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Chromosomal integrity and DNA damage in freeze-dried spermatozoa
(凍結乾燥した精子における染色体完全性とDNA損傷)

Kusakabe Hirokazu



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

Title: 

Chromosomal integrity and DNA damage in freeze-dried spermatozoa 

 

Author: 

Hirokazu Kusakabe 

 

Affiliation: 

Department of Biological Sciences 

Asahikawa Medical University 

2-1-1-1 Midorigaoka-higashi, Asahikawa 

Asahikawa 078-8510, Japan 

 

 

Correspondence: 

Hirokazu Kusakabe, Ph.D. 

Department of Biological Sciences 

Asahikawa Medical University 

2-1-1-1 Midorigaoka-higashi, Asahikawa 

Asahikawa 078-8510, Japan 

 

TEL: +81-166-68-2730 

FAX: +81-166-68-2783 

E-mail: hkusa55@asahikawa-med.ac.jp 

 

1 
 



25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

Abstract 

Freeze-drying technology may one day be used to preserve mammalian 

spermatozoa indefinitely without cryopreservation. Freeze-dried mouse 

spermatozoa stored below 4C for up to 1 year have maintained the ability to 

fertilize oocytes and support normal development. The maximum storage period 

for spermatozoa increases at lower storage temperatures. Freeze-drying, per se, 

may reduce the integrity of chromosomes in freeze-dried mouse spermatozoa, but 

induction of chromosomal damage is suppressed if spermatozoa are incubated with 

divalent cation chelating agents prior to freeze-drying. Nevertheless, chromosomal 

damage does accumulate in spermatozoa stored at temperatures above 4C. 

Currently, no established methods or strategies can prevent or reduce damage 

accumulation, and damage accumulation during storage is a serious obstacle to 

advances in freeze-drying technology. Chromosomal integrity of freeze-dried 

human spermatozoa have roughly background levels of chromosomal damage after 

storage at 4C for 1 month, but whether these spermatozoa can produce healthy 

newborns is unknown. The safety of using freeze-dried human spermatozoa must 

be evaluated based on the risks of heritable chromosome and DNA damage that 

accumulates during storage. 
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Introduction 

Cryopreservation with liquid nitrogen and storage at very low temperatures (−80°C) 

are used for many cell and tissue types and many purposes in a wide range of biological 

fields because these samples maintain many important characters and their genetic 

material is largely unaltered during cryopreservation and cryostorage. Nevertheless, 

sperm preservation methods that do not require liquid-nitrogen-based cryopreservation 

are needed for the following reasons. 1) Liquid nitrogen is not readily available in many 

countries and places (e.g., many developing countries, pacific islands, space stations). 2) 

These cryopreserved samples are often destroyed or damaged because low-temperature 

storage facilities fail due to human errors or loss of power. 3) These samples may be 

contaminated by pathogenic viruses that are stored in the same cryostorage facilities [1]. 

Although incidents of cross-contamination are rare in cryobanks, it is difficult to make 

sure that it has not occurred yet [2]. For these reasons, advances in sperm preservation 

techniques that do not require liquid nitrogen or deep-freezer storage may contribute to 

the safe preservation of the genome resources of mammalian species. 4) Potentially, 

freeze-dried spermatozoa may be transported anywhere without any refrigerants, such 

as dry ice [3, 4].  

This review focuses on freeze-drying of mammalian spermatozoa, and particularly 

mouse and human spermatozoa. Recent progress and persistent problems associated 

with the methods used to maintain the integrity of DNA and chromosomes of the 

freeze-dried spermatozoa are discussed. 

 

Participation of motionless spermatozoa in fertilization 

A method for freeze-drying spermatozoa was published approximately a half century 
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ago. More recently, Polge et al. [5] reported that the majority of freeze-dried fowl 

spermatozoa were motile after rehydration, and in 1976, Larson and Graham [6] 

reported that some freeze-dried bull spermatozoa were motile after rehydration. 

Moreover, even motionless spermatozoa can fertilize oocytes and support normal 

development with advances in intracytoplasmic sperm injection (ICSI) [7]. These 

advances in ICSI led us to consider simple methods for mammalian spermatozoa 

preservation that do not require cryoprotectants [8] and the retrieval of sperm from 

frozen cadavers [9, 10]. Freeze-dried spermatozoa need not be motile after rehydration; 

in laboratory mice, zygotes generated using ICSI and freeze-dried sperm can develop 

into healthy, full-term offspring [3]. Moreover, mice derived from the freeze-dried 

spermatozoa gave rise to first- and second-generation progeny with stable genomes [11]. 

Many studies have investigated freeze-dried spermatozoa in mammalian species other 

than mice and humans. Most of these studies explored whether freeze-dried 

spermatozoa from cattle [12–15], dog [16], hamster [17], human [17–21], pig [22, 23], 

Rhesus monkey [24], rabbit [20, 25] or rat [26–29] could develop to the pronuclear 

stage, the blastocyst stage, and/or to live birth. 

