tone, 

we performed control experiments to adjust the vascular tone to the dilated vessels after 

H-1152, nifedipine, and ML-9 with sodium nitroprusside (SNP) as the control. All vessels 

were pretreated with antagonists or inhibitors extraluminally for at least 30 minutes.  

2.3.2 Endothelial denudation  
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The role of the endothelium in S1P-induced constriction was evaluated by comparing 

the response before and after removal of the endothelium by luminal perfusion with the 

non-ionic detergent, 3-[(3-cholamidopropyl)dimethylammonio]-1 propane sulfonate 

(CHAPS, 0.4%) (Sigma-Aldrich, St. Louis, MO) as described previously (Omae et al., 

2011).  

2.3.3 Immunohistochemical analysis 

The immunohistochemical detection of S1PR2 in the vascular wall was performed 

after the cryomicrotome sections of the retinal arterioles were prepared. We previously 

described the techniques for immunohistochemical staining of the isolated retinal arterioles 

(Omae et al., 2011). We used the following primary antibodies: an anti-S1P receptor 

EDG-5 antibody (catalogue no. sc-25491, dilution 1:50, Santa Cruz Biotechnology, Santa 

Cruz, CA), an anti-eNOS antibody (dilution 1:100, BD Biosciences, San Diego, CA), or  

an anti-α-smooth muscle actin antibody (dilution 1:600, Sigma-Aldrich, St. Louis, MO). 

The secondary antibodies included fluorescein isothiocyanate (FITC)-conjugated antibody 

(dilution 1:60, GE Healthcare Life Sciences, Piscataway, NJ) and Cy3-conjugated antibody 

(dilution 1:200, Abcam, Cambridge, MA). The slides were observed for green (FITC) and 

red (Cy3) images and analyzed with a confocal microscope (Fluoview FV 1000, Olympus 

Tokyo, Japan). Merged images were created with Image J software (developed by Wayne 

Rasband, National Institutes of Health, Bethesda, MD; available at 

http://rsb.info.nih.gov/ij/index.html).  

2.4 Chemicals 

Compound 5 was obtained from Daiichi Sankyo Co. (Tokyo, Japan). H-1152 was 

obtained from Calbiochem (San Diego, CA). Other drugs were obtained from 

http://rsb.info.nih.gov/ij/index.html
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Sigma-Aldrich. JTE-013 and Gö-6983 was dissolved in dimethyl sulfoxide (DMSO). 

U73122, nifedipine, and ML-9 were dissolved in ethanol; other drugs were dissolved in 

PSS. All subsequent dilutions of drugs for use in experiments were performed using PSS. 

The final concentrations of ethanol and DMSO in the vessel bath were less than 0.1% 

(Hein et al., 2006). Vehicle control studies indicated that these final concentrations of 

solvents did not affect the arteriolar functions.  

2.5 Data analysis 

At the end of each experiment, the vessel was relaxed in EDTA (1 mM) calcium-free 

PSS to obtain the maximal diameter at 55 cmH2O intraluminal pressure (Nagaoka et al., 

2007). The diameter changes in response to S1P were normalized to the resting diameters 

and expressed as percentage changes in diameter (Hein et al., 2009). Data are reported as 

the mean ± standard error of the mean; n represents the number of vessels studied. The 

statistical analyses were performed on the original data after the normal distribution was 

confirmed using the Kolmogorov-Smirnov test. Statistical comparisons of the changes in 

resting tone by antagonists were performed using the Student’s t-test. Two-way analysis of 

variance, followed by the Bonferroni multiple-range test, was used to determine the 

significance of the difference between the control and the experimental interventions. P < 

0.05 was considered significant.     

 

3. Results 

3.1 Constriction of retinal arterioles induced by S1P 

The basal tone in all vessels (n = 87) ranged from 40% to 60% (average, ~51.9% ± 

2.0％) of the maximal diameter. The average resting and maximal vessel diameters were 
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45.2 ± 1.5 and 87.3 ± 5.0 μm, respectively. S1P induced concentration-dependent maximal 

constriction of the retinal arterioles within about 5 minutes. The threshold concentration for 

vasoconstriction was 0.1 μM, and the highest concentration (10 μM) of S1P caused a 30% 

reduction in the resting diameter (Fig. 1). Further study showed that S1P-induced 

constriction was reproducible and did not deteriorate after repeated application (Fig. 1D).  

