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Abstract 

 Transferrin receptor (TfR2), a homologue of classical transferrin receptor 1 (TfR1), is 

found in two isoforms, α and β.  Like TfR1, TfR2α is a type II membrane protein, but the β 

form lacks transmembrane portions and therefore is likely to be an intracellular protein.  To 

investigate the functional properties of TfR2α we expressed the protein with FLAG-tagging in 

transferrin receptor-deficient Chinese hamster ovary cells.  The association constant for binding 

of diferric transferrin (Tf) to TfR2α is 5.6 x 106 M-1, which is about 50 times lower than that of 

TfR1, with correspondingly reduced rates of iron uptake.  Evidence for Tf internalization and 

recycling via TfR2α without degradation, as in the TfR1 pathway, was also found.  The 

interaction of TfR2α with Tf was further investigated using atomic force microscopy (AFM), a 

powerful tool for investigation of the interaction between ligand and receptor at the single 

molecule level on the living cell surface.  Dynamic force microscopy reveals a difference in the 

interactions of Tf with TfR2α and TfR1, with Tf-TfR1 unbinding characterized by 2 energy 

barriers, while only one is present for Tf-TfR2.  We speculate that this difference may reflect Tf 

binding to TfR2α by a single lobe, whereas two lobes of Tf participate in binding to TfR1.  The 

difference in the binding properties of Tf to TfR1 and TfR2α may help account for the different 

physiological roles of the two receptors. 

 

Key words: iron metabolism; transferrin; transferrin receptor 2; atomic force microscopy; 

functional assay 

 

Abbreviations: Tf, diferric transferrin; TfR1, transferrin receptor 1; HFE, the protein mutated in 

hereditary hemochromatosis; DMT1, divalent metal transporter 1; TfR2, transferrin receptor 2; 
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AFM, atomic force microscopy; CHO cells, Chinese Hamster Ovary cells; GFP, green 

fluorescent protein; FBS, fetal bovine serum; RT-PCR, reverse transcriptase – polymerase chain 

reaction; PBS, phosphate buffered saline; DFO, deferoxamine mesylate; BSA, bovine serum 

albumin; TCA, trichloroacetic acid; PTA, phosphotungstic acid; EDTA, 

ethylenediaminetetraacetic acid; PMSF, phenylmethylsulfonyl fluoride; SDS, sodium dodecyl 

sulfate; Ka, association constant; FACS, fluorescence-activated cell sorting; IP, 

immunoprecipitation. 
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Introduction 

Iron is essential for all living organisms and required for numerous metabolic processes.  In 

vertebrates, and at least some invertebrates with circulatory systems, almost all circulating iron is 

carried by transferrin (Tf) to provide iron for cellular needs.  The initial event in the cellular 

uptake of iron is binding of Tf to transferrin receptor 1 (TfR1)1 on the plasma membrane of cells, 

followed by endocytosis of the Tf-TfR1 complex.  HFE,2 the protein which when mutated is 

responsible for hereditary hemochromatosis, has been shown to combine with TfR1 and reduce 

its affinity for Tf,3-6 but the physiological functions of HFE are still not fully understood.  In the 

acidified Tf-bearing endosome, iron is released from Tf and carried into the cytosol by the 

divalent metal transporter 1 (DMT1).7-9  After release of its iron Tf, still bound to receptor in 

the acidified endosome, is recycled to the cell membrane, and released from TfR1 at the cell 

surface where iron-free Tf is not bound by receptor at pH 7.4.  Most cells other than 

hepatocytes have been thought to depend chiefly or exclusively on the TfR1 cycle for securing 

iron from Tf.10-12 

A second transferrin receptor, transferrin receptor 2 (TfR2), was cloned and identified as a 

new member of the transferrin receptor class.13  TfR2 has two isoforms; TfR2α and TfR2β.  

TfR2α is thought to be a type II membrane protein like classical TfR1.14  TfR2β is probably an 

intracellular protein because its amino acid sequence lacks transmembrane portions.  Although 

its affinity for Tf is less than that of TfR1, TfR2α binds Tf and therefore may participate in 

cellular iron uptake, while the physiological function of TfR2β is unknown.  Mutations of the 

TfR2 gene reduce hepcidin expression, resulting in iron overload and indicating that TfR2 may 

function primarily as a regulator of hepcidin production.  However, the precise mechanisms of 

TfR2α involvement in cellular iron metabolism have not been elucidated, largely due to the lack 
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of information about the properties of the TfR2α protein.  We therefore aimed to characterize 

the interactions of TfR2α with Tf by functional assays and atomic force microscopy (AFM), a 

powerful tool for investigating the interaction between a ligand and its receptor at the single 

molecule level on a living cell surface.15  
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Results 

Total protein contents 

TfR1-deficient CHO TRVb cells were transfected with TfR2α expression vector or mock 

vector, with no detectable change in cell morphology observed in the culture wells by light 

microscopy.  Total protein contents were 113  20 (n = 10) pg/cell for wild-type TRVb cells, 

127  19 (n = 10) pg/cell for TRVb-TfR2α cells, and 120  15 (n = 10) pg/cell for TRVb-mock 

cells.  Thus, transfection of TRVb cells with the TfR2α expression vector did not cause any 

remarkable change in cellular protein concentration. 

