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Although hepatocyte transplantation (HCTx) is expected to become a useful therapy for human liver dis-
eases, allogenic hepatocytes still tend to be rejected within a short period due to host immunosurveillance.
In the present study, we investigated the effect of prior bone marrow transplantation (BMTx) for the engraft-
ment of allogenic hepatocytes using the analbuminemic rat transplantation model. The hepatocytes of Lewis
(LEW) rats were not accepted in the liver of retrorsine (RS)/partial hepatectomy (PH)-treated analbuminemic
F344 (F344-alb) rats, which express the disparate major histocompatibility complex (MHC) against that of
LEW rats. Prior BMTx with the LEW bone marrow cells (BMCs) after sublethal irradiation achieved accep-
tance and repopulation of LEW hepatocytes in the liver of the RS/PH-treated F344-alb rats, associated with
elevation of serum albumin. The replacement of hepatic parenchyma with albumin positive (Alb*) donor
hepatocytes and elevation of serum albumin levels were dependent on the bone marrow reconstitution by
donor BMCs, which was more efficiently achieved by intrabone marrow (IBM)-BMTx than by intravenous
(IV)-BMTx. Our results demonstrate that efficient bone marrow reconstitution by IBM-BMTx enables the
replacement of the hepatic parenchyma with allogenic hepatocytes in RS/PH-treated analbuminemic rats

without immunosuppressants.

Key words: Analbuminemic F344 rats; Intrabone marrow-bone marrow transplamation;‘
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INTRODUCTION

Hepatocyte transplantation (HCTX) is an alternative
to orthotropic liver transplantation for the treatment of
human liver diseases (25,32,36). The liver is thought to
be the most desirable site for HCTx, because trans-
planted cells could physiologically function by obtaining
nutrients, growth factors, and hormones present in the
portal blood and interacting with other liver cells and
the extracellular matrix (17,27,33). HCTx could be espe-
cially effective if the transplanted cells repopulate and
replace the host hepatic tissues. This has been observed
following HCTx when host hepatocytes possess heredi-
tary defects, such as in urokinase plasminogen activator
transgenic mice (31), fumaryl acetoacetate hydrolase-
deficient mice (tyrosinemia type 1 model) (30), multiple
drug resistance gene 2 (MDR2) gene knockout deficient
mice (9), and Long-Evans Cinnamon rats (Wilson’s dis-

ease model) (42). Furthermore, transplanted cells can
preferentially proliferate over host hepatocytes by regen-
erating stimuli generated by partial hepatectomy (PH),
when host hepatocytes cannot proliferate due to chemi-
cal- or irradiation-induced DNA damage (22,40).

One of the main factors that limit the clinical applica-
tion of HCTx, however, is the large cellular loss follow-
ing HCTx (18). In the early phase following HCTx, the
majority of transplanted hepatocytes infused into the
portal circulation are trapped in the hepatic portal venule
and the sinusoids around the portal tract, and thereafter
are cleared by the cells of the innate immune system
including granulocytes, macrophages, and Kupffer cells
(18,29). Only a small number of cells thus become inte-
grated into the host hepatic plates by disrupting the si-
nusoidal endothelium and then survive without being at-
tacked by innate immune cells. In the case of allogenic
HCTx, however, transplanted cells stimulate the adap-
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tive immune system and then are rejected mainly by the
immune responses mediated by CD4* and CD8* T lym-
phocytes (8,18,37).

HCTx would therefore be much more attractive if the
cellular loss following HCTx could be avoided. Up to
now, a number of experiments have been performed to
attempt to prevent immunological rejection. These have
included the administration of immunosuppressants such
as cyclosporine and rapamycin (5), depletion of CD4* or
CD8* T lymphocytes using anti-T-lymphocyte mono-
clonal antibodies (7), interference with costimulation
pathways between antigen-presenting cells and cytotoxic
T lymphocytes by the administration of a CTLA4 Ig
and/or anti-CD40 antibody (38), and transduction of im-
munomodulatory genes such as the adenovirus E3 into
the donor cells in vitro prior to HCTx (24). However,
considering the future application of allogenic HCTx for
human liver diseases, prolonged immunosuppressive
treatment may therefore be a large long-term obstacle to
the successful performance of HCTx.