For assisted reproduction in most species, ICSI must be introduced and improved to 

ensure that sperm that become non-motile because of harsh isolation, preservation, or 

storage conditions can support normal development, although storage of freeze-dried 

mammalian spermatozoa has great potential as an alternative to traditional 

nitrogen-based cryopreservation. 

 

Evaporative drying versus freeze-drying 

Procedures used to freeze-dry mouse sperm usually include a freezing step (1 to 10 
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min) before the sublimation of water in the samples. A lyophilizer is generally used to 

sublimate the water. Glass ampoules containing the frozen sperm sample are connected 

to the lyophilizer, and a vacuum is applied at an inner pressure of approximately 1 m 

Torr for 12 h [3] or 0.04 mbar for 4 h [30]; alternatively, primary drying and subsequent 

secondary drying pressures (0.37 mbar and 0.001 mbar, respectively) are applied to the 

ampoules [31]. 

Evaporative drying is another method used to prepare dried spermatozoa. Reportedly, 

evaporative drying of mouse spermatozoa is an exceptional method for preparing dried 

sperm specimens that eliminates the initial freezing step of freeze-drying, which is 

likely to injure the spermatozoa [32–35]. This evaporative drying method has been used 

primarily for laboratory mice sperm, and the technique has not been optimized for other 

mammalian species. Sperm suspension is applied to a glass slide and dried for 5 min at 

room temperature under a stream of nitrogen gas; notably, the time required to dry the 

sample is much shorter than the sublimation time required for freeze-drying, which is at 

least 4 h. Moreover, the equipment required for the evaporative drying is simpler and 

cheaper than a lyophillizer [36]. It is unclear whether evaporative drying is superior to 

freeze-drying for preserving mammalian spermatozoa, and studies on the long-term 

maintenance of the dried spermatozoa preserved without cryostorage will address this 

question. Developmental competence of ICSI-derived zygotes varies between 

laboratories and/or person doing ICSI. However, assessment of the chromosomal 

(DNA) integrity in dried spermatozoa will give us significant information on the ability 

of the spermatozoa to produce normal live offspring. Dried spermatozoa must have high 

levels of chromosomal (DNA) integrity to support normal development of ICSI-derived 

zygotes. 
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Importance of chromosomal (DNA) integrity in freeze-dried spermatozoa 

The freezing, drying, and exposure to vacuum necessary to prepare freeze-dried 

samples are harmful to spermatozoa. Chromosomal (DNA) damage is likely to be 

induced in the spermatozoa during each step. Therefore, two questions arise: 1) Can 

zygotes with paternally transmitted chromosome aberrations develop into live 

offspring? 2) Does the chromosomal damage generated in freeze-dried spermatozoa 

pose genetic risks to successive generations? 

Chromosomal damage induced in male germ cells contributes to early 

post-implantation death [37]. While, induction of so-called “minor aberrations” [38, 39] 

may be rather a serious event from the view point of genetic toxicology. Marchetti et al. 

[40] suggested that mouse embryos with a small number (less than 4) of paternally 

transmitted chromosome aberrations experienced problems in later embryonic stages. 

Mouse zygotes with structural chromosome aberrations generated spontaneously via 

ICSI can develop into live offspring carrying chromosome alterations [41, 42].  

The fate of the structurally aberrant chromosomes has been examined in somatic and 

germ cells. Stable structural chromosome aberrations, especially reciprocal 

translocations induced by gamma radiation, can persist in mouse bone marrow cells in 

vivo for at least 30 days after irradiation [43]. Unbalanced karyotypes with chromosome 

aberrations such as deletions or partial trisomy can be derived from chromatid-type 

aberrations generated in cultured human lymphocytes [44]. Embryos with reciprocal 

translocations originating from mouse spermatozoa exposed to mutagenic compounds 

could develop into live offspring [40]. The frequency of embryos with structural 

chromosome aberrations originating from mouse spermatozoa exposed to 

-ray-irradiation (2 and 4 Gy) was reduced at the 2-cell stage, but increased at the 4-cell 
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stage [45]. This observation indicated that DNA double-strand breaks persisted in 

embryos through the first cell division and new chromosome aberrations formed in 

subsequent divisions [45]. Freeze-dried spermatozoa with extremely damaged 

chromosomes (multiple aberrations) may inhibit blastocyst formation and 

post-implantation development after ICSI. Some zygotes with fewer chromosome 

aberrations inherited from freeze-dried spermatozoa are supposed to have the ability to 

develop into live offspring. In this case, some types of aberrant chromosomes will be 

transmitted to daughter cells (blastomeres). In the other case, some chromatid-type 

aberrations may be converted to another aberration type during subsequent cell 

divisions. Live offspring produced from spermatozoa with severe chromosomal damage 

induced during improper freeze-drying are at high risk for abnormal karyotypes and 

specific types of genetic alterations (e.g., microdeletions). Thus, improvement of 

chromosomal integrity in freeze-dried spermatozoa is necessary not only for efficient 

production of live offspring, but also to maintain the genetic background of the animal 

strains being propagated with freeze-dried spermatozoa. Moreover, freeze-dried human 

spermatozoa must be free from de novo induction of chromosomal damage to prevent 

genetic disorders and related diseases. 

