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Abstract 

Increasing evidence have suggested that thiazolidinediones (TZDs) could 

have a therapeutic potential for patients with cancers.  Here, the evidence 

on the mechanisms by which TZDs could contribute to different steps of 

cancer biology in the digestive system was summarized.  According to 

studies, TZDs induce anti-cancer actions through 3 main pathways 1) cell 

growth arrest, 2) induction of apoptosis and 3) inhibition of cell invasion.  

Cell growth arrest is induced by increased level of p27Kip1.  p27Kip1 

accumulation is resulted from the inhibition of the ubiqutin-proteasome 

system and/or inhibition of MEK-ERK signaling.  TZDs induce apoptosis 

through increased levels of apoptotic molecules, such as p53 and PTEN 

and/or decreased level of anti-apoptotic molecules, such as Bcl-2 and 

survivin.  Inhibition of MEK-ERK signaling-mediated up-regulation of 

E-cadherin and claudin-4, and/or decreased expression of matrix 

metalloproteinases (MMPs) such as MMP-2 and MMP-9, play a role in the 

TZD-induced inhibition of cancer cell invasion.  Thus, TZDs are capable 

of inducing anti-tumor action in a variety of ways in gastrointestinal 

cancers. 
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Introduction 

Thiazolidinediones (TZDs), including rosiglitazone, pioglitazone, 

troglitazone, and ciglitazone, are high-affinity ligands for the peroxisome 

proliferator-activated receptor γ (PPARγ) [1], a transcription factor 

preferentially expressed in adipose tissue [2].  These TZDs improve 

insulin sensitivity by regulating many aspects of adipose tissue function 

through the transcriptional activation of certain insulin-sensitive genes 

involved in glucose homeostasis, fatty acid metabolism, and triacylglycerol 

storage in adipocytes [3, 4].  In addition to adipose tissue, many human 

cancer cell lines have been reported to exhibit high levels of PPARγ 

expression.  Exposure of these tumor cells to TZDs, especially 

troglitazone and ciglitazone, led to cell growth inhibition ]5, 6], suggesting 

antitumor activities of TZDs.   

In addition to basic research evidence that TZDs possess 

anti-tumor effects on several cultured cancer cells [5, 6], Govindarajan et al.  

[7] have recently demonstrated a retrospective analysis of a database from 

10 Veteran Affairs medical centers in USA which was conducted to assess 

the influence of TZDs used to treat diabetes mellitus.  The clinical study 

observed a 33% reduction in lung cancer risk among TZD users compared 

with nonusers after adjusting for confounder interactions, suggesting that 



TZD use was associated with reduced risk of lung cancer.  Thus, TZD 

clinically used is capable of preventing the development of cancers.  

Based on these evidence, it would be considered that TZDs have a 

therapeutic potential for patients with cancers.   

In this review, the molecular mechanisms by which TZDs could 

exert anti-tumor actions in cancers in the digestive system are summarized. 

Studies suggest that 3 major pathways are deeply implicated in the 

TZD-induced anti-cancer effects.  These include 1) cell growth arrest, 2) 

induction of apoptosis, and 3) inhibition of cell invasion, as shown in 

Figure 1.   

 

Cell growth arrest by TZDs 

Studies have shown that TZDs inhibit cell cycle progression at the 

G1/S checkpoint in cancer cells [5, 6] .  So far, it has been reported 

increase level of cell cycle arrest-related molecules, and decreased level of 

cell cycle promotion-related molecules, would be involved in the 

TZD-induced growth arrest in cancer cells as shown in Figure 1.  Among 

them, p27 Kip1, a cyclin-dependent kinase inhibitor, may be a key molecule 

that is implicated in the cell growth arrest by TZDs in human cancer cells 

in that TZDs increased the level of p27 Kip1 protein and the inhibition of cell 



proliferation by troglitazone was not observed in cells transfected with an 

antisense oligonucleotide against p27Kip1 in human pancreatic cancer cells 

[8] .  In addition, cell growth arrest accompanied with p27 Kip1 

accumulation was also observed in gastric cancer [9] and hepatocellular 

carcinoma [10, 11] which had been treated with TZDs, suggesting that the 

increased level of p27 Kip1 protein may be a common mechanism by which 

TZDs induce the inhibition of cell growth in a wide variety of cancer cells.  