Hematopoietic reconstitution by bone marrow trans-
plantation (BMTx) has been shown to provide host tol-
erance in various models of transplantation (14). It has
been demonstrated that when host bone marrow is re-
constituted by donor BMTx after lethal irradiation, allo-
genic HCTx is feasible between the mouse strains ex-
pressing the disparate major histocmpatibility complex
(MHC) (26,41). In this setting, hepatocytes of the third-
party mouse strains were rejected, thus indicating that
donor-specific immunotolerance was important for the
successful engraftment of allogenic hepatocytes (26).
Furthermore, human HCTx to immunodeficient rodent
recipients has been achieved by prior human BMTx
(4,20). On the other hand, it has been reported that intra-
bone marrow-bone marrow transplantation (IBM-BMTx)
has been reported to result in more efficient bone mar-
row reconstitution by donor cells compared to the intra-
venous infusion of BMCs (IV-BMTX), even after low
doses of irradiation in rodents (11,16,21,28).

We have previously reported that the transplantation
model using analbuminemic F344 (F344-alb) rats as re-
cipients and F344 rats as donors is an excellent way to
monitor the efficiency of intrahepatic HCTx (27,43).
F344-alb rats have the genetic background of F344 rats
and are otherwise normal except for a seven base pair
deletion downstream of the exon H splice site within the
ninth intron of the albumin gene, which leads to an in-
ability of hepatocytes to produce albumin (12). In this
model, the efficiency of HCTx can be monitored by ele-
vation of serum albumin levels and immunohistochemi-
cal albumin staining of hepatic tissues, and hematopoi-
etic reconstitution by donor BMCs can be examined by
PCR for albumin genes using DNA isolated from the
recipient bone marrow.
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In this study, we investigated allogenic intrahepatic
HCTx using F344-alb rats as recipients and Lewis (LEW)
rats as donors, which express disparate MHC. We used
the retrorsine (RS)/partial hepatectomy (PH) treatment
for the expansion of the transplanted allogenic hepato-
cytes, because transplanted normal hepatocytes can ex-
pand by responding to the growth stimuli generated by
PH, while the host hepatocytes are unable to proliferate
due to RS toxicity. We herein demonstrate that efficient
bone marrow reconstitution by allogenic BMTx pro-
vides tolerance to allogenic HCTx and that IBM-BMTx
is superior to IV-BMTx for this purpose.

MATERIALS AND METHODS
Experimental Animals

F344 and LEW rats were purchased from Charles
River Japan (Yokohama, Japan), and specific pathogen-
free F344-alb rats were maintained in the Asahikawa
Medical University Animal Laboratory. All rats were
maintained on daily cycles of an alternating 12-h light/
dark cycle with food and water available ad libitum. The
procedures performed on the animals were approved by
the animal care and use committee of the Asahikawa
Medical University according to the guidelines for hu-
mane care of laboratory animals.

Animal Treatment and Cell Transplantation

Male F344-alb rats (6 to 8 months old) were assigned
to different groups as shown in Figure 1. Group 1 re-
ceived syngeneic F344 HCTx, while group 2 underwent
allogenic LEW HCTx. Group 2 was then further divided
into three groups: group 2a without the bone marrow
reconstitution, group 2b with bone marrow reconstitu-
tion by IV-BMTXx, and group 2c with bone marrow re-
constitution by IBM-BMTx. Groups 2b and 2c were ad-
ministered a single dose of irradiation by placing the rats
in a container equipped with two opposing 'Y'Cs y-ray
sources (Gamma Cell 40, Atomic Energy of Canada, Ot-
tawa, Canada). BMCs were isolated from the femurs and
tibia of 6- to 7-week-old male donor LEW rats, centri-
fuged with Histopaque 1077 (Sigma-Aldrich, St. Louis,
MO) at 1,800 rpm for 30 min, and washed in modified
Eagle medium solution (Sigma-Aldrich). A suspension
of 5 x 107 BMCs suspended in physiological phosphate-
buffered saline was injected into the penile vein for IV-
BMTx (group 2b). The same number of cells were sus-
pended in a collagen gel matrix (Nitta Gelatin, Osaka,
Japan) and infused into the bone marrow cavity of the
femur as described previously for IBM-BMTx (group
2¢) (34). The recipient F344-alb rats were administered
one dose of RS (Sigma-Aldrich, 30 pug/g body weight),
intraperitoneally after 2 weeks, and were subjected to
PH and immediately transplanted with 2 X 10® hepato-
cytes (cellular viability over 98%) via the portal vein
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Figure 1. Experimental groups. Group 1: syngeneic hepato-
cyte transplantation (HCTx) using F344 (Fischer rats) as a do-
nor and F344-alb (analbuminemic) as a recipient. The recipient
F344-alb received the retrorsine (RS) treatment at the second
week and partial hepatectomy (PH), followed by F344 HCTx
at the fourth week. Group 2: allogenic HCTx using LEW
(Lewis rats) as a donor and F344-alb as a recipient. Group 2a
received RS treatment and PH/HCTx without prior whole
body irradiation (RT)/bone marrow transplantation (BMTx),
while groups 2b and 2c¢ received RS treatment and PH/HCTx
with the prior 8.0 Gy RT plus IV-BMTx and IBM-BMTX, re-
spectively.