3.2 Role of S1P receptors and the endothelium in vasoconstriction in response to S1P 

Blockade of S1PR2 by JTE-013 but not blockade of S1PR1 or S1PR3 by compound 5 

and suramin, respectively, abolished the vasoconstrictive response to S1P (Fig. 2A). In 

another series of experiments, 10 vessels were subjected to the denudation protocol. After 

perfusion with CHAPS, three of the 10 vessels lost basal tone and two showed partial 

inhibition resulting from the endothelium-dependent vasodilator bradykinin. These 

apparently damaged or partially denuded vessels were excluded from further study. The 

remaining five vessels maintained basal tone (control, 52.9 ± 0.1% vs. denudation, 53.9 ± 

4.5%; P = 0.65), and the bradykinin-induced vasodilation (10 nM) was abolished (control, 

87.7% ± 0.9% vs. denudation, 1.0% ± 0.5%). In addition, these vessels exhibited normal 

vasodilation in response to SNP (Table). In these accepted denuded vessels, the constrictive 

response to S1P was not attenuated (P = 0.729) (Fig. 2B). Furthermore, after incubation of 

the denuded vessels with JTE-013, the constrictive response of the denuded vessels to S1P 

was comparable to the response to S1P before denudation (Fig. 2B). 

3.3 Role of ROCK and PKC in vasoconstriction in response to S1P 

Inhibition of ROCK by H-1152 (3 µM) and coadministration of H-1152 with the PKC 

inhibitor Gö-6983 (3 µM) abolished the S1P-induced vasoconstriction of the retinal 

arterioles (Fig. 3A). Because H-1152 (3 µM) reduced the vascular tone, we first added SNP 
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(300 µM) to the control vessels to adjust the vascular tone (Table). Inhibition of PKC by 

Gö-6983 (3 µM) partially but significantly (p<0.05) inhibited the S1P-induced 

vasoconstriction of the retinal arterioles (Fig. 3B).  

3.4 Role of PLC and L-VOCCs in vasoconstriction in response to S1P  

Inhibition of PLC by U73122 partly but significantly (p<0.05) inhibited the 

S1P-induced vasoconstriction (Fig. 4A). Because nifedipine reduced the vascular tone, we 

added SNP (30 µM) to the control vessels to adjust the vascular tone (Table). In our 

experiments, S1P-induced vasoconstriction of the retinal arterioles was reduced partly by 

pretreatment of nifedipine and almost abolished by subsequent administration of U73122 

(Fig. 4B).  

3.5 Role of MLCK in vasoconstriction in response to S1P 

Inhibition of MLCK by ML-9 partly but significantly (p<0.05) inhibited the 

S1P-induced vasoconstriction (Fig. 5A). Coadministration of ML-9 and H-1152 or 

Gö-6983 almost abolished S1P-induced vasoconstriction of the retinal arterioles (Fig. 5A, 

B). Because ML-9 (10 µM) reduced the vascular tone, we first added SNP (0.3 µM) to the 

control vessels to adjust the vascular tone (Table). .   

3.6 S1PR2 expression in retinal arterioles 

In the retinal arterioles, S1PR2 was expressed in the vascular endothelium and 

smooth muscle (Fig. 6).  

3.7 Response to SNP 

    Various interventions did not affect the SNP-induced dilation of the retinal arterioles 

(Table), suggesting that the vascular smooth muscle function was unaltered by these 

interventions. 
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4. Discussion 

The current study showed for the first time that S1P induces concentration-dependent 

vasoconstriction of the retinal arterioles with about 30% constriction at high concentrations 

(1 nM-10 µΜ) (Fig. 1D). Previous studies have reported that S1P induces vasoconstriction 

in resistance vessels such as the mesenteric (Bischoff et al., 2000a; Hemmings et al., 2004), 

cerebral (Coussin et al., 2002; Salomone et al., 2008; Salomone et al., 2003), coronary 

(Ohmori et al., 2003; Salomone et al., 2003), and renal arteries (Bischoff et al., 2000a) but 

has little or no effect on conduit vessels such as the aorta (Coussin et al., 2002) and carotid 

(Salomone et al., 2003) and femoral arteries (Salomone et al., 2003), or causes vasodilation 

in the aorta (Roviezzo et al., 2006) and mesenteric arteries (Dantas et al., 2003). Our 

finding seems to agree with the former results. Furthermore, it was reported that the plasma 

concentrations of sphingosine, a precursor of S1P, was elevated in patients with type 2 

diabetes (Gorska et al., 2005). Although we did not measure the concentration of S1P in 

patients with type 2 diabetes, further clinical study is needed to examine whether an 

elevated S1P concentration may be associated with impaired RBF in patients with type 2 

diabetes (Nagaoka et al., 2010). 