Since p27 Kip1 mRNA was unaltered by TZD [11] , it has been suggested 

that posttranslational mechanisms should have been involved in the p27 Kip1 

accumulation by TZD.  A ubiqutin-proteasome pathway is implicated in 

the posttranslational mechanisms of p27Kip1 regulation [12-14].  The two 

major systems for degradation of p27Kip1 protein, proteasome activity and 

function of skp2, a key enzyme for p27Kip1 ubiquitylation as a ubiqutin 

ligaze, were inhibited by TZDs in human gastric cancer cells and 

hepatocellular carcinoma cells [9, 10, 15] .  Since a proteasome inhibitor, 

lactacystin, inhibited proteasome activity, and increased the protein level of 

p27Kip1 as well as TZD does [9] , suggesting that TZD inhibits proteasome 

activity to accumulate p27Kip1 protein.  These results suggest that the 

TZD-induced growth inhibition was mediated by p27Kip1 accumulation 

which is induced by both inhibition of ubiquitylation of p27Kip1 by 



down-regulation of skp2 expression and reduction of degradation activity 

of p27Kip1 by proteasome as shown in Figure 1.  

 In addition to p27Kip1, several molecules related to cell cycle [16] 

have been listed as potential mediators that are involved in cell growth 

arrest by TZDs.  As illustrated in Figure 1, these include up-regulation of 

p21 WAF1/Cip1 [11] and down-regulation of cyclin D1, cyclin B1, cyclin E , 

CDK2 or CDK4 [17-20] . 

A role of mitogen-activated protein kinases (MAPKs), extracellular 

signal related kinase (ERK), c-Jun N-terminal protein kinase (JNK) and 

p38 MAPK was examined in TZD-induced inhibition of cell growth in 

human pancreatic cancer cells [21] .  Among the three kinases, 

troglitazone specifically inhibited the phosphorylation of ERK1/2 in a 

dose- and time-dependent manner.  Troglitazone also down-regulated the 

protein expression of mitogen-activated protein kinase kinase (MEK)1/2, 

an upstream molecule that regulates ERK phosphorylation.  Treatment of 

human pancreatic cancer cells with specific MEK inhibitor, PD98059 or 

U0126 inhibited ERK1/2 phosphorylation and cell growth.  In addition, 

MEK inhibitors could increase expression of p27Kip1 , suggesting that the 

inhibition of the MEK1/2-ERK1/2 signaling pathway may be implicated in 

the growth inhibitory effect through accumulation of p27Kip1 protein in 



human pancreatic cancer cells.  As described below, it is of interest that  

the inhibition of the MEK1/2-ERK1/2 signaling pathway may also 

contribute to the inhibition of cell invasion by TZDs (Figure 1). 

 

Apoptosis induced by TZDs 

TZDs also induce apoptosis in a variety of cells [22-25] .  With 

regard to the mechanism by which TZDs induce apoptosis, p53 might be 

involved in the induction of apoptosis in gastric cancer cells as following.  

TZD induced apoptosis in cultured human gastric cancer cells, MKN-28, 

MKN-45 and MKN-74 but not in KATO-III [26] .  It has been 

demonstrated that p53, an apoptosis-inducible gene, is deleted only in 

KATO-III whereas mutated or wild-type p53 is in MKN-28, MKN-45 or 

MKN-74, suggesting a possibility that p53 may mediate the apoptotic 

induction in human gastric cancer cells.  BADGE, a synthetic PPARγ

antagonist [27] , significantly blocked the TZDs-induced apoptosis in  

gastric cancer cells, suggesting that troglitazone-evoked gastric cancer cell 

apoptosis is mediated by PPARγactivation.  In the dominant-negative 

p53 mutant cells, troglitazone failed to induce apoptosis, strongly 

indicating p53 indeed mediates the process of the troglitazone-induced 

apoptosis.  In addition to p53, TZDs inhibit the antiapoptotic functions of 



Bcl-xL and Bcl-2 [28, 29] and stimulate apoptotic functions of bax and 

PTEN, leading to apoptosis [30-32] .   