 

Classification of chromosomal damage induced in freeze-dried spermatozoa 

Chromosomal integrity in spermatozoa is likely to be adversely affected by 

freeze-drying per se and post-freeze-drying storage at room temperature. Types of 

chromosomal damage induced in freeze-dried spermatozoa may be classified as primary 

chromosome damage (PCD) or accumulated chromosome damage (ACD). PCD is 

induced just after freeze-drying. In contrast, ACD arises during post-freeze-drying 
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storage [46]. The types of PCD and ACD reviewed here are DNA damage and/or 

aberrant chromatin remodeling [46, 47]. Currently, it is unknown whether PCD and 

ACD can include numerical chromosome aberrations because no studies have focused 

on these types of aberrations in embryos derived from freeze-dried spermatozoa. 

Speculation on the mechanism causing PCD could be as follows. Hamster, human, and 

mouse spermatozoa contain an endogenous nuclease that requires Ca
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2+ and Mg2+ for 

enzymatic activity [48, 49]. The spermatozoa seemed to have the endogenous nuclease 

to cleave their own DNA. Fragmentation of sperm DNA was induced after sperm were 

incubated overnight in a medium supplemented with a detergent, Triton X-100. The 

DNA fragments were similar in size to those generated by DNase I [49]. However, it is 

still unclear why the nuclease was activated by the detergent. Reportedly, DNA 

fragmentation was also observed in frozen-thawed human spermatozoa [49] and in 

sonicated mouse spermatozoa following storage in culture media [50]; both 

observations indicate that the nuclease was activated. 

Moreover, the PCD were induced severely when spermatozoa that had been 

freeze-dried in a standard culture medium containing Ca2+ and Mg2+ were microinjected 

into oocytes [30]. Electron microscopic examination showed that the sperm plasma 

membrane was removed upon treatment with Triton X-100 [51] and ruptured after 

freeze-drying [3]. Therefore, nuclei in freeze-dried spermatozoa must be exposed to 

high concentration of Ca2+ via the ruptured plasma membrane because oocytes 

subjected to ICSI show normal Ca2+ oscillations [52]. Thus, it is likely that the Ca2+- 

and Mg2+-dependent nuclease would be activated following damage to the plasma 

membrane and the subsequent influx of cations into sperm nuclei. 

Chromatin of mouse testicular spermatozoa is more vulnerable to freeze-drying than 
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chromatin of epididymal spermatozoa [53]. Induction of PCD in testicular spermatozoa 

can be suppressed by treating the spermatozoa with diamide, an oxidizing agent that 

forms disulfide bonds (–S-S–) from sulfhydryl (–SH) groups in sperm protamines [53]. 

In testicular spermatozoa, sperm DNA in SS-poor chromatin will be more exposed to 

the Ca
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2+- and Mg2+-dependent nuclease than DNA in SS-rich chromatin. 

 

Suppression of PCD induction 

In 2001, it was discovered that a simple chelating solution suppressed PCD during 

freeze-drying of mouse spermatozoa. In contrast, PCD was severe in mouse 

spermatozoa freeze-dried in culture medium without cryoprotection [30]. Presumably, 

the chelating agent is an active component of the solution. The solution is composed of 

50 mM sodium chloride (NaCl), 50 mM EGTA (ethylenglycol-bis(-aminoethyl 

ether)-N,N,N’,N’-tetraacetic acid), and 10 mM Tris-HCl (EGTA Tris-HCl buffered 

solution: ETBS, pH 8.2-8.4) and is usually used to suspend naked DNA preparation for 

molecular biology protocols. The EGTA presumably inhibits the activity of 

Ca2+-dependent nuclease by chelating Ca2+, and a modified version of the solution 

adjusted to pH 8.0 was also developed [54]. Exclusion of NaCl from the solution may 

improve the developmental competence of zygotes derived from the freeze-dried 

spermatozoa. One such solution is TE buffer [29, 39]. TE buffer consists of 1 mM 

EDTA (ethylenediamine tetraacetic acid) and 10 mM Tris-HCl. The efficacy of specific 

chelating solutions for freeze drying of spermatozoa probably differs for different 

animal species, and solutions optimized for different species are likely to differ in some 

components and the concentrations of shared components. Reportedly, mouse 

spermatozoa freeze-dried in TE buffer supported the development of more offspring 

9 
 



217 

218 

219 

220 

221 

222 

223 

224 

225 

226 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

239 

240 

than those freeze-dried in ETBS [39]. In contrast, boar spermatozoa freeze-dried in the 

ETBS seemed to support in vitro development of embryos better than boar spermatozoa 

freeze-dried in EDTA-based solutions [23]. 

