

Asahikawa Medical University Repository http://amcor.asahikawa-med.ac.jp/

Food Chemistry (2012.10) 134巻4号:2332~2337.

A rapid method to isolate soluble royal jelly proteins

Nozaki Reo, Tamura Shogo, Ito Aimi, Moriyama Takanori, Yamaguchi Kikuji, Kono Toru 1 Title: A rapid method to isolate soluble royal jelly proteins

9	
ッ	\sim
	•,
	<i>_</i> .

Reo Nozaki^{a,b}, Shogo Tamura^{c,d}, Aimi Ito^c, Takanori Moriyama^e, Kikuji Yamaguchi^{a,b},
Toru Kono^a

6	Affiliations:

- ⁷ ^aDivision of Gastroenterologic and General Surgery, Department of Surgery, Asahikawa
- 8 Medical University, Asahikawa, Japan.
- ⁹ ^bJapan Royal Jelly Research Laboratories, Japan Royal Jelly & Co., Miyagi, Japan.
- ¹⁰ ^cDivision of Health Sciences, Graduate School of Health Sciences, Hokkaido University,

11 Sapporo, Japan.

- ¹² ^dResearch Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan.
- 13 ^eMedical Laboratory Science, Faculty of Health Sciences, Hokkaido University,

- 15
- 16 Address correspondence to Toru Kono, M.D., Ph.D.
- 17 Department of Surgery, Asahikawa Medical University,
- 18 2-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan

¹⁴ Sapporo, Japan.

19 Tel: +81-166-68-2503, Fax: +81-166-68-2193, E-mail: <u>kono@asahikawa-med.ac.jp</u>
20

21 Abstract

22Soluble royal jelly (RJ) proteins (SRJPs) include the major RJ protein (MRJP) family, which contribute to the physiological actions of RJ. Although SRJPs are prepared using 23involving dialysis and centrifugation, 24conventional methods dialysis is a time-consuming process. We have therefore developed a simple method to isolate 2526SRJPs from RJ. This new method produces twenty-fold higher levels of SRJPs than that 27of the conventional procedure;, hence, the levels obtained by the new and existing methods were compared. A 1-hour ultracentrifugation separated SRJPs in the 28supernatant into upper, middle and lower layers. Each layer was analyzed by 29size-exclusion HPLC, SDS-PAGE and 2-DE. The upper and middle layers contained 30 MRJP2 (52 kDa) and MRJP3 (60-70 kDa), while the lower layer contained MRJP1 3132(290 kDa). In nature, MRJP1 is a monomer and/or oligomer. When the lower layer was analyzed by Superose 12 HPLC, MRJP1 was predominantly an oligomer. Our MRJP 33 isolation method reduces the procedure time by using ultracentrifugation without 3435dialysis to obtain SRJPs and produces layers containing MRJP1 oligomers, MRJP2 and MRJP3. 36

 $\mathbf{2}$

38 Keywords

39 royal jelly, ultracentrifugation, soluble royal jelly proteins, MRJP1 oligomer, HPLC

40

41 **1. Introduction**

42Royal jelly (RJ) is nutritious food that is secreted from the hypopharyngeal and mandibular glands of nurse honeybees. RJ contains 12-15% crude proteins, and it has 43been reported that 80% of these proteins are members of the major RJ protein (MRJP) 44 family, with MRJP1 accounting for more than 45% (Furusawa, Rakwal, Nam, Shibato, 45Agrawal, Kim, et al., 2008). MRJP1 is an acidic 55 kDa protein and forms an 46 oligomeric complex; however, its protein structure has not been analyzed yet. RJ is 4748indispensable for the development of a queen bee and MRJP family is thought to be a major factor in queen honeybee development (Kamakura, 2011; Schmitzova, Klaudiny, 49Albert, Schroder, Schreckengost, Hanes, et al., 1998; Weaver, 1966). Furthermore, the 50MRJP family is thought to be the main substance involved in the physiological actions 51of RJ, including cell proliferation, cytokine suppression, and antimicrobial activity 5253(Fujiwara, Imai, Fujiwara, Yaeshima, Kawashima, & Kobayashi, 1990; Kamakura, Suenobu, & Fukushima, 2001; Majtan, Kumar, Majtan, Walls, & Klaudiny, 2010; Oka, 54

Emori, Kobayashi, Hayashi, & Nomoto, 2001; Okamoto, 2003; Shen, Ding, Zhang, Jin,
Zhang, & Li, 2010).

Previously, soluble RJ proteins (SRJPs) including the MRJP family were prepared 57from methods that combined dialysis and centrifugation (S. Tamura, Amano, Kono, 58Kondoh, Yamaguchi, Kobayashi, et al., 2009; Shougo Tamura, Kono, Harada, 59Yamaguchi, & Moriyama, 2009). Typically, these methods take a long time to produce 60 SRJPs. Most existing methods require seven days of dialysis and produce very low 61 62yields because RJ is difficult to dissolve. Therefore, the quantity of MRJPs obtained 63 from SRJPs is a limiting factor for biological research on MRJPs. 64 Ultracentrifugation is known as a useful tool to isolate lipoproteins and whey proteins

that are difficult to extract (De Natale, Annuzzi, Bozzetto, Mazzarella, Costabile, Ciano, et al., 2009; Etcheverry, Miller, & Glahn, 2004; Henry, Molle, Morgan, Fauquant, & Bouhallab, 2002; Tanese, 1997; Yee, Pavitt, Tan, Venkatesan, Godsland, Richmond, et al., 2008). Thus, we used ultracentrifugation to isolate SRJPs from RJ and obtained a large quantity of SRJPs within an hour. In this study we describe a simple and rapid method to isolate SRJPs using a novel ultracentrifugal analysis.

71

72 2. Materials and Methods

73 **2.1. Materials**

Fresh RJ was provided by Japan Royal Jelly (Tokyo, Japan). Samples were stored at
-80°C until analysis.

76 **2.2. Extraction of soluble RJ proteins**

First, 10 g of RJ was dissoloved in 10 mL of deionized water and vortexed. Next, RJ
was ultracentrifuged (Optima[™] L-80XP Ultracentrifuge, Beckman Coulter, Tokyo,
Japan) at 113400 xg for 1 hour at 4°C. Then, the supernatant was separated into three
layers, including the upper, middle, and lower layers. These layers contained defined
and layered soluble RJ proteins (LSRJPs). Each layer was recovered with minimal
mixing of the layers and then stored at 4°C until further analysis.

83 **2.3. Mea**

2.3. Measurement of total protein levels

The total protein concentration in the samples was quantified using a Micro BCA protein Assay Kit (Thermo Fisher Scientific K. K., Yokohama, Japan). HSA (Wako, Osaka, Japan) was used as a protein standard.