Expression of TfR2α and its binding to Tf    

Transfection of TRVb cells with the TfR2α expression vector resulted in much higher Tf 

binding at 4C compared to wild-type TRVb cells or the mock-transfected clone (Fig. 1).  Tf 

binding to TRVb cells and TRVb-mock cells showed non-saturable, almost linear, behavior 

characteristic of non-specific binding.  In contrast, expressed cell-surface Tf binding sites in 

TRVb-TfR2α cells saturated at 2.8 x 104 molecules of Tf/cell, with Ka calculated to be 5.6 x 106 

M-1.  Since TRVb-TfR2α cells and TRVb-mock cells were maintained at 30 µg/ml puromycin 

but TRVb cells were maintained without puromycin, TRVb-mock cells were used as controls for 

further studies. 

Cell-associated Tf at 37 C 

Total cell-associated Tf at 37 C increased as a function of Tf concentration in TRVb-TfR2α 

cells (supplementary data 1).  Cell-associated Tf of TRVb-mock cells, however, also increased 

as a function of Tf concentration, even though cell-associated Tf was less than that seen in 

TRVb-TfR2αcells.  To determine whether transfection was responsible for this increase of 

cell-associated Tf in mock cells, cell-associated Tf was measured in wild-type TRVb cells at 37 
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C.  There was no remarkable difference between wild-type TRVb and TRVb-mock cells, 

indicating that transfection itself did not cause the Tf association in mock cells (data not shown).  

Since TRVb cells lack detectable TfR1, this association with Tf must be receptor-independent.  

The difference between cell associated Tf in TRVb-TfR2α and TRVb-mock cells as a function of 

Tf concentration, presumably due to Tf bound to TfR2α and Tf internalized via TfR2α in the 

former but not the latter, approached a constant value.  

Efficiency of the acid-wash method 

Our acid-wash method removed approximately 90% of cell surface membrane bound Tf 

in TRVb-TfR2α cells compared to normal PBS washing (data not shown).  In addition to 

acid-washing, washing with F-12 medium was necessary to remove bound Tf, suggesting that, 

like TfR1, TfR2α binds apotransferrin at acidic pH but not at neutral pH.14  Addition of cold 

diferric Tf into F-12 medium at pH 7.4 did not enhance the effectiveness of washing, verifying 

that washing at pH 7.4 is sufficient for removing cell-surface bound apotransferrin. 

Evidence for Tf internalization mediated by TfR2α 

After 1 hour incubation at 37 C cell-associated Tf in TRVb-TfR2α cells and 

TRVb-mock cells represents both internalized Tf and nonspecific cell-surface bound Tf resistant 

to acid-washing.  Tf in TRVb-TfR2α cells was 26,500 molecules/cell, much higher than the 

6,600 molecules/cell seen in TRVb-mock cells (Table 1).  Although the effectiveness of the 

acid-wash method is only about 90%, the difference in cell-associated Tf between transfected 

and mock cells is too great to be attributed to residual cell-surface bound Tf and therefore 

represents Tf internalized via TfR2α.  We calculate that about 17,500 molecules of Tf per cell 

are internalized by TfR2α (Table 1).     

Iron uptake   
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Iron uptake by TRVb-TfR2α cells after 1 hour incubation at 37 C was not clearly different 

from that of TRVb-mock cells, even though there were small differences at high concentrations 

of Tf (Fig. 2A).  To investigate whether induced TfR2α protein actually can donate iron to the 

cells or not, the time course of 59Fe uptake was determined.  Only after 1 hour did a difference 

between TRVb-TfR2α cells and TRVb-mock cells become clear (Fig. 2B). Thus, 

TfR2α-associated Tf could donate iron to cells, although its rate of donation is much less than 

that provided by Tf associated with TfR1. The data also indicate that CHO cells exhibit 

receptor-independent iron uptake from diferric Tf, as described earlier.16  

Efflux of Tf 

To investigate the fate of Tf taken up through TfR2α, TRVb-TfR2α cells were incubated 

with 125I-labeled Tf and acid-washed before the time course of efflux was determined (Fig. 3).  

At time 0, Tf internalization by TRVb-TfR2α cells was higher than by TRVb-mock cells, in 

keeping with Tf internalization by TfR2α as discussed above.  Internalized Tf mediated by 

TfR2α was exocytosed from the TRVb-TfR2α cells; approximately 80% of Tf taken up via 

TfR2α was released by 30 min.  The indication is that an effective efflux route exists for Tf 

taken up by TfR2α, suggesting that TfR2α, like TfR1, is recycled by the cell. 