EDTA is a standard supplement in cell culture media. EDTA binds a wide range of 

divalent cations, including Ca2+, Mg2+, Mn2+, and Zn2+, but EGTA preferentially binds 

Ca2+. Moreover, EGTA is not an effective chelating agent for Zn2+. In human 

spermatozoa, Zn2+ is presumed to play an important role in stabilizing sperm chromatin 

structure at ejaculation [55, 56]. Although EGTA chelates Ca2+ and, therefore, prevents 

activation of endogenous Ca2+-dependent nuclease in spermatozoa, it does not affect the 

zinc status of sperm chromatin. In fact, fertile sperm donors have higher zinc content in 

their sperm chromatin than infertile men [55]. 

Mouse spermatozoa can be suspended in modified ETBS and kept in a refrigerator 

for 1 week before freeze-drying. The modified ETBS (50 mM EGTA + 100 mM 

Tris-HCl), unlike the original ETBS, does not contain NaCl [21]. Mouse spermatozoa 

suspended in the original ETBS lose mobility after incubation at 37C for 10 min, 

whereas the majority of spermatozoa suspended in the modified ETBS maintain 

mobility after incubation at 37C for 10 min. The modified ETBS allows for efficient 

collection of many motile spermatozoa. The modified ETBS seemed to be less toxic to 

mouse spermatozoa than original ETBS, and the modified ETBS can be used for 

freeze-drying of mouse cumulus and ES cells [57]. 

Interestingly, induced PCD is very severe in mouse spermatozoa that had been 

briefly suspended in modified ETBS just before freeze-drying. However, the level of 

PCD decreases as the pre-freeze-drying incubation time in modified ETBS is increased 

(up to 1 week at 4C) (Fig. 1) [21]. 
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Types of chromosome aberrations associated with PCD 

PCD is observed in mouse spermatozoa freeze-dried in modified CZB medium [58, 

59]. The frequency of each type of chromosome aberration in spermatozoa freeze-dried 

in CZB corresponds roughly to that in spermatozoa freeze-dried in modified ETBS 

without pre-freeze-drying incubation (Fig. 1). Most of the PCD is due to chromosome 

breaks (csb). The frequency of zygotes with other types of aberrations (e.g., 

chromosome exchange (cse), including dicentric chromosomes, ring chromosomes, and 

reciprocal translocation.) might be underestimated because the reciprocal translocations 

are not readily detected with conventional staining methods. The frequency of zygotes 

with csb decreases as the duration of the pre-freeze-drying incubation increases; 

consequently, overall levels of PCD decrease (Fig. 1). 

Recently, Bignold [60] proposed mechanisms for the induction of clastogen-induced 

structural chromosome aberrations. The model invoked a failure in DNA-enzyme 

tethering during existence of enzyme-created DNA strand breaks. According to the 

model, formation of chromosome aberrations initiates with DNA double-strand breaks 

(DSBs) created by DNA-repair enzyme before DNA synthesis. 

It is important to determine whether the chromosome breaks associated with PCD 

formed from DSBs generated in sperm DNA directly by freeze-drying. The origin of 

PCD can be assessed using single cell gel electrophoresis assay (comet assay) [46]. The 

comet assay is a well-known technique used to detect DNA damage in situ. The 

standard comet assay includes an alkali treatment of cells embedded in agarose gel on 

glass slides; this alkali treatment unwinds DNA, and the cells are then subjected to 

electrophoresis in an alkaline solution (pH 13 or higher). A modified version, the comet 

assay with the A/N protocol, consists of alkaline DNA unwinding and electrophoresis at 
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neutral pH [61–63]. The alkaline comet assay reveals single-strand breaks (SSBs), 

DSBs, and alkaline-labile sites (ALS) in DNA in somatic and germ cells [64–66]. 

Another version, called the neutral comet assay, reveals primarily DSBs; the 

electrophoresis is performed at neutral pH and without the alkali pre-treatment [67, 68]. 

The comet assay with the A/N protocol revealed significant DNA migration in 

freeze-dried spermatozoa indicating PCD, but the neutral comet assay did not reveal any 

damage [46]. According to hypothetical explanation for the induction of PCD, 

endogenous nuclease like DNase I, mentioned previously, might create “nicks” (i.e., 

SSB) in sperm DNA before or just after microinjection of freeze-dried spermatozoa into 

the oocytes. Immediately after SSB creation, an as-yet unidentified enzyme would 

convert the SSBs to DSBs before DNA synthesis. Enzymes such as 

single-strand-specific nuclease (e.g., S1 nuclease) might cleave single-stranded DNAs at 

the SSBs (Fig. 2). 