S1P activates G-protein coupled receptors S1PR1-5 (Sanchez and Hla, 2004; van 

Koppen et al., 1996), whereas only S1PR1-3 is present in vascular cells (Alewijnse et al., 

2004; Peters and Alewijnse, 2007). Moreover, previous studies have shown that 

S1P-induced vasoconstriction depends on S1PR2 in the human coronary artery smooth 

muscle cells (Ohmori et al., 2003), and murine pulmonary vasculature (Szczepaniak et al., 

2010) and spiral modiolar arteries (Kono et al., 2007), whereas other studies showed that 
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S1P-induced vasoconstriction depends on S1PR3 in rat mesenteric arteries (Hedemann et 

al., 2004) and cerebral arteries (Salomone et al., 2003), canine cerebral arteries (Murakami 

et al., 2010), and murine cerebral arteries (Salomone et al., 2008). In the current study, 

blockade of S1PR2 with JTE-013 but not of S1PR1 and S1PR3 with compound 5 and 

suramin inhibited S1P-induced vasoconstriction of the retinal arterioles (Fig. 2A), 

suggesting that only S1PR2 may be involved in the constriction of the retinal arterioles in 

response to S1P. 

A previous report has shown that the vasoconstrictions of the isolated mouse basilar 

artery produced by KCl, U46619, and endothelin-1 were suppressed by JTE-013 

(Salomone et al., 2008). However, in our preliminary studies, JTE-013 had no effect on the 

vasoconstriction response of porcine retinal arterioles to KCl, U46619, and endothelin-1 

(Supplementary Fig. S1). Furthermore, non-specificity was reported at the 10-µM 

concentration (Salomone and Waeber, 2011), which was higher than that in the current 

study. Taken together, it is likely that the specificity and efficacy of JTE-013 at a 

concentration of 1 µM to block the effects of S1PR2 were validated in the current study. 

It has been reported that S1PR2 is expressed in the vascular endothelium (Sanchez et 

al., 2007; Skoura et al., 2007) and smooth muscle (Daum et al., 2009; Sanchez and Hla, 

2004). Although our immunofluorescence data showed the expression of S1PR2 in both 

endothelium (Fig. 6A) and smooth muscle of the retinal arterioles (Fig. 6B), removing the 

vascular endothelium did not affect the inhibitory activity of JTE-013 on S1P-induced 

vasoconstriction in the retinal arterioles (Fig. 2B), suggesting that S1PR2 in the vascular 

smooth muscle but not the endothelium is involved with the S1P-induced vasoconstriction 

of retinal arterioles. This seems to be consistent with the previous finding that inhibition of 
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S1PR2 by JTE-013 suppressed S1P-induced constriction in human coronary artery smooth 

muscle cells (Ohmori et al., 2003). Furthermore, we administered S1P intraluminally to 

confirm the effect of S1P on the vascular endothelium and found that intraluminal and 

extraluminal administration of S1P induced vasoconstriction of the retinal arterioles to a 

similar extent (extraluminally, 31.1% ± 1.3% vs. intraluminally, 28.2% ± 1.8% at a final 

S1P concentration of 10 µM), indicating that S1P may reach the vascular endothelium by 

extraluminal administration. 

It is known that smooth muscle contractility occurs through increased intracellular 

Ca
2+

-dependent phosphorylation of the myosin light chain (MLC) and Ca
2+

-sensitization 

mechanisms under constant Ca
2+

 levels. Inhibition of MLC phosphatase activity by ROCK 

and PKC contributes to vasoconstriction regarding the Ca
2+

-sensitization mechanisms 

(Somlyo and Somlyo, 2003; Zemlickova et al., 2004). It is worth noting that S1P mediated 

vasoconstriction via the ROCK pathway in the various vessels (Coussin et al., 2002; 

Szczepaniak et al., 2010). In the current study, blockade of ROCK by H-1152 (3 µM) 

almost abolished the S1P-induced vasoconstriction of the retinal arterioles (Fig. 3A). Taken 

together, it is likely that S1P may cause vasoconstriction of the retinal arterioles through 

Ca
2+

-sensitization mechanisms via activation of ROCK. 