In further investigation of the TfR2α pathway, the degradation of Tf internalized by 

TfR2α was determined. After 60 min, approximately 90% of Tf exocytosed from TRVb-TfR2α 

cells was TCA/PTA precipitable, indicating that Tf bound to TfR2α has recycled without 

substantial degradation in cells. 

Pulse-chase study 

To determine the fraction of Tf bound to cell membrane that is internalized, and the 

recycling time, a pulse-chase experiment was performed (supplementary data 2).  Almost all Tf 
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initially bound to TfR2α at 4 °C was released into the culture medium after 10 min incubation at 

37 C, and there was no significant internalization of cell surface bound Tf in the single-cycle of 

this pulse-chase study.   

Absence of TfR1–TfR2 heterodimers 

The effectiveness of anti-FLAG M2 antibody and anti-TfR1 antibody for 

immunoprecipitation was confirmed before undertaking these experiments (data not shown).  

HuH-7 cells, which express detectable TfR1 by Western blotting, were transiently transfected 

with the TfR2α expression vector and cell lysates were taken for immunoprecipitation and 

Western blotting (supplementary data 3).  Western blotting by anti-TfR1 antibody for the 

samples without immunoprecipitation showed that HuH-7 cells and HuH-7 cells transfected with 

TfR2α express almost identical amounts of TfR1.  Furthermore, Western blotting by anti-TfR2 

antibody for the samples not subjected to imunoprecipitation showed that HuH-7 cells 

transfected with TfR2α express more TfR2α protein than non-transfected HuH-7 cells.  These 

data indicated that the transiently transfected cells overexpressed TfR2α protein and that the 

antibodies were highly effective for Western blotting.  When immunoprecipitation was 

performed with anti-TfR1 antibody, a band was clearly detected in transfected and 

non-transfected cells, but no band was found with the anti-TfR2 antibody.  If a TfR1-TfR2 

heterodimer were present, anti-TfR1 Ab would precipitate that protein, and Western blotting with 

anti-TfR2 Ab would show the band.  When immunoprecipitation was performed with 

anti-FLAG M2 antibody, a 100 kDa band was detected only in transfected cells when the 

anti-TfR2 antibody was used as the primary antibody in Western blotting, indicating that 

transient transfection resulted in expression of immunoprecipitable TfR2α protein.  No band 

was detected when anti-TfR1 was used as the primary antibody.  Prolonged exposure of the 
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blotted membrane to the developing solution did not make a difference.  The possibility that the 

N-terminal FLAG tag in TfR2α interferes with dimer formation is unlikely, since recombinant 

TfR1 lacking the first 120 N-terminal intracellular residues spontaneously dimerizes.17  These 

results indicate that no detectable heterodimer of TfR1 and TfR2α was formed by the 

TfR2α-transfected HuH-7 cells.  Therefore our experiments detect TfR2, not the heterodimer of 

TfR1 and TfR2. 

Specificity of detection by AFM 

HLF cells (human hepatoma) were transiently cotransfected with TfR2α and green 

fluorescent protein (GFP) for identification and tested with a diferric Tf coated tip.  Retraction 

force curves were recorded with a Tf coated tip and showed specific unbinding events between 

diferric Tf on the tip and TfR2α at the cell surface (in TBS, pH 7.4) (Fig. 4A).  The probability 

of binding between the Tf coated tip and TfR2 at the cell surface reached 26% (n = 7 cells).  In 

contrast, when non-transfected cells were tested with a Tf coated tip, this probabilty was only 6% 

(n = 12 cells, p < 0.001, t-test).  This indicated that transient transfection of TfR2α expression 

vector was adequate for the investigation using AFM (Fig. 4B). 

Force histogram for specific interaction between diferric Tf and TfR2α 

We recorded 1500 force curves with a Tf coated tip on TfR2 transfected cells allowing 

us to collect a total of 573 specific unbinding events in an experiment was performed with a 

single tip using 2 cells.  Events were analyzed and plotted in a force histogram (Fig. 5).  A 

clear peak was visible on the histogram, showing that the mean unbinding force between Tf on 

the tip and TfR2 at the cell surface was 63±8 pN (at a mean loading rate of 2.8 nN/s).  The 

experiment was repeated several days later with a new tip with cells independently cultured and 

gave similar results. 
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Dynamic force spectroscopy 

Dynamic force spectroscopy, which consists of measuring the mean unbinding force at 

different loading rates, was performed with a diferric Tf coated tip on TfR2 transfected cells.  

As expected, the force was logarithmically dependent on the loading rate (Fig. 6).  However, 

this dependence was small as the force varied from 59±9 pN at a rate of 1.7 nN/s to 62±10 pN 

at 20 nN/s. In striking contrast the unbinding force between TfR1 and Tf was reported at 

39±5 pN at a rate of 1 nN/s and increased up to 94±12 pN at 27 nN/s,15 indicating that the 

binding of TfR2α and diferric Tf differs from those of TfR1 and diferric Tf. Furthermore, the 

force sectrum of TfR2 transfected cells displayed only one regime (slope) while 2 regimes 

were clearly visible for TfR1 expressing cells (Fig. 6), which implies different interactions of 

Tf with TfR1 and TfR2. 
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Discussion 

 In their original publications, Kawabata et al. reported that TfR2α can bind Tf and 

donate iron to CHO cells,13 therefore supporting cell growth.14  Fleming et al. found that 

TfR2expression is not regulated by intracellular iron status and so might be involved in the 

pathogenesis of hemochromatosis.18  Although TfR2 is thus shown to function in iron 

metabolism, its precise physiological role is still unknown. 