 

Accumulated chromosome damage (ACD) 

Chelating solutions used for freeze-drying sperm play an important role in 

suppressing the induction of PCD. Mouse spermatozoa freeze-dried in the modified 

ETBS seemed to have better chromosomal integrity than those freeze-dried in the 

original ETBS when stored at 4C and 25C for up to 3 months (Fig. 3). Unfortunately, 

neither the original ETBS nor modified ETBS seem to inhibit the accumulation of DNA 

damage in freeze-dried mouse spermatozoa stored at room temperatures. DNA damage 

in the freeze-dried spermatozoa, i.e. accumulation of as-yet unknown DNA 

modifications during storage, is referred to as accumulated chromosome damage (ACD). 

Identification of the causes of ACD should lead to vast improvement in the 
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developmental competence of oocytes injected with freeze-dried spermatozoa stored at 

room temperature. 

Recent findings [46] suggest that chromosome breaks were the most common type of 

ACD (Fig. 4). However, when mouse oocytes were injected with spermatozoa 

freeze-dried in original ETBS, the frequency of chromatid exchange (the number of 

chromatid exchanges per zygote) increased after storage of sperm for 1 to 4 months at 

22–24C. Induction of chromatid exchanges seemed to be enhanced by heat-stress 

(50C, 1 to 5 days) (Fig. 4). DNA damage in sperm induced by heat-stress was not 

detected using the neutral comet assay, but it was detected using the comet assay with 

the A/N protocol [46]. The type of damage induced directly in sperm DNA would be not 

the DSBs that are responsible for the induction of chromosome breaks resulting in 

chromosomal aberrations. SSBs or other types of DNA lesions, not including DSB, 

were probably associated with the formation of chromatid exchanges after DNA 

replication (Fig. 2b). These chromatid exchanges, also called quardriradials, are thought 

to form by the rejoining of two SSBs generated in two different chromosomes. Most of 

the SSBs created in sperm DNA will convert to DSBs via repair and/or replication 

enzymes present in the oocytes cytoplasm [69] to form the chromosome breaks that 

cause ACD. However, higher temperatures may induce steric alterations in the sperm 

chromatin or DNA [70, 71]. These hypothetical steric alterations in sperm DNA or 

chromatin could interfere with the binding of specific proteins (or enzymes) that are 

required for chromosome condensation [72] and with the conversion of SSBs to DSBs. 

The chromatid exchanges would form from the SSBs that persisted until the DNA 

replication stage (Fig. 2) [46]. 
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Developmental competence of mouse spermatozoa preserved without cryostorage 

The maximum time that freeze-dried spermatozoa can be stored and maintain the 

ability to support normal development of embryos, fetuses, and live offspring was 

estimated by several groups. Freeze-dried mouse spermatozoa can be stored indefinitely 

at −80C without deterioration [73]. Li et al. [34] estimated that 90% of mouse 

spermatozoa preserved by evaporative drying lost the ability to produce offspring after 

storage at −80C for 173 weeks (3.6 years) or storage at 4C for 20 weeks (5 months). 

In contrast, other groups demonstrated that freeze-dried spermatozoa had no decline in 

the ability to support post-implantation development of zygotes during at least 1 year of 

storage at 4C [74]. After 1.5 years of storage at 4C, freeze-dried sperm were used to 

generate a sufficient number of healthy progeny to establish a breeding colony [74]. In 

addition, mouse spermatozoa freeze-dried in modified ETBS retained the ability to 

support development of normal fetuses when preserved at 4C for up to 12 months (Fig. 

5a) [21]. Nonetheless, there is no evidence that freeze-dried spermatozoa can be 

preserved indefinitely at 4C. Freeze-dried spermatozoa deteriorate to a greater or lesser 

degree with increasing storage time, though the time that sperm maintain their integrity 

in storage differs between the protocols used to dry the spermatozoa (e.g., pressure and 

time for vacuuming, medium for suspending spermatozoa, size of vials, lyophillizer). 

How long can freeze-dried spermatozoa be preserved at room temperature? 

Freeze-dried spermatozoa stored for 1 month at 25C were less able to support 

development of normal live offspring than those stored for 3 months at 4C [3]. 

Moreover, freeze-dried mouse spermatozoa stored at 24C for 5 months did not produce 

offspring [75]. Kawase et al. [73] estimated that mouse oocytes injected with 
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freeze-dried mouse spermatozoa stored at 25C for 1 month seldom developed into 

blastocysts. Most mouse spermatozoa preserved by evaporative drying and stored at 

22C for 1 month lost the ability to support the development of blastocysts [33, 34]. In 

contrast, a low proportion (11%) of 2-cell embryos derived from mouse spermatozoa 

freeze-dried in modified ETBS and stored for 12 months at 25C developed into normal 

day-18 fetuses (Fig. 5b). Further improvement in the solutions used during 

freeze-drying may help in preventing or delaying the decline of chromosomal integrity. 