87 **2.4. SDS-PAGE**

Proteins in each layer were mixed with NuPAGE lithium dodecyl sulfate (LDS) sample buffer (Invitrogen, Tokyo, Japan) containing 50 mM DTT, and then boiled at 100°C for 5 min. The sample mixtures were separated on precast NuPAGE 4-12% bis-Tris polyacrylamide gels (Invitrogen). Running buffer was prepared using NuPAGE
MES SDS Running Buffer (Invitrogen). SDS-PAGE was performed at a constant 200 V.
Mark12 Unstained Standard (Invitrogen) was used as molecular weight markers for
SDS-PAGE.

95 **2.5. 2-DE**

Twenty-five micrograms of protein was desalted, delipidated and concentrated by 96 deposition with 100% cold acetone. Protein pellets were washed with 80% acetone and 97 dissolved in a protein solubiliser (Invitrogen), carrier ampholytes 3–10 (Invitrogen) and 98 99 DTT. The protein solution was added to an IPG ZOOM strip gel (pH 3–10, Invitrogen) 100and incubated overnight. First-dimension IEF was run under gradient voltage conditions (175 V constant for 20 min, gradient from 175 to 2000 V for 45 min, and 2000 V 101 constant for 30 min). IEF Marker 3-10 SELVA Liquid Mix (SERVA Electrophoresis, 102103 Heidelberg, Germany) was used as a pI marker. The IPG strip gel used for IEF was 104 reduced with 50 mM DTT in LDS sample buffer and alkylated with 125 mM iodoacetamide in LDS sample buffer. The gel was used for second-dimension 105106 SDS-PAGE as described above.

107 **2.6. HPLC**

108 Each sample layer was analyzed by size-exclusion and anion-exchange HPLC.

109	Size-exclusion HPLC was performed on Superose 12 columns (10×300 mm; GE
110	Healthcare). PBS (Invitrogen) was used as the elution buffer for each column. For the
111	Superose 12 column, the sample injection volume was 100 μ L and the flow rate was 0.2
112	mL/min.

113	Anion-exchange HPLC was performed on a Mini Q column (4.6×50 mm; GE
114	Healthcare). Dialysis with 20 mM Tris-HCl (pH 8.0) was used for sample desalting and
115	buffer exchange, and then the samples were concentrated using a Minicon or Amicon
116	Ultra-4 (Millipore, Billerica, MA, USA). The sample injection volume was 1 mL. The
117	binding buffer contained 20 mM Tris-HCl (pH 8.0), and the elution buffer contained 20
118	mM Tris-HCl, 1 M NaCl.

120 **3. Results**

121 **3.1. Extraction of LSRJPs by ultracentrifugation**

The solution obtained by mixing 10 g of RJ with 10 mL of deionized water was separated into three layers by ultracentrifugation (Fig. 1-A). The supernatant was classified as layered soluble RJ proteins (LSRJPs). In addition, the mixed solution of these layers was classified as crude soluble RJ proteins (CSRJPs). The upper, middle, and lower layers had volumes of 1.5 mL, 7 mL, and 4.5 mL, respectively.

127 **3.2.**Comparison of the yields obtained by both extraction methods

We recovered the mixture of three LSRJPs layers extracted using the new method to 128compare with CSRJPs extracted from the existing method. The total amount of protein 129130 in CSRJPs extracted from three different RJs was measured. The recovery rate was determined as the percentage of the weight of RJ. The yields obtained from each 131132method are shown in Table 1. Total protein concentrations of supernatant obtained from 133each RJ using the existing method were 20.52 mg/ml, 18.20 mg/ml, and 24.53 mg/ml; the new method yielded 40.19 mg/ml, 32.79 mg/ml, and 36.03 mg/ml. Recovery rates 134 135were 1.267%, 1.041%, and 1.413% using the existing method, while the rates for the 136new method were 5.225%, 4.263%, and 4.683%. Recovery rates were calculated according to the following equation (formula?): weight of 3 ml RJ/total protein in 137138existing method, and RJ 10 g/total protein in new method.

3.3. Comparison of the protein profile from both extraction methods

First, we compared the protein profile of CSRJPs that were extracted using the existing method and the new method. We recovered the mixture of three layers of SRJPs extracted by the new method. It is well established that size-exclusion chromatography of CSRJPs yields the elution pattern presented in Fig. 2. Each major protein peak was identified in a previous study. A peak at 290 kDa represented the MRJP1 oligomer, while peaks at approximately 70 kDa and 50 kDa were MRJP3 and MRJP2, respectively.
There were minimal differences in the major protein peaks between the two extraction
methods. The new method yielded greater small molecular peaks than the existing
method. Peaks eluted after 15 mL consisted of low molecular constituents and not
proteins (data not shown).

150 **3.4. Analysis of LSRJPs by electrophoresis**

We analyzed the proteins in the three layers that were obtained with the reformed extraction method by SDS-PAGE and 2-DE. SDS-PAGE bands and 2-DE spots were identified by a previous study using MALDI-TOF-MS and standard proteomic analyses.

- 105 Identified by a previous study asing MIALDI TOT IND and standard proteonine analyses.
- 154 There were minimal differences in both the upper and middle layers. However, a 55 kDa

- 156 Additionally, we performed 2-DE and confirmed that MRJP1 predominantly
- 157 fractionated to the lower layer (Figs. 1-B, C, D).
- 158 **3.5. Analysis of LSRJPs by HPLC**

We analyzed the proteins in the three layers that were obtained using the new extraction method using Superose 12 size-exclusion HPLC columns. The chromatograms are shown in Figs. 3-A, B, C. The upper layer contained many peaks corresponding to low molecular weight proteins. There was a small peak representing the MRJP1 oligomer (290 kDa) in the upper layer. In addition, the middle layer contained a small peak corresponding to the MRJP1 oligomer. Peaks for MRJP2 and MRJP3 were higher in the middle than in the upper layer. On the other hand, it was clear that the MRJP1 oligomer predominantly fractionated to the lower layer.

167

168 **4. Discussion**

There are numerous reports describing a technically established MRJP purification 169 procedure that includes (i) dialysis to eliminate impurities from RJ and to extract SRJPs 170171by dissolution and (ii) HPLC to isolate the target MRJPs contained in the SRJPs 172(Fontana, Mendes, de Souza, Konno, Cesar, Malaspina, et al., 2004; Furusawa, et al., 2008; Kimura, Kajiyama, Kanaeda, Izukawa, & Yonekura, 1996; Li, Feng, Zhang, 173174Zhang, & Pan, 2008; Okamoto, 2003; S. Tamura, et al., 2009; Shougo Tamura, Kono, Harada, Yamaguchi, & Moriyama, 2009). However, isolating the target fraction from RJ 175176by dialysis is time-consuming. Similar to previous reports (S. Tamura, et al., 2009; Shougo Tamura, Kono, Harada, Yamaguchi, & Moriyama, 2009), the dialysis system at 177the authors' facility required at least seven days to complete the extraction process. 178179Another disadvantage of this dialysis-based extraction method is the poor yield; processing of dialysis 3 mL of RJ by the conventional procedure yielded only 2 mL of 180

aqueous solution, with a mean protein concentration of only 21.08 mg/mL on average.
In addition, recovery rate (yield of total protein levels/weight of RJ) averaged 1.24%.
Thus, one of the major challenges in studying the physiological activities of RJ has been
the development of a new method that produces high yields of MRJPs.