To avoid confusion by TfR1, our first studies used HuH-7 cells with anti-sense 

suppressed TfR1 expression.19,20  The amount of residual TfR1, however, was still high so that 

it was not possible to differentiate between Tf binding to TfR1 or to TfR2α because of the low 

affinity of TfR2α for Tf.14  We therefore turned to TfR1-deficient CHO cells for expressing 

TfR2α.13,21 

In the present study, the affinity of TfR2α to Tf was measured in living cells for the first 

time using 125I-Tf to display the binding isotherm at 4 C.  Ka for binding of Tf by TfR2α was 

calculated to be 5.6 x 106 M-1, about 35-fold less than that of TfR1 (2-3 x 108 M-1 in HuH-7 

cells).  The lower affinity of TfR2α in transfected CHO cells accords with a previous report 

based on a qualitative study by flow cytometry.14  Quantification by surface plasmon resonance 

using a recombinant soluble extracellular portion of the receptor gave a binding constant of 37 x 

106 M-1, consistent with the present result considering the difference in methodology.22  The 

deduced amino acid sequence of the extracellular domain of TfR2α protein is 45% identical and 

66% similar to that of TfR1.  TfR2α also possesses the RGD triad, amino acids 678-680,13 

thought to be critical for binding Tf to TfR1.23  The lower affinity of TfR2α for Tf is, therefore, 

not now explicable.   

Although the affinity for Tf of TfR2α is much less than that of TfR1, the concentration of 
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iron-bearing Tf in the circulation, about 3 x 10-5 M, is sufficient to saturate TfR2α.  TfR2α 

expression has been found in cells with active roles in iron metabolism.  Liver, the principal 

organ of iron storage, expresses a high level of TfR2α mRNA, as do human hepatoma-derived 

HepG2 cells13 and HuH-7 cells (unpublished observation).  K562 cells, of human myelogenous 

erythroleukemic origin, also express TfR2α mRNA.13  Studies of iron uptake from Tf prior to 

the discovery of TfR2 did not discriminate between the roles of the two receptors.  In future 

studies, therefore, both receptors require consideration.  

Binding of Tf to TRVb-TfR2α and TRVb–mock cells at 4C was only 25-50% inhibited 

by a 100-fold excess unlabeled Tf, possibly because of large, essentially non-saturable, binding.  

We therefore resorted to use of a binding isotherm with terms for specific (saturable) and 

non-specific (non-saturable) binding to estimate binding constants for each type of binding.24  

Curve fitted parameters for specific binding attributable to transfected TfR2α were: Ka 5.6 x 106 

M-1, and total number of sites, 2.8 x 104/cell.  These contrast with binding constants near 108 

M-1 and site numbers in the range of 2-5x 105 per cell for Tf binding in K562 cells, when TfR1 

predominates and curve-fitting to a single class of sites adequately accounts for binding.  An 

apparent binding constant of 6.5 x 109 M-1 is obtained for non-saturable binding of Tf to 

TRVb-TfR2α cells, substantially weaker than that derived for specific binding.  At Tf 

concentrations of 10-6 M, for example, saturable binding would account for about 24,000 

molecules of Tf/cell, while non-saturable binding would account for 6,500 molecules/cell.  

Nevertheless, both TfR2α-dependent and non-specific binding contribute to association of Tf 

with the cells. 

In the present study, CHO cells showed a receptor-independent association with Tf that 

should be considered when investigating the function of TfR2α expressed in CHO cells.  We 
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find a clear increase of cell-associated Tf after expression of TfR2α.  Since cell-associated Tf 

represents both cell surface-bound Tf and Tf internalized via TfR2α, proof of Tf internalization 

mediated by TfR2α was required.  Cell-associated Tf persisting after acid-washing confirmed 

the existence of Tf internalization via TfR2α.   

After internalization, efflux of Tf, without substantial degradation, is found.  Thus, Tf 

internalized by TfR2α, like Tf internalized by TfR1, recycles.  An important difference between 

the two receptors was observed in a pulse-chase study.  Less than 12% of Tf bound to the cell 

surface of TRVb-TfR2α cells is internalized, most of the Tf being dissociated and released to the 

medium at 37 C.  In contrast, approximately 30-50% of membrane bound Tf was internalized 

by human hepatoblastoma-derived HepG2 cells12 and human hepatoma-derived HLF cells.25  

The lower affinity of TfR2α for Tf may help account for the difference between previous studies 

and the present work, since HepG2 and HLF cells express TfR1 but TRVb-TfR2α cells do not.  