Some studies analyzed the developmental competence of oocytes injected with 

unfrozen spermatozoa stored at room temperature. Mouse epididymal spermatozoa 

stored for 7 days at 22C in TYH medium [76] lost motility, plasma membrane integrity, 

and acrosome integrity [77]. However, some oocytes fertilized in vitro by the 

spermatozoa stored for up to 3 days did develop into normal fetuses [77]. Van Tyuan et 

al. [78] reported that developmental competence of mouse oocytes microinjected with 

mouse spermatozoa stored at 27C in KSOM medium containing amino acids and BSA 

[79] declined as the sperm storage period increase to 15 days, at which point the 

developmental competence reached zero. Spermatozoa taken from whole cauda 

epididymidis that had been preserved for 1 year at room temperature in powdered NaCl 

could activate oocytes [80]; however, most of these spermatozoa failed to support the 

development of zygotes into morula or blastocysts when the sperm were stored for 1 

week to 1 month after isolation [80]. Sperm deterioration was never stopped by 

freeze-drying and any of the methods mentioned above other than freeze-drying.  

Based on these studies, the dehydration, freeze-drying, and evaporative drying 

methods used to preserve mouse spermatozoa do not effectively prepare the 

spermatozoa for more than 1 month of storage at room temperature. 
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Heat-resistant nature of sperm-born oocyte-activating factor(s) in freeze-dried 

mouse spermatozoa  

What do unfrozen spermatozoa lose during storage at ambient or higher 

temperatures? The majority of spermatozoa preserved in ETBS for 9 days at room 

temperatures (22–24C) lose the ability to activate oocytes [81]. Some spermatozoa 

preserved in KSOM medium with amino acids and BSA and stored at 27C maintain the 

ability to activate oocytes for a few weeks [78]. Perry et al. [82] demonstrated that 

mouse spermatozoa suspended in NIM medium lose the ability to activate oocytes if the 

spermatozoa are incubated at temperatures over 44C for 30 min. Mouse spermatozoa 

incubated at 56C (a temperature that inactivates HIV) for 30 min cannot activate 

oocytes [83]. In contrast, freeze-dried mouse spermatozoa heated continuously at 50C 

for up to 7 days maintained the ability to activate oocytes [73]. Liu et al. [52] 

demonstrated that most oocytes microinjected with freeze-dried bovine spermatozoa 

heated at 56C for 15 min exhibited a normal pattern of calcium oscillations. 

Sperm-borne oocyte-activating factor(s) (SOAF) [51] are likely to acquire heat 

resistance after freeze-drying, but we have no information on the inner temperatures of 

the glass ampoules that are vacuum-sealed after freeze-drying. At room temperature, the 

SOAF in freeze-dried spermatozoa may not be destroyed even after long-term 

preservation (>5 months) [39]. The most likely candidate for the SOAF is protein-based 

and sperm-specific, phospholipase C zeta [84–86]. Higher order structures composed of 

protein molecules should readily denature as temperatures rise. Thus, the characteristic 

of water-free sperm sample preserved under a vacuum is not well established.  
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Gamma-ray-resistance of freeze-dried mouse spermatozoa 

It will be necessary to examine the effect of physical circumstances such as 

ultraviolet light, ionizing and non-ionizing radiation to deteriorate freeze-dried 

spermatozoa. We reported that chromosomes of mouse spermatozoa freeze-dried in 

ETBS were more resistant to -ray-irradiation (up to 8 Gy) than those of the 

spermatozoa suspended in ETBS [87]. This means that no significant difference of 

chromosomal integrity was observed between freeze-dried spermatozoa that had been 

exposed to -ray-irradiation and those that had not been exposed to the irradiation [87]. 

The resistance to ionizing irradiation may be a very important to maintaining the 

integrity of mammalian genomes during long-term storage of gametes as sperm 

preservation techniques advance.  

 

Chromosomal integrity of freeze-dried human spermatozoa 

To preserve the fertility of male patients undergoing cancer treatments; patients’ 

spermatozoa are often cryopreserved in liquid nitrogen before chemo- and radiation 

therapies. Potentially, some spermatozoa can be freeze-dried and stored as a secondary 

stock to be used in the case of failure of the cryostorage facility. However, pilot studies 

to determine the proper protocol for freeze-drying human spermatozoa require many 

oocytes from laboratory animals, and there is little or no report on the relationship 

between developmental competency and chromosomal (DNA) integrity of freeze-dried 

human spermatozoa. Rudak et al. [88] directly analyzed human sperm chromosomes 

following in vitro fertilization of golden hamster oocytes with the fresh spermatozoa. In 

1976, Uehara and Yanagimachi [19] demonstrated that freeze-dried human spermatozoa 

retain the ability to form sperm and oocyte pronuclei after injection into hamster 
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oocytes. Katayose et al. [17] demonstrated that freeze-dried human and hamster 

spermatozoa stored at 4C between 6–12 months retain the ability to form sperm 

pronuclei after injection into hamster oocytes. In contrast, freeze-dried spermatozoa 

stored at 25C retain the ability to form pronuclei for no more than 2 weeks of storage. 