The new method described in this report, which processed RJ first by 185186 ultracentrifugation, yielded aqueous solutions with a mean volume of 13 mL and a mean protein concentration of 36.33 mg/mL from a starting mixture of 10 g of RJ in 10 mL of 187 dissolution water. Additionally, recovery rate averaged 4.72%. The resulting protein 188 189 concentration was more than 1.7-fold higher than that obtained by the conventional process, and the resulting recovery rate increased by 3.8-fold. Further, our preliminary 190191 experiments suggested that solutions with higher protein concentrations could be 192obtained by adding smaller volumes of dissolution water (unpublished data). In the case of extensive extraction, products obtained by dialysis-based methods are generally very 193 194 expensive. The resulting yield of total proteins levels using our method was more than 10-fold higher than that obtained by the conventional method. 195

MRJPs have been the subject of various research projects on the physiological activities of RJ. Such studies call for a significant amount of highly pure MRJPs. Therefore, we believe that our new technique will contribute to advances in scientific

199 knowledge of the MRJP family.

200	We demonstrated that ultracentrifuging RJ for 1 hour resulted in a visible, three-layer
201	separation of the supernatant. The upper and middle layers had high concentrations of
202	MRJP2 (52 kDa) and MRJP3 (60-70 kDa). MRJP1 (55 kDa), which had a similar
203	molecular weight to MRJP2 and MRJP3, was present in the lower layer in the form of
204	an oligomer. Our accomplishment has provided a highly efficient method to purify the
205	target MRJP by collecting the relevant supernatant layer. In particular, MRJP1 exerts
206	cell protective effects (Turkmen, Cavusoglu, Yapar, & Yalcin, 2009; Wagner, Dobler, &
207	Thiem, 1970) and other physiological activities (Majtan, Kovacova, Bilikova, & Simuth,
208	2006; Matsui, Yukiyoshi, Doi, Sugimoto, Yamada, & Matsumoto, 2002; Narita, Nomura,
209	Ohta, Inoh, Suzuki, Araki, et al., 2006) and exists predominantly as an oligomer in
210	naturally produced RJ (S. Tamura, et al., 2009; Shougo Tamura, Kono, Harada,
211	Yamaguchi, & Moriyama, 2009). This underscores the significance of using the MRJP1
212	oligomer when studying the biological properties of MRJP1.
213	In conclusion, the novel technique involving ultracentrifugation of RJ described here
214	supersedes conventional methods in terms of technical simplicity and production yields.
215	Despite economic issues related to the high cost of the ultracentrifugation equipment,
216	we expect that this new process will prove to be a new standard method to purify

217 MRJPs.

218

219	References
220	De Natale, C., Annuzzi, G., Bozzetto, L., Mazzarella, R., Costabile, G., Ciano, O.,
221	Riccardi, G., & Rivellese, A. A. (2009). Effects of a plant-based
222	high-carbohydrate/high-fiber diet versus high-monounsaturated
223	fat/low-carbohydrate diet on postprandial lipids in type 2 diabetic patients.
224	Diabetes Care, 32(12), 2168-2173.
225	Etcheverry, P., Miller, D. D., & Glahn, R. P. (2004). A low-molecular-weight factor in
226	human milk whey promotes iron uptake by Caco-2 cells. J Nutr, 134(1), 93-98.
227	Fontana, R., Mendes, M. A., de Souza, B. M., Konno, K., Cesar, L. M., Malaspina, O.,
228	& Palma, M. S. (2004). Jelleines: a family of antimicrobial peptides from the
229	Royal Jelly of honeybees (Apis mellifera). Peptides, 25(6), 919-928.
230	Fujiwara, S., Imai, J., Fujiwara, M., Yaeshima, T., Kawashima, T., & Kobayashi, K.
231	(1990). A potent antibacterial protein in royal jelly. Purification and
232	determination of the primary structure of royalisin. J Biol Chem, 265(19),
233	11333-11337.

234 Furusawa, T., Rakwal, R., Nam, H. W., Shibato, J., Agrawal, G. K., Kim, Y. S., Ogawa,

235	Y., Yoshida, Y., Kouzuma, Y., Masuo, Y., & Yonekura, M. (2008).
236	Comprehensive royal jelly (RJ) proteomics using one- and two-dimensional
237	proteomics platforms reveals novel RJ proteins and potential
238	phospho/glycoproteins. J Proteome Res, 7(8), 3194-3229.
239	Henry, G., Molle, D., Morgan, F., Fauquant, J., & Bouhallab, S. (2002). Heat-induced
240	covalent complex between casein micelles and beta-lactoglobulin from goat's
241	milk: identification of an involved disulfide bond. J Agric Food Chem, 50(1),
242	185-191.
243	Kamakura, M. (2011). Royalactin induces queen differentiation in honeybees. Nature,
244	473(7348), 478-483.
245	Kamakura, M., Suenobu, N., & Fukushima, M. (2001). Fifty-seven-kDa protein in royal
246	jelly enhances proliferation of primary cultured rat hepatocytes and increases
247	albumin production in the absence of serum. Biochem Biophys Res Commun,
248	282(4), 865-874.
249	Kimura, Y., Kajiyama, S., Kanaeda, J., Izukawa, T., & Yonekura, M. (1996). N-linked
250	sugar chain of 55-kDa royal jelly glycoprotein. Biosci Biotechnol Biochem,
251	60(12), 2099-2102.
252	Li, J. K., Feng, M., Zhang, L., Zhang, Z. H., & Pan, Y. H. (2008). Proteomics analysis

254

of major royal jelly protein changes under different storage conditions. *J Proteome Res*, 7(8), 3339-3353.

- 255 Majtan, J., Kovacova, E., Bilikova, K., & Simuth, J. (2006). The immunostimulatory
- effect of the recombinant apalbumin 1-major honeybee royal jelly protein-on
 TNFalpha release. *Int Immunopharmacol*, 6(2), 269-278.
- 258 Majtan, J., Kumar, P., Majtan, T., Walls, A. F., & Klaudiny, J. (2010). Effect of honey
- and its major royal jelly protein 1 on cytokine and MMP-9 mRNA transcripts in
 human keratinocytes. *Exp Dermatol*, *19*(8), e73-79.
- 261 Matsui, T., Yukiyoshi, A., Doi, S., Sugimoto, H., Yamada, H., & Matsumoto, K. (2002).
- 262 Gastrointestinal enzyme production of bioactive peptides from royal jelly
- protein and their antihypertensive ability in SHR. *J Nutr Biochem*, *13*(2), 80-86.
- 264 Narita, Y., Nomura, J., Ohta, S., Inoh, Y., Suzuki, K. M., Araki, Y., Okada, S.,
- 265 Matsumoto, I., Isohama, Y., Abe, K., Miyata, T., & Mishima, S. (2006). Royal
- 266 jelly stimulates bone formation: physiologic and nutrigenomic studies with mice
- and cell lines. *Biosci Biotechnol Biochem*, 70(10), 2508-2514.
- Oka, H., Emori, Y., Kobayashi, N., Hayashi, Y., & Nomoto, K. (2001). Suppression of
 allergic reactions by royal jelly in association with the restoration of macrophage
 function and the improvement of Th1/Th2 cell responses. *Int Immunopharmacol*,

1(3), 521-532.