In our pulse-chase study no detectable internalization of membrane-bound Tf in a single cycle 

was found when the occupancy of TfR2α by transferrin was about 75%.  In the normal 

circulation, however, the concentration of iron-bearing Tf is close to 3 x 10-5 M so that cell 

surface receptors are always saturated with Tf and replenished as Tf is internalized.  TfR2α 

might therefore normally function in iron uptake from Tf, but this has yet to be experimentally 

confirmed.   

Overexpressed TfR2α protein was also shown to mediate iron uptake although its rate of 

iron donation was slow.  We estimate, from the difference between iron uptake by TRVb-TfR2α 

cells and TRVb-mock cells in Fig. 2B, that the rate of iron uptake was approximately 0.2 

atoms/receptor/min when cells were incubated with 8.1 x 10-7 M Tf.  For comparison, the rate 

of iron uptake via TfR1 is about 0.5-1 atoms/receptor/min in K562 cells. Thus, TfR2α may 
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function in iron-uptake from Tf, albeit with less efficiency than TfR1. 

Because of the sequence similarities between TfR1 and TfR2α, the possibility that the 

protein monomers combine to form heterodimers was investigated.  However, no detectable 

expression of heterodimers was found in the present studies.  The possibility must be 

considered that our transfection procedure in HuH-7 cells yielded two different cell populations, 

one expressing TfR2α and the other failing to do so, so that expression of heterodimer was too 

low for detection.  We cannot exclude the possibility of heterodimer formation that might be 

detected by more sensitive methods or in other cells.  

AFM was used to characterize the interactions between diferric Tf and TfR2α protein at 

the single molecule level.  We found that the unbinding force needed to detach diferric Tf from 

TfR2α (63±8 pN) was different from TfR1, previously reported as 56±7 pN.15  However, 

dynamic force measurements revealed striking differences between diferric-Tf-TfR1 and diferric 

Tf-TfR2α interactions, which reflected clearly distinct energy landscapes.15  While Tf-TfR1 

unbinding is characterized by 2 energy barriers, only one is present for Tf-TfR2.  This obvious 

difference might arise from different binding points for diferric Tf-TfR1 and diferric Tf-TfR2α 

interactions.  In addition, this possibility provides a structural interpretation for the energy 

barriers postulated here.  We speculate that the two barriers of the Tf-TfR1 interaction stem 

from binding of both lobes of diferric Tf (C-lobe and N-lobe), whereas the single barrier of 

Tf-TfR2α interaction originates from binding of a single lobe, but we recognize that this 

speculation requires further investigation. 

In conclusion, the present study shows that TfR2α protein functions in binding Tf and 

taking up iron and that there must be a difference between TfR1 and TfR2 in their interactions 

with diferric Tf as revealed by AFM.  TfR2α mRNA lacks an IRE so that expression is not 
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regulated by intracellular iron status18 but possibly by the cell cycle.14  Furthermore, TfR2 

cannot compensate for TfR1 in TfR1-knockout mice, which lack a functional Tf cycle, and do 

not survive gestation.26  A nonsense mutation of the human TfR2 gene causes a 

hemochromatosis-like disorder.27,28  The physiological functions of TfR2 are therefore still 

unclear, although it likely contributes to the regulation of cellular iron status. 
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Materials and Methods 

Cells and cell culture 

TfR1-deficient CHO TRVb cells,21 were grown in F-12 Nutrients Mixture (Invitrogen; 

Grand Island, NY) supplemented with 5 % heat-inactivated FBS (Gemini Bio-Products; 

Woodland, CA), 100 U/ml penicillin and 100 µg/ml streptomycin.  All cultures were 

maintained at 37 °C in 5% CO2. 

TfR2α expression vector 

Total RNA was extracted from K562 cells using the RNAgent Total RNA Isolation 

System (Promega; Madison, WI) following manufacturer’s instructions.  Complementary DNA 

was reverse transcribed from 1 µg of RNA using an oligo-dT primer (Promega) and MMLV 

reverse transcriptase (Stratagene; La Jolla, CA), and human TfR2α cDNA was amplified by 

hot-start PCR.  A FLAG sequence was added to the 5'-terminus of the cDNA to enable 

detection of expressed protein by anti-FLAG antibodies.  Oligonucleotides used as PCR 

primers were:  

5’-ACCTTAAGGCCACCATGGATTACAAGGATGACGACGATAAGATGGAGCGGCTTTG–

3’ and 5’-GGTTCGAAGCAATGAGAGGTGGAC-3’.  Conditions for amplification were: 40 

cycles of 99 °C for 1 min, 65 °C for 2 min, and 72 °C for 5 min.  The amplified DNA fragment 

was digested with AflII and BstBI, and then inserted into the bicistronic mammalian expression 

vector pIRESpuro2 (Clontech; Palo Alto, CA).  Orientation and sequence of the inserted TfR2α 

cDNA fragment were confirmed by sequencing.  