These experiments indicated that pronuclear formation could be used as an assay in 

studies investigating the effects of preservation techniques and storage temperatures on 

damage accumulation in freeze-dried human spermatozoa. Hoshi et al. [20] reported 

that there was no significant difference between sperm pronuclear formation rates in 

hamster oocytes injected with freeze-dried (85%) and non-freeze-dried human 

spermatozoa (89%). These findings indicated that human oocytes injected with 

freeze-dried human spermatozoa may have the potential to develop into embryonic 

stages past the pronuclear stage. In contrast, freeze-dried human spermatozoa 

deteriorate within 2 weeks of their preservation when stored at ambient temperatures 

and are unable to support pronuclear formation.  

To analyze human chromosomes without confusing chromosomes of mouse oocytes, 

freeze-dried human spermatozoa were injected into enucleated mouse oocytes [21]. In 

the protocol followed to freeze-dry the spermatozoa, a semen sample is allowed to 

liquefy at 37C for 30 min, and then a 0.5 ml aliquot is carefully placed at the bottom of 

a small test tube containing 2 ml of modified ETBS pre-warmed to 37C. Under these 

conditions, most mouse and human spermatozoa swim into the modified ETBS and 

remain motile for 10 min following the initiation of swimming. In contrast, mouse 

spermatozoa that swim into original ETBS stop moving within 10 min [30]. Therefore, 

modified ETBS may be superior to original ETBS for collection of the motile human 

spermatozoa prior to freeze-drying. Furthermore, the pre-freeze-drying incubation in 

18 
 



431 

432 

433 

434 

435 

436 

437 

438 

439 

440 

441 

442 

443 

444 

445 

446 

447 

448 

449 

450 

451 

452 

453 

454 

modified ETBS is unnecessary for suppressing the induction of PCD in freeze-dried 

human spermatozoa. It may be that EGTA penetrates human sperm nuclei more readily 

than mouse sperm nuclei.  

Chromosome analysis of enucleated oocytes injected with human spermatozoa 

freeze-dried without pre-freeze-drying incubation demonstrated that 86–92% of the 

sperm-injected oocytes reached metaphase of the first mitosis [21]. These rates are 

similar to the rate (89.4%) previously reported for enucleated mouse oocytes injected 

with fresh human spermatozoa [89]. Of the sperm-injected oocytes reached metaphase, 

91.1% possessed normal chromosome constitution [21]. This level of chromosomal 

integrity is almost same as background levels (roughly, 86–95%) reported for IVF using 

golden hamster oocytes and fresh human spermatozoa [90–93] and for ICSI of 

morphologically normal spermatozoa obtained from fertile or healthy men into mouse 

oocytes [94–97]. Moreover, results of multicolor multi-chromosome FISH analysis in 

human spermatozoa indicated that advanced male age increases the frequency of 

structural chromosome aberrations in sperm nuclei [98]. The overall mean frequency of 

spermatozoa with aberrations is 5.8%, and the aberrations are limited to structurally 

unbalanced rearrangements. Therefore, PCD induced in human spermatozoa is 

negligible as long as the spermatozoa are freeze-dried properly. 

 

Freeze-drying and human spermatozoa with large vacuoles 

The morphology of the freeze-dried spermatozoa may be important when selecting a 

spermatozoon for ICSI. The presence of large vacuoles in human spermatozoa has been 

noted for many years. In 1973, Bedford et al. [99] found a vacuole-like structure in 

human sperm heads that decondensed upon treatment with SDS and DTT. Berkovitz et 
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al. [100] reported that microinjection of vacuolated spermatozoa into oocytes reduced 

the pregnancy rate and was associated with early spontaneous abortion. Perdrix et al. 

[101] demonstrated that numerical chromosome aberrations and chromatin condensation 

defects occurred more frequently in teratozoospermic spermatozoa with large vacuoles 

than in those without large vacuoles. In addition, the presence of the large vacuoles in 

spermatozoa seems to be correlated with DNA fragmentation [102]. Human 

spermatozoa without large vacuoles can be selected in real time for assisted fertilization 

using morphologically-selected sperm for injection; this procedure has been named 

intracytoplasmic morphologically-selected sperm injection (IMSI). Reportedly, IMSI 

can also be used to select spermatozoa without aneuploidy [103]. In contrast, frequency 

of day 2 embryos derived from human spermatozoa showed no significant difference 

between conventional ICSI and IMSI [104]. Moreover, the presence of large vacuoles in 

sperm was correlated with induction of structural chromosome aberrations or DNA 

damage in fertile donors or fertile patients [105].  