- Okamoto, I. (2003). Major royal jelly protein 3 modulates immune responses in vitro
 and in vivo. *Life Sciences*, *73*(16), 2029-2045.
- 274 Schmitzova, J., Klaudiny, J., Albert, S., Schroder, W., Schreckengost, W., Hanes, J.,
- Judova, J., & Simuth, J. (1998). A family of major royal jelly proteins of the honeybee Apis mellifera L. *Cell Mol Life Sci*, *54*(9), 1020-1030.
- 277 Shen, L., Ding, M., Zhang, L., Jin, F., Zhang, W., & Li, D. (2010). Expression of
- Acc-Royalisin gene from royal jelly of Chinese honeybee in Escherichia coli and its antibacterial activity. *J Agric Food Chem*, *58*(4), 2266-2273.
- 280 Tamura, S., Amano, S., Kono, T., Kondoh, J., Yamaguchi, K., Kobayashi, S., Ayabe, T.,
- & Moriyama, T. (2009). Molecular characteristics and physiological functions of
 major royal jelly protein 1 oligomer. *Proteomics*, 9(24), 5534-5543.
- 283 Tamura, S., Kono, T., Harada, C., Yamaguchi, K., & Moriyama, T. (2009). Estimation
- and characterisation of major royal jelly proteins obtained from the honeybee
 Apis merifera. *Food Chemistry*, *114*(4), 1491-1497.
- Tanese, N. (1997). Small-scale density gradient sedimentation to separate and analyze
 multiprotein complexes. *Methods*, 12(3), 224-234.
- Turkmen, Z., Cavusoglu, K., Yapar, K., & Yalcin, E. (2009). Protective role of Royal

289	Jelly (honeybee) on genotoxicity and lipid peroxidation, induced by petroleum
290	wastewater, in Allium cepa L. root tips. Environ Technol, 30(11), 1205-1214.
291	Wagner, H., Dobler, I., & Thiem, I. (1970). [Effect of food-juice of the queen bee (royal
292	jelly) on the peripheral blood and the survival rate of mice after whole body
293	x-irradiation]. Radiobiol Radiother (Berl), 11(3), 323-328.
294	Weaver, N. (1966). Physiology of caste determination. Annu Rev Entomol, 11, 79-102.
295	Yee, M. S., Pavitt, D. V., Tan, T., Venkatesan, S., Godsland, I. F., Richmond, W., &
296	Johnston, D. G. (2008). Lipoprotein separation in a novel iodixanol density
297	gradient, for composition, density, and phenotype analysis. J Lipid Res, 49(6),
298	1364-1371.

300 Figure captions

Fig.1. (A) SRJPs after ultracentrifugation. Ten grams RJ was dissolved in 10 mL of 301 deionized water. The supernatant consisted of an upper turbid layer (1.5 mL), clear 302303 middle layer (7 mL), and a thick lower layer (4.5 mL). (a) Insoluble layer included RJ. (B), (C) and (D) 2-DE profiles of SRJPs of three layers. (B) 2-DE profile of upper-layer. 304 The spot indicated by a dotted circle was MRJP3. Another spot indicated by a dashed 305306 circle was MRJP2. (C) 2-DE profile of middle-layer. The major spot was the same as 307 the upper-layer. (D) 2-DE profile of lower-layer. The major spot indicated by a 308 continuous circle was MRJP1. The amount of protein obtained was 20 µg. The gel was 309 stained with CBB.

Fig.2. Two elution profiles of SRJPs by size-exclusion HPLC on a Superose 12 column. The protein absorbance was monitored at 280 nm. The column was calibrated using Gel filtration Calibration Kits with low molecular weight and high molecular weight proteins (GE Healthcare). Peaks: a MRJP1 oligomer (290 kDa), b MRJP3 (60-70 kDa), c MRJP2 (52 kDa). With regard to these major peaks, there was not much difference between the two methods (OR No significant differences were found in these major peaks between the two methods.). Lot number of RJ was the same for A and B. (A)

318	Elution pattern of SRJPs obtained by the existing method. Absorbance of MRJP1 peak
319	and MRJP2 peak was 833 mAU and 1426 mAU, respectively. (B) Elution pattern of
320	SRJPs (mixture of upper, middle and lower layers) obtained by the new method.
321	Absorbance of the MRJP1 peak and MRJP2 peak was 831 mAU and 1479 mAU,
322	respectively. Peaks eluted after 15 mL consisted of low molecular constituents and not
323	proteins.
324	
325	Fig.3. Elution profiles of three layers SRJPs by size-exclusion HPLC on a Superose 12
326	column. The protein absorbance was monitored at 280 nm. (A) Elution pattern of SRJPs
327	of upper layer. MRJP3 peak was 419 mAU and MRJP2 peak was 865 mAU. (B) Elution
328	pattern of SRJPs of middle layer. MRJP3 peak was 624 mAU and MRJP2 peak was
329	1338 mAU. (C) Elution pattern of SRJPs of lower layer. MRJP1 oligomer peak was
330	1660 mAU.

331 List of figure captions and a table

- 332 Figure 1. Royal jelly (RJ) after ultracentrifugation and 2-DE profiles of three layers.
- 333 Figure 2. Two elution profiles of soluble RJ proteins (SRJPs) by size-exclusion HPLC
- on a Superose 12 column.
- Figure 3. Elution profiles of three layers of SRJPs by size-exclusion HPLC on a
- 336 Superose 12 column.
- Table 1. Comparison of the yields obtained by existing and new extraction methods.