Transfection 

TRVb cells were grown in 35 mm six-well plates until they reached 70-80% confluence, 

then transfected with the TfR2α expression vector using Lipofectamine Plus (Invitrogen; 
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Carlsbad, CA).  Selection was performed with 10 µg/ml puromycin (Clontech) for 2 weeks and 

then the concentration of the antibiotic was raised to 30 µg/ml in order to isolate a clone with 

high-level expression of TfR2α.  After another two weeks, one viable colony (TRVb-TfR2α) 

was obtained, and that was subcultured using a cloning cylinder.  As a mock-transfected control, 

TRVb cells were transfected with the pIRESpuro2 vector without a cDNA insert, and one clone 

was isolated after 4 weeks’ selection (TRVb-mock).  These transfectants were maintained at 30 

µg/ml puromycin after isolation.  Expression of TfR2α mRNA was confirmed by RT-PCR, and 

the expression of TfR2α protein was confirmed by immunoprecipitation-Western blotting using 

anti-FLAG antibodies (data not shown). 

Total protein content 

Total protein contents of TRVb, TRVb-TfR2α, and TRVb-mock cells were determined with 

the Bio-Rad Protein Assay Kit (Bio-Rad; Hercules, CA) using BSA as a standard.  Cells were 

counted with a hemocytometer. 

Iodination of Tf  

Diferric human Tf (Boehringer-Mannheim) was labeled with 125I (Amersham Pharmacia 

Biotech; Piscataway, NJ) by McFarlane’s iodine monochloride method.29  To remove unbound 

125I, labeled Tf was passed through a 10-DG desalting column (Bio-Rad) two times.  Specific 

activities were in the range of 100 to 200 cpm/ng Tf, and more than 95% of 125I was 

protein-bound as determined by precipitation with 20% TCA/4% PTA. 

59Fe labeling of Tf 

Iron was removed from Tf and labeling with 59Fe was carried out by previously described 

methods.30  Specific activities were in the range of 2000-3500 cpm/ng Fe.  In some 

experiments apotransferrin was labeled with 125I as described above and then loaded with 59Fe. 
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Binding assay 

Tf binding assays were performed as previously reported.31  Cell numbers were 

calculated from protein concentrations determined with the Bio-Rad Protein assay kit.  Each 

experiment was performed in triplicate.  The total number of specific binding sites per cell and 

Ka for binding of Tf to these sites were estimated from non-linear least squares curve fitting to a 

saturable binding isotherm:32  
]Tf[K1

]Tf[Ksitestotal
sitesoccupied

a

a




  , 

from which it is also possible to calculate the fraction of sites occupied by Tf at any 

concentration of free Tf. 

Tf and iron uptake 

Cells were plated at a density of 1 x 106 cells per well in 35 mm 6-well plates 24 hours 

before experiments.  Cells were preincubated with F-12 three times for 10 min at 37 °C, chilled 

on ice for 30 min, and then incubated at 37 °C with F-12 containing 2% BSA and labeled Tf at 

indicated concentrations and times.  Cells were then washed with ice-cold PBS five times and 

solubilized by 0.1 % Triton X-100 for counting. 

Acid-wash of cells 

To remove cell-surface receptor-bound Tf, cells were washed with ice-cold PBS five times, 

and then incubated with ice-cold acid wash buffer (0.025 M citric acid, 0.025 M sodium citrate, 

200 M DFO, 0.15 M sucrose, pH 4.0) for 3 min followed by two 2 min incubations with 

ice-cold F-12 medium to remove cell surface-bound apotransferrin.  Finally, cells were washed 

once more with ice-cold PBS.  This method removed approximately 90 % of surface-bound Tf 

in TRVb-TfR2α cells.  

Efflux of Tf from the cells 

Cells, plated at a density of 1 x 106 cells per well in 35 mm 6-well plates 24 hours before 
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experiments, were preincubated with F-12 three times for 10 min at 37 °C, chilled on ice for 30 

min, and then incubated with F-12 containing 2% BSA and 3.5 x 10-7M 125I-labeled Tf for 60 min 

at 37 °C.  After acid-washing, fresh F-12 medium was added and cells were again incubated at 

37 C.  At indicated times, F-12 media were collected, cells were washed with ice-cold PBS, 

and solubilized by 0.1 % Triton X-100.  Media and cell lysates were then taken for -counting.  

After counting, media were incubated with 10 % TCA / 2% PTA for 30 min on ice, and then 

centrifuged at 14,000 rpm in an Eppendorf centrifuge for 20 min.  Tf degradations were 

calculated from radioactivities of supernatants and precipitates.  

Pulse-chase study 

TRVb-TfR2α cells were incubated with 5.1 x 10-7M 125I-Tf as previously described for 1 

hour at 4 C.  Cells were then washed with ice-cold PBS five times.  Fresh F-12 medium was 

added, and cells were incubated at 37 C.  At indicated times cells were chilled on ice and 

media immediately collected.  Cells were again washed with ice-cold PBS and media collected.    