While some reports suggested that the vacuolated spermatozoa were correlated with 

chromosomal abnormalities in sperm, there is no direct evidence that large vacuoles 

partially or exclusively cause the chromosomal or DNA damage. It is unknown whether 

levels of PCD and ACD are higher in freeze-dried spermatozoa with large vacuoles than 

those with small or no vacuoles. In addition, it may be important to determine how the 

chromosomal integrity of freeze-dried human spermatozoa from fertile donors differs 

from freeze-dried spermatozoa from infertile patients and how chromosomal integrity 

differs between semen samples consisted of vacuole-rich and vacuole-poor sperm 

populations. 
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Conclusion 

Examination of the chromosomal integrity of freeze-dried human and mouse 

spermatozoa may play an important role in improving the developmental competence of 

zygotes derived from these spermatozoa. PCD in mouse spermatozoa induced by 

freeze-drying can be suppressed by suspending the spermatozoa in chelating solutions 

prior to freeze-drying. In contrast, no current method can suppress ACD in freeze-dried 

mouse spermatozoa during post-freeze-drying storage, especially during storage at room 

temperature. Mouse fetuses were produced using freeze-dried mouse spermatozoa 

stored at 25C for up to 1 year; however, increases in the rate of implantation loss 

indicated that ACD in spermatozoa occurred during storage. Moreover, the fetuses 

produced with freeze-dried spermatozoa subjected to long-term storage may have higher 

risks of genetic alterations. A better understanding the causes of ACD is an important 

first step in suppressing or preventing ACD in freeze-dried spermatozoa.  

Freeze-drying may become available for preserving human spermatozoa in the future. 

Currently, however, we lack sufficient information on ACD in freeze-dried human 

spermatozoa. Moreover, whether chromosomal integrity of freeze-dried human 

spermatozoa differs between the spermatozoa with and without vacuoles is unknown. 

Therefore, we need to consider that freeze-dried spermatozoa stored for long-term 

periods may increase the risk of genetic alteration transmittable to newborns. 
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Legends of figures 

Figure 1 

Primary chromosome damage (PCD) induced after freeze-drying of mouse 

spermatozoa. Spermatozoa freeze-dried in modified CZB (mCZB) and modified ETBS 

(mETBS) were stored at 4C for up to 63 days [30] or up to 14 days [21], respectively. 

The PCD decreases as pre-freeze-drying incubation time in the mETBS increases. 

Abbreviations, csb: chromosome break; cse: chromosome exchange; ctb: chromatid 

break; cte: chromatid exchange. Aberrations such as chromosome fragmentation and 

multiple aberrations (10 or more aberrations per zygote) that could not be counted were 

excluded from the data set. 

 

Figure 2 

Schematic diagrams of hypothetical explanations of primary chromosome damage 

(PCD) and accumulative chromosome damage (ACD) in freeze-dried mouse 

spermatozoa. (a) A DNA single strand break (SSB) was probably created by enzymatic 

action before or immediately after intracytoplasmic sperm injection (ICSI) and resulted 

in initiation of PCD. (b) Unidentified DNA lesions other than SSBs may accumulate in 

DNAs of freeze-dried spermatozoa during their storage. Some of SSBs created at 

lesions may not be converted to DNA double strand breaks (DSBs). The SSBs that 

persisted until DNA replication stage may be responsible for the formation of 

chromatid-type aberrations. 

 

Figure 3 

Chromosomal integrity of zygotes derived from mouse spermatozoa freeze-dried in 
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ETBS (a) and modified ETBS (b). Frequency of zygotes with normal chromosome 

constitution was expressed as the integrity per freeze-dried sample. Freeze-dried 

spermatozoa were preserved at 4C (○) or room temperatures of 22–24C (●) (a) and at 

4C (○) or 25C (●) (b). 

 

Figure 4 

Accumulated chromosome damage (ACD) in freeze-dried mouse spermatozoa. The 

spermatozoa freeze-dried in ETBS and modified ETBS (mETBS) were stored at 

room temperature or at 50C. When using mETBS, the spermatozoa were 

freeze-dried after pre-freeze-drying incubation in mETBS at 4C or 25C for 3 to 7 

days [46]. Abbreviations, csb: chromosome break; cse: chromosome exchange; ctb: 

chromatid break; cte: chromatid exchange. Aberrations such as chromosome 

fragmentation and multiple aberrations (10 or more aberrations per zygote) that could 

not be counted were excluded from the data set. 

 

Figure 5 

Post-implantation development of mouse (B6D2F1) oocytes microinjected with 

mouse (B6D2F1) spermatozoa freeze-dried after pre-freeze-drying incubation in 

modified ETBS at 4C for 5 to 7 days (a) [21] and 25C for 4 to 7 days (b) 

(unpublished). Post-freeze-drying samples were stored for 3 and 12 months at the same 

temperatures as the pre-freeze-drying incubation. The embryos were transferred into 

CD-1 females (albino) on the first day of pseudopregnancy after being mated with 

vasectomized CD-1 males (albino). Number of implants (white bars) is consistent with 
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total number of normal fetuses (black bars) and resorption sites examined on 14-day or 

18-day gestation.  

*Significantly different (P < 0.05) from the data obtained from the spermatozoa 

preserved for 3 months by  comparison. 
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Figure 4 
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