after 4 weeks. Hepatocytes were isolated from 8-week-
old male donor F344 and LEW rats using the two-step
collagenase perfusion technique (3) and were suspended
in Hanks’ balanced salt solution (Sigma-Aldrich). At the
eighth week all the recipient rats that survived were sac-
rificed under ether anesthesia.

Histology and Immunohistochemistry

The livers were perfusion fixed with periodate-lysine-
paraformaldehyde (PLP) solution via the portal vein and
processed for histological and immunohistochemical
analysis (27). Three slices were cut out from each he-
patic lobe, fixed in a PLP solution at 4°C overnight,
dehydrated through a graded ethanol series, and embed-
ded in paraffin. The tissue specimens were cut into 3-um-
thick sections and stained with hematoxylin and eosin
(H&E). For the immunohistochemistry examinations,
the slides were deparaffinized, incubated with 3% H,0,,
reacted with 1:500 diluted rabbit anti-rat albumin anti-
body (Cappel, Malver, PA), and incubated with a horse-
radish peroxidase-conjugated goat anti-rabbit IgG poly-
mer (Dako, Carpinteria, CA). The antibody binding was
visualized using diaminobenzidine substrate-chromogen
system (Dako), followed by counterstaining with hema-
toxylin. Digital images of the albumin-stained sections
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(13.2 + 1.6 cm¥rat) were obtained on a computer using
an image scanner, and the albumin positive (Alb*) hepa-
tocyte areas in the hepatic tissues were measured using
the ImagelJ software package (rsb.info.nih.gov/ij/), and
the rate (%) was determined for each recipient rat.

PCR for the Albumin Genes

The extent of hematopoietic substitution in the recipi-
ent rat bone marrow was investigated by PCR using the
albumin gene sequence as a marker. PCR primers were
designed to amplify a region including the seven base
pairs lacking in the analbuminemic albumin gene (2,
19,43), and the forward primer was tagged with 6-fluor-
eceine amidide (6-FAM). DNA was isolated from bone
marrow of the recipient F344-alb rats using DNAzol
(Molecular Research Center, Cincinnati, OH), and 40
cycles of PCR were performed using the DNA at 95°C
for 5 s, 58°C for 5 s, and 72°C for 5 s with a final
extension at 72°C for 10 min by a thermal cycler
(iCycler, Bio Rad, Richmond, CA). The PCR products
were analyzed on a genetic analyzer (ABI PRISM 310,
PE-Applied Biosystems, Foster, CA) using the Genes-
can software package (PE-Applied Biosystems).

Measurement of Serum Albumin Levels

The serum albumin levels were determined at the
fourth week after HCTx by the bromocresol green
method (23) using an automatic analyzer (Hitachi 7180,
Tokyo, Japan) and by an enzyme-linked immunosorbent
assay (ELISA) (Bethyl Lab, Montgomery, TX).

Statistical Analysis

The relationship between Alb* hepatocyte areas in the
liver tissues and the elevation of serum albumin levels
in the recipient rats at the fourth week after HCTx was
statistically analyzed by a simple linear regression test
using the JMP7.0.1 software (SAS Institute, Cary, NC).