- 1 Title: A rapid method to isolate soluble royal jelly proteins
- $\mathbf{2}$
- Reo Nozaki^{a,b}, Shogo Tamura^{c,d}, Aimi Ito^c, Takanori Moriyama^e, Kikuji Yamaguchi^{a,b}, Toru Kono^a
- 5 Affiliations:
- ^aDivision of Gastroenterologic and General Surgery, Department of Surgery, Asahikawa Medical
- 7 University, Asahikawa, Japan.
- ⁸ ^bJapan Royal Jelly Research Laboratories, Japan Royal Jelly & Co., Miyagi, Japan.
- 9 ^cDivision of Health Sciences, Graduate School of Health Sciences, Hokkaido University, Sapporo,
- 10 Japan.
- ¹¹ ^dResearch Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan.
- ¹² ^eMedical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan.
- 13
- 14 Address correspondence to Toru Kono, M.D., Ph.D.
- 15 Department of Surgery, Asahikawa Medical University,
- 16 2-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
- 17 Tel: +81-166-68-2503, Fax: +81-166-68-2193, E-mail: kono@asahikawa-med.ac.jp

19 Abstract

20Soluble royal jelly (RJ) proteins (SRJPs) include the major RJ protein (MRJP) family, which contribute to the physiological actions of RJ. Although SRJPs are prepared using conventional 2122methods involving dialysis and centrifugation, dialysis is a time-consuming process. We have therefore developed a simple method to isolate SRJPs from RJ. This new method produces 23twenty-fold higher levels of SRJPs than that of the conventional procedure;, hence, the levels 2425obtained by the new and existing methods were compared. A 1-hour ultracentrifugation separated SRJPs in the supernatant into upper, middle and lower layers. Each layer was analyzed by 26size-exclusion HPLC, SDS-PAGE and 2-DE. The upper and middle layers contained MRJP2 (52 27kDa) and MRJP3 (60-70 kDa), while the lower layer contained MRJP1 (290 kDa). In nature, MRJP1 28is a monomer and/or oligomer. When the lower layer was analyzed by Superose 12 HPLC, MRJP1 2930 was predominantly an oligomer. Our MRJP isolation method reduces the procedure time by using 31ultracentrifugation without dialysis to obtain SRJPs and produces layers containing MRJP1 oligomers, MRJP2 and MRJP3. 32

33

34 Keywords

royal jelly, ultracentrifugation, soluble royal jelly proteins, MRJP1 oligomer, HPLC

36

37 **1. Introduction**

Royal jelly (RJ) is nutritious food that is secreted from the hypopharyngeal and mandibular glands

39	of nurse honeybees. RJ contains 12-15% crude proteins, and it has been reported that 80% of these
40	proteins are members of the major RJ protein (MRJP) family, with MRJP1 accounting for more than
41	45% (Furusawa, Rakwal, Nam, Shibato, Agrawal, Kim, et al., 2008). MRJP1 is an acidic 55 kDa
42	protein and forms an oligomeric complex; however, its protein structure has not been analyzed yet.
43	RJ is indispensable for the development of a queen bee and MRJP family is thought to be a major
44	factor in queen honeybee development (Kamakura, 2011; Schmitzova, Klaudiny, Albert, Schroder,
45	Schreckengost, Hanes, et al., 1998; Weaver, 1966). Furthermore, the MRJP family is thought to be
46	the main substance involved in the physiological actions of RJ, including cell proliferation, cytokine
47	suppression, and antimicrobial activity (Fujiwara, Imai, Fujiwara, Yaeshima, Kawashima, &
48	Kobayashi, 1990; Kamakura, Suenobu, & Fukushima, 2001; Majtan, Kumar, Majtan, Walls, &
49	Klaudiny, 2010; Oka, Emori, Kobayashi, Hayashi, & Nomoto, 2001; Okamoto, 2003; Shen, Ding,
50	Zhang, Jin, Zhang, & Li, 2010).
51	Previously, soluble RJ proteins (SRJPs) including the MRJP family were prepared from methods
52	that combined dialysis and centrifugation (S. Tamura, Amano, Kono, Kondoh, Yamaguchi,
53	Kobayashi, et al., 2009; Shougo Tamura, Kono, Harada, Yamaguchi, & Moriyama, 2009). Typically,

these methods take a long time to produce SRJPs. Most existing methods require seven days of

- 55 dialysis and produce very low yields because RJ is difficult to dissolve. Therefore, the quantity of
- 56 MRJPs obtained from SRJPs is a limiting factor for biological research on MRJPs.
- 57 Ultracentrifugation is known as a useful tool to isolate lipoproteins and whey proteins that are

58	difficult to extract (De Natale, Annuzzi, Bozzetto, Mazzarella, Costabile, Ciano, et al., 2009;
59	Etcheverry, Miller, & Glahn, 2004; Henry, Molle, Morgan, Fauquant, & Bouhallab, 2002; Tanese,
60	1997; Yee, Pavitt, Tan, Venkatesan, Godsland, Richmond, et al., 2008). Thus, we used
61	ultracentrifugation to isolate SRJPs from RJ and obtained a large quantity of SRJPs within an hour.
62	In this study we describe a simple and rapid method to isolate SRJPs using a novel ultracentrifugal
63	analysis.
64	
65	2. Materials and Methods
66	2.1. Materials
66 67	2.1. Materials Fresh RJ was provided by Japan Royal Jelly (Tokyo, Japan). Samples were stored at -80°C until
66 67 68	2.1. Materials Fresh RJ was provided by Japan Royal Jelly (Tokyo, Japan). Samples were stored at -80°C until analysis.
66 67 68 69	 2.1. Materials Fresh RJ was provided by Japan Royal Jelly (Tokyo, Japan). Samples were stored at -80°C until analysis. 2.2. Extraction of soluble RJ proteins
66 67 68 69 70	 2.1. Materials Fresh RJ was provided by Japan Royal Jelly (Tokyo, Japan). Samples were stored at -80°C until analysis. 2.2. Extraction of soluble RJ proteins First, 10 g of RJ was dissoloved in 10 mL of deionized water and vortexed. Next, RJ was
 66 67 68 69 70 71 	 2.1. Materials Fresh RJ was provided by Japan Royal Jelly (Tokyo, Japan). Samples were stored at -80°C until analysis. 2.2. Extraction of soluble RJ proteins First, 10 g of RJ was dissoloved in 10 mL of deionized water and vortexed. Next, RJ was ultracentrifuged (Optima[™] L-80XP Ultracentrifuge, Beckman Coulter, Tokyo, Japan) at 113400 xg
 66 67 68 69 70 71 72 	 2.1. Materials Fresh RJ was provided by Japan Royal Jelly (Tokyo, Japan). Samples were stored at -80°C until analysis. 2.2. Extraction of soluble RJ proteins First, 10 g of RJ was dissoloved in 10 mL of deionized water and vortexed. Next, RJ was ultracentrifuged (Optima[™] L-80XP Ultracentrifuge, Beckman Coulter, Tokyo, Japan) at 113400 xg for 1 hour at 4°C. Then, the supernatant was separated into three layers, including the upper, middle,

- ⁷⁴ layer was recovered with minimal mixing of the layers and then stored at 4°C until further analysis.
- 75 **2.3. Measurement of total protein levels**

The total protein concentration in the samples was quantified using a Micro BCA protein Assay

Kit (Thermo Fisher Scientific K. K., Yokohama, Japan). HSA (Wako, Osaka, Japan) was used as a
protein standard.