Cells were then acid washed to quantify surface-bound Tf, and were solubilized for measurement 

of intracellular Tf.      

Immunoprecipitation-Western blotting 

Human hepatoma-derived HuH-7 cells were transiently transfected with the TfR2α 

expression vector as described above.  At 48 hours after transfection, 5 x 106 cells were washed 

with PBS five times and collected with a cell scraper.  Harvested cells were dissolved in 40 l 

of cell extraction buffer of Mammalian Cell Extraction Kit (BioVision Incorporated; Mountain 

View, CA) following manufacturer’s instructions for Western blotting without 

immunoprecipitation, or in 1.5 ml of lysis buffer (10 mM Tris-HCl, 150 mM NaCl, 1% Nonidet 

P-40, 1 mM EDTA, 1 mM PMSF containing 1:2,000 Protease Inhibitor Cocktail 
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(Boehringer-Mannheim; Germany) pH 7.4) for immunoprecipitation-Western blotting.  

Freezing and thawing were performed 3 times, following which samples were centrifuged at 

2,700 x g.  Protein G Sepharose (Amersham Biosciences; Uppsla, Sweden) was added and 

preparations incubated at 4 C for 8 hours, then centrifuged at 1,500 x g for 5 min.  

Supernatants were then collected for incubation with anti-FLAG M2 antibody (Sigma), which 

recognizes FLAG at any location in the target protein, or anti-TfR1 antibody (Zymed 

Laboratory; South San Francisco, CA) for 8 hours at 4 C.  Protein G Sepharose was added and 

incubation continued for an additional 8 hours at 4 C.  Samples were centrifuged at 1,500 x g 

for 5 min and pellets washed with PBS five times.  Concentrated dye buffer was added and final 

concentrations were adjusted to 10mM Tris-HCl, 1mM EDTA, 2.5 % SDS, 5% 

-mercaptoethanol and 0.01% bromphenol blue (pH 8.0).  Samples were then immersed in 

boiling water for 5 min and centrifuged at 20,000 x g for 5 min to remove precipitated material.  

Electrophoresis using a 12 % gradient polyacrylamide gel and transfer to a nitrocellulose 

membrane was carried out.  The transfer membrane was incubated with anti-TfR2 antibody 

(9F8 1C11) (Santa Cruz Biotechnology; Inc.; CA) diluted 1:200 or anti-TfR1 antibodydiluted 

1:1000, and then with horse-radish peroxidase-conjugated goat anti-mouse IgG antibody (R&D 

Systems; Minneapolis, MN) diluted 1:2,000.  SuperSignal West Pico Chemiluminescent 

Substrate (Thermo Scientific; Rockford, IL) was used as development substrate.  

Atomic Force Microscopy (AFM) 

The details of the methods for investigation using AFM were previously reported.15  In 

brief, the probe of the AFM is a sharp tip placed at the end of a soft cantilever.  A piezoelectric 

scanner allows precisely positioning the tip relative to the sample.  A laser beam reflected on 

the cantilever backside and detected by photodiodes is used to measure the cantilever deflection.  
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This signal is either used as a feedback to control the scanner (imaging mode) or measured and 

converted into a force (force spectroscopy mode).  Since the cantilever is mounted under the 

scanner, the optical path is free and the AFM can be coupled to an optical microscope.  Diferric 

Tf was linked to the AFM tip by a three step functionalizing protocol.  First, SiN tips are 

aminosilanized by exposure to APTES vapors.  Second, a heterobifunctional PEG linker is 

anchored to amino-group bearing tips through its NHS end.  Third, diferric Tf is attached to the 

PEG linker free end via a maleimide-cysteine bond. 

Measuring the interaction force between Tf and TfR2α by AFM 

HLF cells (human hepatoma) were cotransfected with TfR2α and GFP for identification 

as previously described.33  A diferric Tf coated tip was brought in contact with cell surface, 

allowing the proteins to bind.  The tip is then retracted, resulting first in protein stretching then 

unbinding.  The cantilever deflections during one cycle are recorded in a force curve.  A 

binding- unbinding event between diferric Tf and TfR2α is represented by a saw-tooth pattern on 

the curve.  It allows calculating the force necessary to unbind the two proteins, using the 

cantilever spring constant (Hooke’s law).  The mean unbinding force is obtained by fitting a 

Gaussian curve to the force histogram. The error on the mean unbinding force is calculated by 

adding the standard deviation of the sample and the error resulting from the spring constant 

calibration (10%).  Moreover, the unbinding force is related to the pulling rate by: 

 

 

(F*: the most probable unbinding force, k0: dissociation rate constant, rf: loading rate applied, x: 

width of the energy barrier along the direction of the applied force, kB: Boltzmann’s constant, T: 

temperature) 
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Figure legends 

 

Figure 1.  Tf binding at 4 C to TRVb (●), TRVb-TfR2α (▲) and TRVb-mock cells (■). Cells 

were incubated with 125I-Tf at 4 C for 1 hour, and washed to remove unbound Tf, then 

solubilized for counting.  TRVb-TfR2α cells showed a saturable binding curve, with an 

association constant of 5.6 x 106 M-1 and 2.8 x 104 binding sites per cell. The experiment was 

performed in triplicate. 