RESULTS
Irradiation Doses and Survival Rates

We first investigated the optimal irradiation dose for
bone marrow reconstitution by BMTx using F344-alb
rats. After 7.5 or 8.0 Gy whole body irradiation, 6/6 and
3/6 F344-alb rats survived until 2 weeks without BMTXx,
respectively (data not shown). When F344-alb rats re-
ceived BMTx (5 x 107 cells), either by IV-BMTx (group
2b) or IBM-BMTx (group 2c) (Fig. 2) after 8.0 Gy irra-
diation, all the rats (12/12 in each group) survived until
the fourth week and appeared healthy. When irradiated
with 8.5 Gy, however, all F344-alb rats (6/6) died within
2 weeks even after F344 IBM-BMTx (data not shown).-
Bone marrow reconstitution by BMTx was therefore
performed after 8.0 Gy irradiation.
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Figure 2. Survival rates of the recipient A344-alb. All recipient F344-alb rats survived until the
fourth week, while the fair numbers of them died after PH/HCTx at the fourth week.

Although all recipient F344-alb rats survived until the
fourth week, several of rats (5/11 in group 1, 4/10 in
group 2a, 6/12 in group 2b, and 6/12 in group 2c) died
within 2 weeks after PH/HCTx during the fourth week
(Fig. 2). This is likely due to persistent hepatic damage
by irradiation/RS (group 2b and 2c) or RS (group | and
2a) and PH impaired liver functions, and it is possible
that the transplanted hepatocytes could not compensate
for liver functions, as it takes time for the transplanted
hepatocytes to repopulate the liver following transplan-
tation (6).

Bone Marrow Reconstitution After BMTx

We next investigated bone marrow reconstitution us-
ing the albumin gene sequence as a marker in the recipi-
ent F344-alb rats that survived until the eighth week.
When PCR was performed to target the sequences span-
ning the seven base pair (bp) deletion in the analbumi-
nemic albumin gene, the normal DNA fragment (68 bp)
was generated from the F344 genomic DNA, while the
analbuminemic DNA fragment (61 bp) was observed for
the F344-alb genomic DNA as described previously
(2,19,43) (Fig. 3a, b). When DNA from F344 and F344-
alb was mixed in various ratios, the one pattern became
dominant, when the amount of one DNA was present in
a 9:1 excess ratio to the other (Fig. 3b). One of six of
the recipients with LEW 1V-BMTx (group 2b) showed
a normal pattern, while 5/6 rats showed an aberrant pat-
tern (Table 1, Fig. 3c). In the group with LEW IBM-
BMTx (group 2c), 6/6 rats showed a normal pattern (Ta-
ble 1, Fig. 3c). Therefore, bone marrow reconstitution
was much more efficiently achieved by IBM-BMTx
than IV-BMTx.

Histological Changes of the Recipient Livers

The livers of the recipient rats that received either
syngeneic (group 1) or allogenic HCTx (group 2) showed
megalocytosis (enlarged hepatocytes with huge nuclei)
and frequent clusters of small-sized hepatocytes, as pre-
viously reported (22). Although the livers of F344-alb
with syngeneic F344 HCTx (group 1) showed either no
or only weak inflammation (Fig. 4a-1), those of F344-
alb with allogenic LEW HCTx showed a strong degree
of inflammatory cell infiltration, consisting mainly of
granulocytes, in the portal tract and occasionally in sinu-
soids regardless to the prior BMTx (Fig. 4b-1). No in-
flammatory cell infiltration, however, was seen within
the Alb* hepatocyte areas in group 1 or in group 2b and
2c (Fig. 4a-2, b-2).

Replacement of Hepatic Parenchyma
With Alb* Hepatocytes

The hepatic tissue areas of recipient F344-alb rats
that received syngeneic F344 HCTx (group 1) were re-
placed by Alb* hepatocytes, ranging 4.5-28.7% (Table
1, Fig. 5a). In group 2a that received LEW HCTx with-
out BMTX, their liver tissues did not contain any Alb*
hepatocyte areas (Fig. 5b). In 1/6 recipient F344-alb rats
that received LEW IV-BMTx followed by LEW HCTx
(group 2b), 44.5% of the liver tissue areas were replaced
by Alb* hepatoyctes, while the liver tissues of other five
rats did not contain any Alb* hepatocyte areas (Table 1,
Fig. 5c, d). The six recipient F344-alb rats with LEW
IBM-BMTx followed by LEW HCTx (group 2c) had
liver tissues that were replaced with Alb* hepatocytes,
ranging from 4.8% to 58.4% (Table 1, Fig. Se, f). The
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Figure 3. Analysis of bone marrow reconstruction by donor bone marrow cells (BMCs) using the albumin gene sequences as a
marker. (a) PCR primer design to detect the albumin gene sequences. The forward primer is tagged with 6-FAM (6-carboxyfluores-
cein). (b) The normal 68 bp peak is observed for F344 DNA, while the aberrant 61 bp peak was generated from the F344-alb
DNA. If the two DNAs were mixed in various ratio, one pattern became dominant, when one DNA was present over 9:1 excess
against the other. Molecular markers show 50 bp and 60 bp in the red peaks. (c) In Group 2b, one F344-alb (#1 in Table 1) showed
the normal pattern, while the others (represented by #2 in Table 1) showed aberrant patterns. All rats in group 2c (represented by
#6 in Table 1) showed only the normal pattern.
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Table 1. Serum Albumin Levels, Albumin-Positive Areas in the Livers,
and Donor Albumin Genes of F344-Alb Rats 4 Weeks After Hepatocyte