Survivin is the smallest member of the inhibitor of apoptosis gene 

family in mammalian cells [33].  High expression of survivin was 

associated with decreased survival in certain cancers [34].  A couple of 

reports have demonstrated that TZDs inhibited expression of survivin in a 

variety of cancer cells [35, 36].  TZD inhibits expression of survivin, 

thereby reducing anti-apoptotic action, in other words, inducing apoptosis.  

In summary, TZDs induce apoptosis through not only increased level of 

apoptotic factors such as p53, PTEN or bax, but decreased level of 

anti-apoptotic factors such as Bcl-2/Bcl-xL or survivin (Fig. 1).  

In addition to the above molecular mechanisms of the induction of 

apoptosis by TZDs, mtDNA damage by troglitazone should be mentioned 

as a prime initiator of the hepatoxicity caused by this drug.  Among TZDs, 

only troglitazone was removed from the market in 2000 because of 

hepatoxicity [37].  A number of hypotheses have been proposed to explain 

the troglitazone-induced hepatoxicity.  These include the formation and 

accumulation of toxic metabolites, mitochondrial dysfunction and oxidant 

stress, inhibition of the bile salt transporter and bile acid toxicity, and the 

induction of apoptosis [37].  Rachek et al. [38] have recently examined 



the effects of troglitazone or rosiglitazone on the primary human 

hepatocytes.  According to the report, troglitazone induced apoptosis and 

significant mtDNA damage by troglitazone is considered to be a prime 

initiator of the hepatoxicity caused by this drug.  The PPARγ antagonist 

(GW9662) did not block the troglitazone-induced decrease in cell viability, 

indicating that the hepatotoxicity is PPARγ-independent.  Since 

rosiglitazone at equimolar concentrations failed to induce the change 

observed by troglitazone, suggesting a troglitazone-specific manner.  

These evidence may lead us speculate that mtDNA damage may contribute 

to the pharmacological actions such as apoptosis especially in cells with 

troglitazone.   

 

Inhibition of cell invasion by TZDs 

Increasing evidence have indicated that TZDs inhibited cell invasion 

and metastasis in a various kind of human cancer cells.  With regard to 

molecular mechanisms by which TZDs exert the inhibition of cancer cell 

invasion, papers have been published as following.  In general, matrix 

metalloproteinases (MMPs) or plasminogen activator inhibitor-1 (PAI-1) 

play a vital role in cancer cell invasion and metastasis [39, 40] .  Sawai et 

al. [41] have demonstrated that TZD inhibited pancreatic cancer cell 



invasion, which was largely mediated by modulation of the plasminogen 

activator system.  Galli et al. [42] have shown that TZD inhibited 

pancreatic cancer cells invasiveness, involving MMP-2 and PAI-1 

expression.  According to the report by Liu et al, down-regulation of 

MMP-9 as well as MMP-2 by TZDs would be implicated in the inhibition 

of cell invasion [43] .  Thus reports have suggested that plasminogen 

activator system and MMPs may play a role in the TZDs-induced 

suppression of cell invasiveness.   

Epithelial-mesenchymal transition (EMT) is implicated in the 

progression of cancer cells [44].  E-cadherin is a key player in EMT in 

cancer cell progression.  Recent observation has indicated that TZD 

increased expression of E-cadherin, suggesting that TZD up-regulates 

E-cadherin expression, thereby reducing cell invasive activity in human 

pancreatic cancer cells [45, 46].  The tight junction proteins claudins are 

abnormally regulated in several human cancers.  Although the exact roles 

of claudins in tumorigenesis are still being uncovered, it is clear that they 

represent promising targets for cancer detection, diagnosis, and therapy 

[47].  For example, Michl et al. have demonstrated that claudin 4 

expression decreases invasiveness and metastatic potential of pancreatic 

cancer [48].  Recent evidence has suggested TZD increased expression of 



claudin 4 in human pancreatic cancer cells [46], suggesting that claudins 

expression could be changed by TZDs.  It was furthermore suggested that 

the increased expression of claudin 4 might play a role in the TZD-induced 

inhibition of cell invasion in cancer cells because claudin 4 expression 

decreases invasiveness and metastatic potential of pancreatic cancer [48].  