We also found that pretreatment of the PKC inhibitor Gö-6983 reduced S1P-induced 

vasoconstriction of the retinal arterioles (Fig. 3B), suggesting that PKC plays an important 

role in S1P-induced vasoconstriction of the retinal arterioles. Our results are supported by 

numerous reports that S1P induced contraction via the PKC pathway in smooth muscle 

cells (Chung et al., 2008; Song et al., 2006; Zhou and Murthy, 2004). Interestingly, a 

previous study using the same isolated retinal vessel technique as ours showed that a PKC 
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activator phorbol-12,13-dibutyrate (PDBu) caused the constriction of the isolated retinal 

arterioles via the activation of ROCK (Potts et al., 2012). Taken together, we speculated 

that S1P may constrict the retinal arterioles via activation of ROCK through a 

PKC-dependent mechanism. 

 Besides Ca
2+

-sensitization mechanisms, elevation of the intracellular Ca
2+

 

concentration ([Ca
2+

]i) with influx of extracellular Ca
2+ 

and the release of Ca
2+ 

from the 

intracellular calcium stores may be a major vasoconstrictive mechanism (Bischoff et al., 

2000a; Ghosh et al., 1990; Hopson et al., 2011; Watterson et al., 2005). Moreover, a 

transient increase in [Ca
2+

]i via the release of Ca
2+ 

from the intracellular calcium stores 

reflects inositol trisphosphate (InsP3) generation by stimulation of PLC activity (Coussin et 

al., 2002; Putney, 1999). The current data showed that inhibition of PLC with U73122 

attenuated retinal arteriolar constriction in response to S1P (Fig. 4A), suggesting that PLC 

activation may be involved in S1P-induced vasoconstriction in the retinal arterioles. This 

result is in agreement with previous findings that S1P constricts smooth muscle via PLC 

activation (Chung et al., 2008; Zhou and Murthy, 2004). It has also been reported that PLC 

generated second messengers such as InsP3 (Berridge, 1993) and diacylglycerol, leading to 

PKC activation (Dempsey et al., 2000; Nishizuka, 1988). Further, S1P-induced activation 

of extracellular signal-regulated kinases, critical to S1P-induced esophageal muscle cell 

contraction (Song et al., 2006), can be attenuated in the presence of U73122 and the PKC 

inhibitor chelerythrine (Chung et al., 2008). Overall, it appears that S1P-induced 

vasoconstriction of the retinal arterioles may be associated with activation of the PLC/PKC 

pathway. 

It has been reported that S1P elevated [Ca
2+

]i from the entry of extracellular calcium 
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via the calcium channel such as the L-VOCCs (Bischoff et al., 2000a). Indeed, L-VOCC 

blocker nifedipine abolished S1P-induced vasoconstriction in intrarenal arterioles (Bischoff 

et al., 2001). These findings seem to support our results that S1P-induced vasoconstriction 

of the retinal arterioles was reduced by pretreatment of nifedipine (Fig. 4B). Since residual 

vasoconstriction in the presence of nifedipine was almost abolished with subsequent 

U73122 treatment (Fig. 4B), it is speculated that both PLC and L-VOCCs may play some 

roles in the S1P-induced vasoconstriction in the retinal arterioles. 

The increase in [Ca
2+

]i subsequently was reported to activate MLCK by formation of 

a Ca
2+

-calmodulin complex to initiate constriction (He et al., 2011; Kamm and Stull, 2001). 

A previous finding that S1P-induced contraction and MLC phosphorylation were abolished 

by the MLCK inhibitor ML-9 in rabbit gastric smooth muscle cells (Zhou and Murthy, 

2004) seems to support our results that pretreatment with ML-9 inhibited S1P-induced 

vasoconstriction in porcine retinal arterioles (Fig. 5A). Furthermore, residual constriction in 

the presence of ML-9 decreased further with subsequent H-1152 or Gö-6983 treatment (Fig. 

5A, B). Taken together, our findings suggest that S1P-induced vasoconstriction in the 

retinal arterioles may be mediated by a Ca
2+

-dependent mechanism regulating MLCK 

activity, probably via elevation of [Ca
2+

]i through the L-VOCCs, and a Ca
2+

-sensitization 

mechanism via activation of ROCK and PKC. 