Transplantation (HCTx)

Rat  Serum Alb*  Serum Albt Alb’ Bone Marrow

Group No. (g/dl) ELISA (g/dl) Area (%) Reconstitution}
1 1 24 1.71 28.7 nd
2 2.4 1.68 24.6 nd
3 2.0 0.70 23.0 nd
4 1.9 0.58 14.5 nd
5 1.8 0.33 114 nd
6 1.6 0.21 4.6 nd
2a 1 — 0.00 0 nd
2 — 0.00 0 nd
3 — 0.00 0 nd
4 — 0.00 0 nd
5 — 0.00 0 nd
6 — 0.00 0 nd
2b 1 2.3 0.85 44.5 +
) 2 — 0.00 0 -
3 - 0.00 0 -
4 — 0.00 0 -
5 - 0.00 0 -
6 — 0.00 0 -
2c 1 22 2.99 58.4 +
2 2.1 1.99 36.9 +
3 2.0 1.23 24.7 +
4 1.7 1.23 17.0 +
5 1.5 0.45 7.5 +
6 1.3 0.30 4.8 +

*Serum albumin levels determined by the bromcresol green method. The values for
untreated F344 rats were 3.8 £ 0.1 g/dl. —: values comparable to those of untreated

F344-alb (1.0 g/dl).

FSerum albumin levels determined by ELISA. The values for untreated F344 rats were

3.76 £ 0.60 g/dl.

i+: F344 albumin gene dominant; —: F344-alb albumin gene dominant; nd, not done.

replacement. of the liver tissues by the allogenic LEW
Alb* hepatocytes was clearly dependent on the bone
marrow reconstitution by the donor LEW BMCs (Table 1).

Elevation of Serum Albumin Levels

Although the serum albumin levels of analbuminemic
rats have been reported to be less than 0.0005 g/dl (10),
those of untreated F344-alb detected by the bromocresol
green method was around 1.0 g/d]l, most likely because
this method is not very specific to albumin (23). We
therefore examined the serum albumin levels also by
ELISA, which can specifically detect rat albumin. The
bromocresol green method demonstrated the albumin
levels to increase above the levels in untreated F344-alb
in 6/6 recipient rats with syngeneic F344 HCTx (group
1), 1/6 rats with LEW IV-BMTx/HCTx (group 2b), and
6/6 rats with LEW IBM-BMTx/HCTx (group 2c) at the

eighth week (Table 1). ELISA showed the albumin lev-
els to also increase in the same recipient rats (6/6 rats in
group 1, 1/6 rat in group 2b, and -6/6 rats in group 2c)
(Table 1). These values roughly corresponded to 5-80%
of the serum albumin levels of untreated F344. The in-
crease in the serum albumin levels in the recipient F344-
alb rats was correlated with the degree of replacement
of hepatic parenchyma with Alb* hepatocytes (p = 0.007)
(Fig. 6).

DISCUSSION

In the present study, we succeeded in performing the
transplantation of allogenic LEW hepatocytes into the
F344-alb liver and in replacing the RS/PH-treated liver
tissues with allogenic HCTx by prior BMTx after suble-
thal irradiation. This was confirmed by immunohisto-
chemistry, which showed an increase in Alb* hepatocyte
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areas in the liver tissues (Table 1, Fig. 5) and an eleva-
tion of serum albumin levels in recipient rats (Table 1),
and there was a correlation between the results (Fig. 6).
Furthermore, the replacement of host liver tissue with
the allogenic LEW Alb* hepatocytes was dependent on
the bone marrow reconstitution by the donor LEW
BMCs (Table 1). No replacement of liver tissues by the
donor hepatocytes occurred without the prior donor
BMTx (group 2a), consistent with previous reports in
which allogenic hepatocytes survived only few days
after HCTx without immunosuppression or BMTx (7,
18). Our results are in line with those obtained in previ-
ous studies reporting either allogenic or xenogenic
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HCTx to be feasible when combined with the prior do-
nor BMTx (4,20,26,28,35).