 

Figure 2.  Iron uptake at 37 C as a function of Tf concentration was determined (A). 

TRVb-TfR2α cells (▲) and TRVb-mock cells (■) were incubated with 59Fe-Tf at 37 C for 1 

hour, and washed to remove unbound Tf, then solubilized for counting. This experiment was 

performed in triplicate. Iron uptake at 37 C with time was also investigated (B). TRVb-TfR2α 

cells (▲) and TRVb-mock cells (■) were incubated with 8.1 x 10-7 M 59Fe-Tf at 37 C for the 

indicated time, and washed to remove unbound Tf, then solubilized for counting. This 

experiment was also performed in triplicate. 

   

Figure 3.  Time course of Tf efflux. TRVb-TfR2α cells and TRVb-mock cells were incubated 

with 3.5 x 10-7 M 125I-Tf at 37 C for 1 hour, washed to remove unbound Tf, then acid-washed to 

remove Tf bound to cell surface receptors.  Cells were then incubated at 37 C for the indicated 

times, medium collected and solubilized cells taken for counting.  Tf exocytosed into medium 

from TRVb-TfR2α cells (●) and TRVb-mock cells (▲), and Tf retained in TRVb-TfR2α cells (■) 

and TRVb-mock cells (▼), are shown.  Experiments were performed in triplicate. 
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Figure 4.  (A) Retraction force curves on living HLF cells, transfected with TfR2α. The curves 

show specific unbinding events between diferric Tf on the probe tip and TfR2α at the cell surface 

(in TBS, pH 7.4).  (B) Specificity of detection by AFM. HLF cells (human hepatoma) were 

transiently cotransfected with TfR2α and GFP and tested with a diferric Tf coated tip. The 

probability of binding was 26% (n = 7 cells). In contrast, on non-transfected cells, the probabilty 

was only 6% (n = 12 cells, *** t-test, p < 0.001). 

 

Figure 5.  Force histogram for specific interaction between diferric Tf and TfR2α on HLF cells. 

The histogram was obtained from analysis of 573 unbinding events collected over 1500 force 

curves. The mean unbinding force is 63±8 pN, for a mean loading rate of 2.8 nN/s. The gray line 

is a Gaussian fit. 

 

Figure 6.  Dynamic force spectroscopy of diferric Tf–TfR2α (black dots). The unbinding force 

is plotted as a function of the loading rate logarithm. For comparison, the force spectrum of 

diferric Tf–TfR1 is also shown. Only one regime is evident for TfR2 but two can be seen for 

TfR1, clearly revealing different interactions of the two proteins with Tf. 
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Supplementary data 

 

Supplementary data 1.  Cell-associated Tf at 37 C. TRVb-TfR2α cells (▲) and TRVb-mock 

cells (■) were incubated with 125I-Tf at 37 C for 1 hour, and washed to remove unbound Tf, then 

solubilized for counting. This experiment was performed in triplicate. The differences between 

TRVb-TfR2α and TRVb-mock cells are also shown (▼).  

 

Supplementary data 2.  Pulse-chase study of the TfR2α cycle. TRVb-TfR2α cells were 

incubated with 5.1 x 10-7 M 125I-Tf at 4 C for 1 hour, and washed to remove unbound Tf. Cells 

were then incubated at 37 C for indicated time. Medium (▲), cell-surface (●), intracellular (■) 

fractions were separately collected and counted for radioactivities.  Percentages of each fraction 

are shown. Experiments were performed in triplicate. 

 

Supplementary data 3.  Immunoprecipitation-Western blotting studies. HuH-7 wild-type cells 

and HuH-7 cells transiently transfected with TfR2α expression vector were lysed and 

immunoprecipitated, then applied to Western blotting. 

 

 

  

 





















Table 1: Tf Internalized by TRVb-TfR2α Cells via TfR2α 

 
 

Procedure       Molecules/cell 

 

 

[1] Total Tf associated with TRVb-TfR2α cells after incubation for 1h at 

37 ° C                                     

 

 

47,800 

 

[2] Cell-associated Tf after acid washing 

 

 

26,500 

 

[3] Tf removed by acid washing 

 

 

21,300 

 

[4] Tf initially bound to TfR2α at cell surface (10/9 x [3]) 

 

23,700 

 

 

[5] Tf initially bound to TfR2α at cell surface but resistant to acid 

washing 

 

 

 2,370 

 

[6] Tf internalized by all pathways ([2] – [5]) plus nonspecifically-bound 

resistant to acid washing  

 

 

24,100 

 

[7] Tf in mock cells (non-specifically bound and resistant to acid wash) 

 

 

 6,600 

 

[8] Tf internalized via TfR2α in TRVb–TfR2α cells ([6] – [7]) 

 

17,500 
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