A MEK inhibitor, U0126, increased E-cadherin or claudin 4 mRNA and 

protein expression, and potently inhibited cell invasion [46].  Because 

TZD down-regulates MEK-ERK signaling and inhibit cell invasion in 

human pancreatic cancer cells [21], TZD increases expression of 

E-cadherin and claudin 4 possibly through inhibition of MEK-ERK 

signaling in pancreatic cancer cells, which might be involved in the 

TZD-induced inhibition of cell invasive activity (Figure 1).   

 

PPAR-γ-independent effects by TZDs 

In addition to PPAR-γ-dependent actions, TZDs demonstrate a 

number of PPAR-γ-independent effects [28, 49, 50].  For example, TZDs 

have been shown to stimulate the proteosomal degradation of cyclins D1 

and D3 [51, 52] to block the cell cycle progression, and to scavenge toxic 

reactive oxygen species (ROS) [53] through PPAR-γ-independent 



mechanisms.  In addition, up regulation of PTEN/AMPK and down 

regulation of Akt/mTOR/p70S6 signaling cascades are involved in the 

anti-tumor effects by TZDs in a PPAR-γ-independent manner [50].  

From a different point of view, a PPAR-γ-independent mechanism should 

be considered in cancer cells treated with TZDs, as following.  LNCaP 

prostate cancer and MCF-7 breast cancer cells, both of which exhibit low 

PPARγ expression levels, were more sensitive to the effects of TZDs 

such as troglitazone and ciglitazone on suppressing cell viability than their 

PPARγ-overexpressing counterparts, PC-3 and MDA-MB-231 cells, 

respectively [28, 51] .  Based on these PPAR-γ-independent actions of 

TZDs, we should consider both PPAR-γ-dependent and -independent 

pathways may contribute to the anti-cancer action by TZDs.   

 

In conclusion 

 Investigation into molecular mechanisms that underlie 

TZD-induced anti-cancer effects constitutes an area of active research.  

Cell growth arrest, induction of apoptosis and inhibition of cell invasion 

seem to be deeply involved in the anti-cancer effects by TZDs.  We do not 

know at this moment whether there are any other key molecules than listed 



in this review in exerting the anti-cancer effects by TZDs.  Further studies 

should be expected to show a better picture on the whole molecular 

mechanisms by which TZDs induce anti-cancer actions.  Entirely 

understanding the molecular network related to the anti-cancer actions by 

TZDs could contribute to develop the treatments strategies with new 

perspectives. 
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Figure legend 

Figure 1 

Schematic illustration of molecular mechanisms by which 

thiazolidinedione (TZD) exerts anti-tumor effects.  TZD induces 

anti-cancer actions through 3 main pathway 1) cell growth arrest, 2) 

induction of apoptosis and 3) inhibition of cell invasion.  Cell growth 

arrest is induced by increased level of cell cycle arrest-related molecules 

such as p21 WAF1/Cip1 or p27Kip1, and/or decreased level of cell cycle 

promotion-related molecules such as cyclin D1, cyclin B1, cyclin E, CDK2 

or CDK4.  p27Kip1 accumulation is induced by the inhibition of the 

ubiqutin-proteasome system (decreased expression of skp 2, a enzyme for 

p27Kip1 ubiquitylation as a ubiqutin ligaze and inhibition of proteasome 

activity that degradates p27Kip1 protein) and/or inhibition of MEK-ERK 

signaling.  TZDs induce apoptosis through increased levels of apoptotic 

molecules such as p53, PTEN or bax, and/or decreased level of 

anti-apoptotic molecules such as bcl-2/bcl-xL or survivin.  Inhibition of 

cell invasion is induced by TZDs through up-regulation of E-cadherin and 

claudin-4 and/or down-regulation of MMP-2, MMP-9 or PAI-1.  

Inhibition of MEK-ERK signaling by TZDs may be involved in the 

increased expression of E-cadherin and claudin-4.    
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