A histological analysis revealed that, although there
were no or minimal inflammatory signs in the liver tis-
sues of the recipient F344-alb with syngeneic HCTx
(group 1) (Fig. 4a-1), those of the recipient F344-alb
with allogenic HCTx (groups 2a, 2b, and 2c) exhibited
strong inflammatory cell infiltration in the portal areas
and occasionally in sinusoids regardless of BMTx status
(Fig. 4b-1). Most hepatocytes infused into the portal cir-
culation have been known to be trapped within the portal
veins and sinusoids around the portal areas and thus are
killed by innate immune cells such as granulocytes,

Figure 4. Histology of the recipient F344-alb livers. (a) Liver of the F344-alb with syngeneic F344 HCTx (group 1). No inflamma-
tory cell infiltration was seen within the hepatic lobule (1), portal tract (inset), or Alb* hepatocyte area (2). (b) Liver of F344-alb
with allogenic HCTx with IBM-BMTx (intra-bone marrow; group 2c). Strong inflammatory cell infiltration was seen in the portal
tract (1 and inset 1) and occasionally within the sinusoid (inset 2). However, no inflammatory cell infiltration was seen in the Alb*
hepatocyte area (2). (a-1, b-1) H&E staining; (a-2, b-2) albumin immunostaining. (a-1, b-1) 400x; insets (a-2, b-2) 1000x. Scale

bar: 100 pm.
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Group 2a#1

Figure 5. Replacement of the liver tissue by Alb* hepatocytes. F344-alb rat livers at the fourth week after PH/HCTx. The liver
tissue was extensively replaced by Alb* hepatocytes by syngeneic F344 HCTx (group 1) (a), but not by allogenic HCTx without
BMTx (group 2) (b). Upon allogenic HCTx with prior IV-BMTx (group 2b), the liver tissue was extensively replaced by Alb*
hepatocytes in one F344-alb (#1 in Table 1) (c), but not in the other recipients (represented by #2 in Table 1) (d). In F344-alb rats
that received allogenic HCTx with prior IBM-BMTx (group 2c), all the livers (represented by #1 and #4) were replaced by Alb*
hepatocytes to various degrees (e, f). (a—f) Albumin immunostaining, 20x. Scale bar: 1000 um.

macrophages, and Kupffer cells in early phases follow-
ing allogenic and syngeneic HCTx (18). Strong inflam-
matory infiltration after allogenic HCTx suggested that
stronger early rejection might have more occurred more
frequently than with syngeneic HCTx (groups 2a, 2b,
and 2c¢). It is also possible that the graft versus host reac-
tion might have occurred in the liver in groups 2b and
2¢, which received the allogenic BMTx, although no
such reaction was detected in other tissues (data not

shown). However, no inflammatory cell infiltration was
observed in the Alb* hepatocyte areas of the liver that
received allogenic HCTx with BMTx (groups 2b and
2c¢), thus indicating that there might have been no immu-
nological attack against the repopulated allogenic hepa-
tocytes (Fig. 4b-2).

The replacement rate of host liver tissues by syngenic
HCTx in RS/PH-treated F344 rats is approximately 40—
60% at 4 weeks after HCTx and as much as 95% at
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Figure 6. Correlation between the serum albumin levels and
the replacement rates of liver tissues by Alb* hepatocytes in
the recipient F344-alb (p = 0.007). Open circles: group 1; gray
circle: group 2b; black circles: group 2c.