79 **2.4. SDS-PAGE**

Proteins in each layer were mixed with NuPAGE lithium dodecyl sulfate (LDS) sample buffer (Invitrogen, Tokyo, Japan) containing 50 mM DTT, and then boiled at 100°C for 5 min. The sample mixtures were separated on precast NuPAGE 4-12% bis-Tris polyacrylamide gels (Invitrogen). Running buffer was prepared using NuPAGE MES SDS Running Buffer (Invitrogen). SDS-PAGE was performed at a constant 200 V. Mark12 Unstained Standard (Invitrogen) was used as molecular weight markers for SDS-PAGE.

86 **2.5. 2-DE**

Twenty-five micrograms of protein was desalted, delipidated and concentrated by deposition with 87 100% cold acetone. Protein pellets were washed with 80% acetone and dissolved in a protein 88 solubiliser (Invitrogen), carrier ampholytes 3-10 (Invitrogen) and DTT. The protein solution was 89 added to an IPG ZOOM strip gel (pH 3-10, Invitrogen) and incubated overnight. First-dimension 90 IEF was run under gradient voltage conditions (175 V constant for 20 min, gradient from 175 to 91922000 V for 45 min, and 2000 V constant for 30 min). IEF Marker 3-10 SELVA Liquid Mix (SERVA Electrophoresis, Heidelberg, Germany) was used as a pI marker. The IPG strip gel used for IEF was 93reduced with 50 mM DTT in LDS sample buffer and alkylated with 125 mM iodoacetamide in LDS 94sample buffer. The gel was used for second-dimension SDS-PAGE as described above. 95

96 **2.6. HPLC**

Each sample layer was analyzed by size-exclusion and anion-exchange HPLC. Size-exclusion 97HPLC was performed on Superose 12 columns (10×300 mm; GE Healthcare). PBS (Invitrogen) was 98 used as the elution buffer for each column. For the Superose 12 column, the sample injection volume 99 was 100 μ L and the flow rate was 0.2 mL/min. 100101 Anion-exchange HPLC was performed on a Mini Q column (4.6×50 mm; GE Healthcare). Dialysis with 20 mM Tris-HCl (pH 8.0) was used for sample desalting and buffer exchange, and then 102103 the samples were concentrated using a Minicon or Amicon Ultra-4 (Millipore, Billerica, MA, USA). The sample injection volume was 1 mL. The binding buffer contained 20 mM Tris-HCl (pH 8.0), and 104 the elution buffer contained 20 mM Tris-HCl, 1 M NaCl. 105

106

107 **3. Results**

108 **3.1. Extraction of LSRJPs by ultracentrifugation**

The solution obtained by mixing 10 g of RJ with 10 mL of deionized water was separated into three layers by ultracentrifugation (Fig. 1-A). The supernatant was classified as layered soluble RJ proteins (LSRJPs). In addition, the mixed solution of these layers was classified as crude soluble RJ proteins (CSRJPs). The upper, middle, and lower layers had volumes of 1.5 mL, 7 mL, and 4.5 mL, respectively.

114 **3.2.**Comparison of the yields obtained by both extraction methods

115We recovered the mixture of three LSRJPs layers extracted using the new method to compare with 116 CSRJPs extracted from the existing method. The total amount of protein in CSRJPs extracted from 117three different RJs was measured. The recovery rate was determined as the percentage of the weight 118 of RJ. The yields obtained from each method are shown in Table 1. Total protein concentrations of supernatant obtained from each RJ using the existing method were 20.52 mg/ml, 18.20 mg/ml, and 11912024.53 mg/ml; the new method yielded 40.19 mg/ml, 32.79 mg/ml, and 36.03 mg/ml. Recovery rates were 1.267%, 1.041%, and 1.413% using the existing method, while the rates for the new method 121were 5.225%, 4.263%, and 4.683%. Recovery rates were calculated according to the following 122equation (formula?): weight of 3 ml RJ/total protein in existing method, and RJ 10 g/total protein in 123124new method.

125 **3.3.** Comparison of the protein profile from both extraction methods

126First, we compared the protein profile of CSRJPs that were extracted using the existing method and 127the new method. We recovered the mixture of three layers of SRJPs extracted by the new method. It is well established that size-exclusion chromatography of CSRJPs yields the elution pattern 128presented in Fig. 2. Each major protein peak was identified in a previous study. A peak at 290 kDa 129130 represented the MRJP1 oligomer, while peaks at approximately 70 kDa and 50 kDa were MRJP3 and MRJP2, respectively. There were minimal differences in the major protein peaks between the two 131extraction methods. The new method yielded greater small molecular peaks than the existing method. 132Peaks eluted after 15 mL consisted of low molecular constituents and not proteins (data not shown). 133

134 **3.4. Analysis of LSRJPs by electrophoresis**

We analyzed the proteins in the three layers that were obtained with the reformed extraction method 135136 by SDS-PAGE and 2-DE. SDS-PAGE bands and 2-DE spots were identified by a previous study 137using MALDI-TOF-MS and standard proteomic analyses. There were minimal differences in both the upper and middle layers. However, a 55 kDa band was predominantly stained in the lower layer. 138139Additionally, we performed 2-DE and confirmed that MRJP1 predominantly fractionated to the lower layer (Figs. 1-B, C, D). 140141**3.5.** Analysis of LSRJPs by HPLC 142We analyzed the proteins in the three layers that were obtained using the new extraction method using Superose 12 size-exclusion HPLC columns. The chromatograms are shown in Figs. 3-A, B, C. 143144The upper layer contained many peaks corresponding to low molecular weight proteins. There was a small peak representing the MRJP1 oligomer (290 kDa) in the upper layer. In addition, the middle 145layer contained a small peak corresponding to the MRJP1 oligomer. Peaks for MRJP2 and MRJP3 146 were higher in the middle than in the upper layer. On the other hand, it was clear that the MRJP1 147oligomer predominantly fractionated to the lower layer. 148

149

150 **4. Discussion**

151 There are numerous reports describing a technically established MRJP purification procedure that 152 includes (i) dialysis to eliminate impurities from RJ and to extract SRJPs by dissolution and (ii)