Our study had some limitations. First, as shown in Table, H-1152 (3 µM), nifedipine 

(1 µM), and ML-9 (10 µM) resulted in a reduction of some basal tone because ROCK, 

extracellular Ca
2+

 entry via the L-VOCCs, and MLCK are thought to be involved with in 

the maintenance of spontaneous myogenic tones in the porcine retinal arterioles (Potts et al., 

2012). Although we used SNP to adjust the basal tone of the control vessels to that of the 
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H-1152, nifedipine, and ML-9-treated vessels (Figs. 3A, 4B, 5A, 5B), these changes in the 

basal tone might have had some effects on our results. Second, careful attention should be 

paid to the selectivity of the inhibitors and antagonists used in the current study. It has 

reported that the ROCK inhibitor H-1152 may be involved in inhibiting Ca
2+

-calmodulin- 

dependent protein kinase II (CaMKII) (Tamura et al., 2005), which has been suggested to 

play a role in vascular smooth muscle contraction (Kim et al., 2000; Rokolya and Singer, 

2000). In our preliminary study, pre-incubation of vessels with the CaMKII inhibitor 

KN-93 (3 µM) had no effect on S1P-induced retinal vasoconstriction (Supplementary Fig. 

S2), indicating that H-1152 may not play a role in inhibition of S1P-induced 

vasoconstriction through inhibition of CaMKII. In addition, the PKC inhibitor Gö-6983 

also has been reported to affect L-VOCCs (Welling et al., 2005). However, in our 

preliminary study, we found that Gö-6983 (3 µM) abolished the constrictive response to 

PKC activator PDBu (at 0.1 µM control, 50.1% ± 2.2% vs. Gö-6983 pre-incubation, -7.3% 

± 2.8%; P < 0.01) (Supplementary Fig. S3) but had no significant effect on the constriction 

in response to L-VOCCs activator Bay K 8644 (at 1 µM control, 40.2% ± 3.0% vs. 

Gö-6983 pre-incubation, 42.8% ± 2.5%; P = 0.56) (Supplementary Fig. S4). We also found 

that Gö-6983 (3 µM) did not alter the basal tone of the isolated retinal arterioles, which was 

reduced by L-VOCC blocker nifedipine (Table). Taken together, it is unlikely that Gö-6983 

(3 µM) inhibited L-VOCCs in the isolated retinal arterioles in the current study. Third, S1P 

may stimulate the transient receptor potential cation (TRPC) channels (Beech et al., 2009). 

Because the specific TRPC channel inhibitors were not commercially available, we could 

not investigate if the TRPC channels play a role in S1P-induced vasoconstriction in the 

current study. Finally, although our data suggested that the concentration of Ca
2+

 plays an 
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important role in S1P-induced vasoconstriction in the retinal arterioles, we could not 

measure the concentration of intracellular Ca
2+

 in the current study due to the limitations of 

our technique.  

5. Conclusions 

In summary, we first showed that S1P elicited potent vasoconstriction of the retinal 

arterioles via S1PR2 in vascular smooth muscle cells. The current findings suggest that 

S1P-induced vasoconstriction may be mediated by a combination of Ca
2+

-dependent 

pathway via activation of L-VOCCs and consequent activation of the MLCK and 

Ca
2+

-sensitization pathway via activation of the PKC/ROCK pathway (Fig. 7). A better 

understanding of the S1P system in the retinal circulation could lead to new potential 

therapies for retinal vascular diseases. 
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Legends 

Fig. 1. Images of an isolated porcine retinal arteriole. (A) The vessel was transferred to the 

stage of an inverted microscope and allowed to develop resting basal tone (45-µm internal 

diameter) at 55 cm H2O intraluminal pressure. (B) The diameter (31-µm internal diameter) 

of the vessel constricted with S1P (10 µM). (C) A representative tracing shows S1P (10 

µM)-induced constriction of retinal arterioles initiated within 1 minute. The diameter 

returned to the baseline level after washout of the drug. (D) The response of isolated retinal 

arterioles to S1P. The dose-dependent vasoconstrictive effect of S1P (first trial, resting 

diameter, 45.8 ± 4.8 μm; maximal diameter, 85.4 ± 5.1 μm; n=8). The trial was repeated 

after a 30-minute washout period (second trial, resting diameter, 45.1 ± 4.7 μm; maximal 

diameter, 85.4 ± 5.1 μm; n=8). ＊P < 0.05, ＊＊P < 0.01, and ＊＊＊P < 0.001 versus 

baseline. 