1 year after HCTX, respectively (22,39). However, the
replacement rate varied greatly between the syngeneic
HCTx group (group 1; 4.6-28.7%) as well as the alloge-
nic HCTx group (group 1; 4.8-58.4%) (Table 1). Such
variation might be due to the inconsistent efficiency re-
garding the infusion of hepatocytes into the portal vein
rather than as a result of the immunological mechanism,
because almost the same degree of variation was seen in
both the syngeneic F344 HCTx without BMTx (group
1) and allogenic LEW HCTx with IBM-BMTx (group
2c). On the other hand, the liver of the recipient rats
(group 1 and groups 2b, 2c) contained about 15-150
albumin® areas/cm*® liver section 4 weeks after HCTx
(data not shown), thus implying that about 600-18,000
clusters of Alb* hepatocytes were present within the liver.
If each Alb* hepatocyte cluster was formed by the
expansion of a single transplanted hepatocyte, then the
engraftment of about 600—18,000 donor hepatocytes per
liver might be sufficient for the extensive replacement
of the liver tissue by HCTx.

Only a few previous studies of allogenic HCTx with
BMTx have performed special treatments for expansion
of transplanted cells. Streez et al. (35), however, re-
ported that when allogenic hepatocytes of human ol-
antitrypsin transgenic FVB mice were transplanted in
the liver of BALB/C mice with prior BMTx, CD4* lym-
phocytes infiltrating in the host liver augmented apopto-
sis of host hepatocytes, which may have facilitated liver
regeneration and the expansion of donor cells. It is pos-
sible that, in addition to the RS/PH treatment, the liver
damage caused by the inflammatory cell infiltration as
observed in the allogenic LEW HCTx group (groups 2b
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and 2c) in the present study, might have contributed to
the expansion of transplanted allogenic hepatocytes. The
results of Streez et al. (35) and our present study suggest
that allogenic hepatocytes can therefore expand within
the host liver if appropriate growth stimuli and growth
advantages are present.

According to the site of allogenic HCTx, some stud-
ies have used the spleen or subrenal capsules (26,28,41),
while other studies used the liver (13,24,35,39). Because
the expansion of transplanted cells in sufficient numbers
is necessary to compensate for the impaired host liver
functions, the liver might be an ideal site not only as a
physiological site for hepatocytes to function, but also
contain sufficient space for the transplanted hepatocytes
to expand.

PCR examination of the albumin gene for host bone
marrow DNA revealed 1/6 rats in group 2b and 6/6 rats
in group 2c showed a normal albumin gene pattern, sug-
gesting that more than 90% BMCs were of donor origin,
because the normal albumin gene pattern was observed
when donor DNA was present at a 9:]1 ratio excess
against the recipient DNA (Fig. 3b). The replacement of
hepatic tissues by Alb* hepatocytes was only observed
in the recipient rats of which bone marrow was reconsti-
tuted by the donor BMCs (Table 1, Fig. 5c). Bone mar-
row reconstitution was much more efficient by IBM-
BMTx than IV-BMTx (6/6 vs. 1/6 rats) as consistent
with previous reports (11,16,21,28).

F344-alb and LEW rats used in this study express
disparate MHC, RT1"!, and RT1', respectively. How-
ever, this combination demonstrates partial rather than
complete allogenicity (15), and reciprocal heart trans-
plantation between F344 and LEW rats induced a
weaker rejection than the complete MHC mismatched
combination, such as F344 (RT1") and Black Norway
rats (RT1") (1). When considering the clinical applica-
tions of allogenic HCTXx, it is necessary to confirm
whether or not allogenic HCTx would be feasible be-
tween rats with complete MHC mismatched combina-
tions.

There are many hurdles that must still be overcome
to achieve the successful clinical application of allogenic
HCTX, such as the efficient isolation of viable hepato-
cytes from small donor hepatic tissues, the protection of
transplanted hepatocytes from the innate and acquired
immune system, the efficient engraftment of transplanted
hepatocytes into chronically injured hepatic tissues, and
efficient methods for the massive repopulation of trans-
planted hepatocytes. However, HCTx might be espe-
cially efficient under conditions in which there are large
selective advantages for transplanted hepatocytes, such
as with acute and chronic hepatic failure or inherited
liver disorders (i.e., ornithine transcarbamylase defi-
ciency, tyrosinemia type I, ol-antitrypsin deficiency,
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Crygler-Najjar syndrome type 1, Wilson’s disease, etc.).
It is important to achieve the successful replacement of
liver parenchyma by the allogenic IBM-BMTx/HCTx
without use of RS in animal models. Shifting the para-
digm for hepatic transplantation therapies from ortho-
topic liver transplantation to allogenic intrahepatic
HCTZx, it is therefore expected to yield great benefits for
the overall treatment of human liver diseases.
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