153	HPLC to isolate the target MRJPs contained in the SRJPs (Fontana, Mendes, de Souza, Konno, Cesar,
154	Malaspina, et al., 2004; Furusawa, et al., 2008; Kimura, Kajiyama, Kanaeda, Izukawa, & Yonekura,
155	1996; Li, Feng, Zhang, Zhang, & Pan, 2008; Okamoto, 2003; S. Tamura, et al., 2009; Shougo
156	Tamura, Kono, Harada, Yamaguchi, & Moriyama, 2009). However, isolating the target fraction from
157	RJ by dialysis is time-consuming. Similar to previous reports (S. Tamura, et al., 2009; Shougo
158	Tamura, Kono, Harada, Yamaguchi, & Moriyama, 2009), the dialysis system at the authors' facility
159	required at least seven days to complete the extraction process. Another disadvantage of this
160	dialysis-based extraction method is the poor yield; processing of dialysis 3 mL of RJ by the
161	conventional procedure yielded only 2 mL of aqueous solution, with a mean protein concentration of
162	only 21.08 mg/mL on average. In addition, recovery rate (yield of total protein levels/weight of RJ)
163	averaged 1.24%. Thus, one of the major challenges in studying the physiological activities of RJ has
164	been the development of a new method that produces high yields of MRJPs.
165	The new method described in this report, which processed RJ first by ultracentrifugation, yielded
166	aqueous solutions with a mean volume of 13 mL and a mean protein concentration of 36.33 mg/mL
167	from a starting mixture of 10 g of RJ in 10 mL of dissolution water. Additionally, recovery rate
168	averaged 4.72%. The resulting protein concentration was more than 1.7-fold higher than that
169	obtained by the conventional process, and the resulting recovery rate increased by 3.8-fold. Further,
170	our preliminary experiments suggested that solutions with higher protein concentrations could be
171	obtained by adding smaller volumes of dissolution water (unpublished data). In the case of extensive

172	extraction, products obtained by dialysis-based methods are generally very expensive. The resulting
173	yield of total proteins levels using our method was more than 10-fold higher than that obtained by
174	the conventional method.

MRJPs have been the subject of various research projects on the physiological activities of RJ.
Such studies call for a significant amount of highly pure MRJPs. Therefore, we believe that our new
technique will contribute to advances in scientific knowledge of the MRJP family.

We demonstrated that ultracentrifuging RJ for 1 hour resulted in a visible, three-layer separation of 178179the supernatant. The upper and middle layers had high concentrations of MRJP2 (52 kDa) and MRJP3 (60-70 kDa). MRJP1 (55 kDa), which had a similar molecular weight to MRJP2 and MRJP3, 180 was present in the lower layer in the form of an oligomer. Our accomplishment has provided a highly 181 182efficient method to purify the target MRJP by collecting the relevant supernatant layer. In particular, 183MRJP1 exerts cell protective effects (Turkmen, Cavusoglu, Yapar, & Yalcin, 2009; Wagner, Dobler, & Thiem, 1970) and other physiological activities (Majtan, Kovacova, Bilikova, & Simuth, 2006; 184Matsui, Yukiyoshi, Doi, Sugimoto, Yamada, & Matsumoto, 2002; Narita, Nomura, Ohta, Inoh, 185Suzuki, Araki, et al., 2006) and exists predominantly as an oligomer in naturally produced RJ (S. 186 187 Tamura, et al., 2009; Shougo Tamura, Kono, Harada, Yamaguchi, & Moriyama, 2009). This underscores the significance of using the MRJP1 oligomer when studying the biological properties of 188 MRJP1. 189

190 In conclusion, the novel technique involving ultracentrifugation of RJ described here supersedes

191	conventional methods in terms of technical simplicity and production yields. Despite economic
192	issues related to the high cost of the ultracentrifugation equipment, we expect that this new process
193	will prove to be a new standard method to purify MRJPs.

- 196 De Natale, C., Annuzzi, G., Bozzetto, L., Mazzarella, R., Costabile, G., Ciano, O., Riccardi, G., &
- 197 Rivellese, A. A. (2009). Effects of a plant-based high-carbohydrate/high-fiber diet versus
- high-monounsaturated fat/low-carbohydrate diet on postprandial lipids in type 2 diabetic
 patients. *Diabetes Care*, 32(12), 2168-2173.
- Etcheverry, P., Miller, D. D., & Glahn, R. P. (2004). A low-molecular-weight factor in human milk whey promotes iron uptake by Caco-2 cells. *J Nutr*, *134*(1), 93-98.
- Fontana, R., Mendes, M. A., de Souza, B. M., Konno, K., Cesar, L. M., Malaspina, O., & Palma, M.
- S. (2004). Jelleines: a family of antimicrobial peptides from the Royal Jelly of honeybees
 (Apis mellifera). *Peptides*, 25(6), 919-928.
- ²⁰⁵ Fujiwara, S., Imai, J., Fujiwara, M., Yaeshima, T., Kawashima, T., & Kobayashi, K. (1990). A potent
- antibacterial protein in royal jelly. Purification and determination of the primary structure of
- 207 royalisin. J Biol Chem, 265(19), 11333-11337.
- 208 Furusawa, T., Rakwal, R., Nam, H. W., Shibato, J., Agrawal, G. K., Kim, Y. S., Ogawa, Y., Yoshida,
- 209 Y., Kouzuma, Y., Masuo, Y., & Yonekura, M. (2008). Comprehensive royal jelly (RJ)

210	proteomics using one- and two-dimensional proteomics platforms reveals novel RJ proteins
211	and potential phospho/glycoproteins. J Proteome Res, 7(8), 3194-3229.
212	Henry, G., Molle, D., Morgan, F., Fauquant, J., & Bouhallab, S. (2002). Heat-induced covalent
213	complex between casein micelles and beta-lactoglobulin from goat's milk: identification of an
214	involved disulfide bond. J Agric Food Chem, 50(1), 185-191.
215	Kamakura, M. (2011). Royalactin induces queen differentiation in honeybees. Nature, 473(7348),
216	478-483.
217	Kamakura, M., Suenobu, N., & Fukushima, M. (2001). Fifty-seven-kDa protein in royal jelly
218	enhances proliferation of primary cultured rat hepatocytes and increases albumin production
219	in the absence of serum. Biochem Biophys Res Commun, 282(4), 865-874.
220	Kimura, Y., Kajiyama, S., Kanaeda, J., Izukawa, T., & Yonekura, M. (1996). N-linked sugar chain of
221	55-kDa royal jelly glycoprotein. Biosci Biotechnol Biochem, 60(12), 2099-2102.
222	Li, J. K., Feng, M., Zhang, L., Zhang, Z. H., & Pan, Y. H. (2008). Proteomics analysis of major royal
223	jelly protein changes under different storage conditions. J Proteome Res, 7(8), 3339-3353.
224	Majtan, J., Kovacova, E., Bilikova, K., & Simuth, J. (2006). The immunostimulatory effect of the
225	recombinant apalbumin 1-major honeybee royal jelly protein-on TNFalpha release. Int
226	Immunopharmacol, 6(2), 269-278.
227	Majtan, J., Kumar, P., Majtan, T., Walls, A. F., & Klaudiny, J. (2010). Effect of honey and its major
228	royal jelly protein 1 on cytokine and MMP-9 mRNA transcripts in human keratinocytes. Exp

Dermatol, 19(8), e73-79.