 

Fig. 2. (A) The role of S1PR in the vasoconstrictive response to S1P. The dose-dependent 

vasoconstrictive response to S1P is examined before and after incubation with S1PR1 

antagonist compound 5 (1 μM), S1PR2 antagonist JTE-013 (1 μM), and S1PR3 antagonist 

suramin (100 μM). (B) The effect of the removal of the endothelium by perfusion with 

0.4% CHAPS and the effect of incubation with the S1PR2 antagonist JTE-013 after 

denudation. ＊P < 0.05, ＊＊P < 0.01, and ＊＊＊P < 0.001 versus control.     

 

Fig. 3. (A) The effect of incubation with the ROCK inhibitor H-1152 (3 µM) after 

adjustment of the vessel tone. (B) The effect of incubation with the PKC inhibitor Gö-6983 

(3 µM). R, resting diameter of vessels. ＊P < 0.05 versus percent resting diameter at R. †P 
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< 0.05, ††P < 0.01, and †††P < 0.001 versus control. 

 

Fig. 4. (A) The effect of incubation with the PLC inhibitor U73122 (1 µM). (B) The effect 

of incubation with the L-VOCC blocker nifedipine (1 μM) after adjustment of the vessel 

tone. R, resting diameter of vessels. ＊P < 0.05 versus percent resting diameter at R. †P < 

0.05, ††P < 0.01, and †††P < 0.001 versus control. ‡P < 0.05, ‡‡P < 0.01, and ‡‡‡P 

< 0.001 versus nifedipine.  

 

Fig. 5. (A) The effect of incubation with the MLCK inhibitor ML-9 (10 µM). Residual 

constriction in the presence of ML-9 also was examined after co-incubation with Gö-6983 

(3 µM) after adjustment of the vessel tone. (B) The effect of co-incubation with ML-9 and 

H-1152 after adjustment of the vessel tone. R, resting diameter of vessels. ＊P < 0.05 

versus percent resting diameter at R. †P < 0.05, ††P < 0.01, and †††P < 0.001 versus 

control. ‡P < 0.05, ‡‡P < 0.01, and ‡‡‡P < 0.001 versus ML-9.  

 

Fig. 6. Immunohistochemical analysis of S1PR2 in the retinal arterioles. (A) Staining with 

anti-EDG5 (green) and anti-eNOS (red) antibodies shows expression of S1PR2 and eNOS. 

The merged images show overlap staining (yellow) of S1PR2 with eNOS. (B) Staining with 

anti-EDG5 (green) and anti-α-smooth muscle actin (SMA, red) antibodies shows 

expression of S1PR2 and SMA. The merged images show overlap staining (yellow) of 

S1PR2 with SMA. The images are representative of three separate experiments. 

 

Fig. 7. Schematic illustration of proposed signaling mechanisms involved in retinal 
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arteriolar constriction in response to S1P. Inhibition of these signaling pathways by their 

respective inhibitors is indicated by the vertical lines in reference to the direction of the 

straight line. 

 

Supplementary Fig. S1. The effect of S1PR2 antagonist JTE-013 on the vasoconstriction 

response of porcine retinal arterioles to KCl (100 mM), U46619 (1 µM), and ET-1 (10 nM). 

 

Supplementary Fig. S2. The effect of some protein kinases on the S1P (10 µM) -induced 

vasoconstriction of retinal arterioles.  

 

Supplementary Fig. S3. The effect of Gö-6983 (3 µM) on the constrictive response to the 

PKC activator phorbol-12,13-dibutyrate (PDBu) (0.1 µM). ＊P < 0.05 versus control 

(PDBu). 

 

Supplementary Fig. S4. The effect of Gö-6983 (3 µM) on the constrictive response to the 

L-VOCCs activator Bay K 8644 (1 µM).   
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Figure 1. 
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Figure 6  

A. S1PR2+eNOS 

    

B. S1PR2+SMA 
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Table. Resting Diameters and Diameter Responses of Retinal Arterioles to SNP 

 

Data are expressed as the mean percentage of maximal dilation ± the standard error of the 

mean. n, number of vessels. 

Based on the unpaired t-test, compared with controls, H-1152, nifedipine, and ML-9 

decreased the resting tone.＊P < 0.05 versus control. Based on two-way analysis of variance, 

compared with controls, the responses to SNP are unaffected by any perturbations. 
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