230	Matsui, T., Yukiyoshi, A., Doi, S., Sugimoto, H., Yamada, H., & Matsumoto, K. (2002).
231	Gastrointestinal enzyme production of bioactive peptides from royal jelly protein and their
232	antihypertensive ability in SHR. J Nutr Biochem, 13(2), 80-86.
233	Narita, Y., Nomura, J., Ohta, S., Inoh, Y., Suzuki, K. M., Araki, Y., Okada, S., Matsumoto, I.,
234	Isohama, Y., Abe, K., Miyata, T., & Mishima, S. (2006). Royal jelly stimulates bone
235	formation: physiologic and nutrigenomic studies with mice and cell lines. Biosci Biotechnol
236	Biochem, 70(10), 2508-2514.
237	Oka, H., Emori, Y., Kobayashi, N., Hayashi, Y., & Nomoto, K. (2001). Suppression of allergic
238	reactions by royal jelly in association with the restoration of macrophage function and the
239	improvement of Th1/Th2 cell responses. Int Immunopharmacol, 1(3), 521-532.
240	Okamoto, I. (2003). Major royal jelly protein 3 modulates immune responses in vitro and in vivo.
241	Life Sciences, 73(16), 2029-2045.
242	Schmitzova, J., Klaudiny, J., Albert, S., Schroder, W., Schreckengost, W., Hanes, J., Judova, J., &
243	Simuth, J. (1998). A family of major royal jelly proteins of the honeybee Apis mellifera L.
244	Cell Mol Life Sci, 54(9), 1020-1030.
245	Shen, L., Ding, M., Zhang, L., Jin, F., Zhang, W., & Li, D. (2010). Expression of Acc-Royalisin gene
246	from royal jelly of Chinese honeybee in Escherichia coli and its antibacterial activity. J Agric
247	Food Chem, 58(4), 2266-2273.

248	Tamura, S., Amano, S., Kono, T., Kondoh, J., Yamaguchi, K., Kobayashi, S., Ayabe, T., & Moriyama,
249	T. (2009). Molecular characteristics and physiological functions of major royal jelly protein 1
250	oligomer. Proteomics, 9(24), 5534-5543.

- Tamura, S., Kono, T., Harada, C., Yamaguchi, K., & Moriyama, T. (2009). Estimation and
 characterisation of major royal jelly proteins obtained from the honeybee Apis merifera. *Food Chemistry*, *114*(4), 1491-1497.
- Tanese, N. (1997). Small-scale density gradient sedimentation to separate and analyze multiprotein
 complexes. *Methods*, 12(3), 224-234.
- Turkmen, Z., Cavusoglu, K., Yapar, K., & Yalcin, E. (2009). Protective role of Royal Jelly (honeybee) on genotoxicity and lipid peroxidation, induced by petroleum wastewater, in

Allium cepa L. root tips. *Environ Technol*, 30(11), 1205-1214.

- 259 Wagner, H., Dobler, I., & Thiem, I. (1970). [Effect of food-juice of the queen bee (royal jelly) on the
- 260 peripheral blood and the survival rate of mice after whole body x-irradiation]. *Radiobiol*261 *Radiother (Berl), 11*(3), 323-328.
- 262 Weaver, N. (1966). Physiology of caste determination. *Annu Rev Entomol*, 11, 79-102.
- 263 Yee, M. S., Pavitt, D. V., Tan, T., Venkatesan, S., Godsland, I. F., Richmond, W., & Johnston, D. G.
- 264 (2008). Lipoprotein separation in a novel iodixanol density gradient, for composition, density,
- and phenotype analysis. *J Lipid Res*, 49(6), 1364-1371.

267 **Figure captions**

Fig.1. (A) SRJPs after ultracentrifugation. Ten grams RJ was dissolved in 10 mL of deionized water. 268269The supernatant consisted of an upper turbid layer (1.5 mL), clear middle layer (7 mL), and a thick lower layer (4.5 mL). (a) Insoluble layer included RJ. (B), (C) and (D) 2-DE profiles of SRJPs of 270three layers. (B) 2-DE profile of upper-layer. The spot indicated by a dotted circle was MRJP3. 271272Another spot indicated by a dashed circle was MRJP2. (C) 2-DE profile of middle-layer. The major spot was the same as the upper-layer. (D) 2-DE profile of lower-layer. The major spot indicated by a 273274continuous circle was MRJP1. The amount of protein obtained was 20 µg. The gel was stained with CBB. 275

276

277Fig.2. Two elution profiles of SRJPs by size-exclusion HPLC on a Superose 12 column. The protein absorbance was monitored at 280 nm. The column was calibrated using Gel filtration Calibration 278279Kits with low molecular weight and high molecular weight proteins (GE Healthcare). Peaks: a MRJP1 oligomer (290 kDa), b MRJP3 (60-70 kDa), c MRJP2 (52 kDa). With regard to these major 280peaks, there was not much difference between the two methods (OR No significant differences were 281282found in these major peaks between the two methods.). Lot number of RJ was the same for A and B. (A) Elution pattern of SRJPs obtained by the existing method. Absorbance of MRJP1 peak and 283MRJP2 peak was 833 mAU and 1426 mAU, respectively. (B) Elution pattern of SRJPs (mixture of 284upper, middle and lower layers) obtained by the new method. Absorbance of the MRJP1 peak and 285

286	MRJP2 peak was 831 mAU and 1479 mAU, respectively. Peaks eluted after 15 mL consisted of low
287	molecular constituents and not proteins.

289	Fig.3. E	lution pr	ofiles of	three	layers	SRJPs	by si	ze-excl	usion	HPLC	on a	Superose	12	column.	The
-----	-----------------	-----------	-----------	-------	--------	-------	-------	---------	-------	------	------	----------	----	---------	-----

- protein absorbance was monitored at 280 nm. (A) Elution pattern of SRJPs of upper layer. MRJP3
- 291 peak was 419 mAU and MRJP2 peak was 865 mAU. (B) Elution pattern of SRJPs of middle layer.
- MRJP3 peak was 624 mAU and MRJP2 peak was 1338 mAU. (C) Elution pattern of SRJPs of lower
- 293 layer. MRJP1 oligomer peak was 1660 mAU.

294 List of figure captions and a table

- Figure 1. Royal jelly (RJ) after ultracentrifugation and 2-DE profiles of three layers.
- Figure 2. Two elution profiles of soluble RJ proteins (SRJPs) by size-exclusion HPLC on a Superose
- 297 12 column.
- Figure 3. Elution profiles of three layers of SRJPs by size-exclusion HPLC on a Superose 12 column.
- Table 1. Comparison of the yields obtained by existing and new extraction methods.

300 Fig.1

304 Fig.3

	Lot	Weight (g)	supernatant after centrifugation (ml)	total protein concentration of supernatant (mg/ml)	yield of total protein levels (mg)	recovery rate (%)
	а	3.24	2	20.52	41.04	1.27
Existing method	b	3.50	2	18.20	36.40	1.04
	c	3.47	2	24.53	49.06	1.41
	a	10	13	40.19	522.50	5.22
New method	b	10	13	32.79	426.33	4.26
	c	10	13	36.03	468.34	4.68

Comparison of the yields obtained by existing and new extraction meth	ods