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Purpose: To quantitatively and qualitatively investigate the changes in chromosomal 

aberrations during early cleavage in mouse embryos derived from γ-irradiated 

spermatozoa. 

Materials and methods: Mature males were exposed to 2 Gy or 4 Gy of 137Cs γ-rays, 

and their spermatozoa were used to produce embryos via in vitro fertilization (IVF). The 

metaphase chromosomes were prepared from one-cell, two-cell, and four-cell embryos. 

In the chromosome preparations from two-cell and four-cell embryos, the separation of 

the sister blastomeres was precluded by treatment of the embryos with concanavalin A. 

The incidence of embryos with structural chromosomal aberrations, aneuploidy, or 

mosaicism was estimated. The fates of the different types of γ-ray-induced structural 

chromosomal aberrations were also investigated in those embryos. 

Results: The exposure of spermatozoa to 2 Gy or 4 Gy γ-rays caused structural 

chromosomal aberrations in 25.9% and 35.7% of the resultant one-cell embryos, 

respectively. At two-cell embryonic stage, the incidence of structural chromosome 

aberrations was 17.4% in the 2 Gy group and 27.1% in the 4 Gy group. At the four-cell 

embryonic stage, although the incidence of control embryos with structural 

chromosome aberrations was considerably high, the net incidence of embryos with 

radiation-induced structural chromosome aberrations was similar to that at the one-cell 

stage. The incidence of aneuploidy was high in two-cell and four-cell embryos after 

both doses of γ-rays. The incidence of mosaicism increased significantly in dose- and 

embryonic-stage-dependent manners. Anaphase lag, and the degeneration and 

nondisjunction of the aberrant chromosomes were frequently observed in aneuploid and 

mosaic embryos.   

Conclusions: Mouse sperm DNA is highly vulnerable to γ-rays. The structural 
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chromosomal aberrations of sperm origin are unstable in their behavior and structure 

during cleavage, and therefore cause secondary aneuploidy and mosaicism in the early 

cleavage embryos. 
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Chromosomal analysis of one-cell embryos has been useful for measuring 

primary structural chromosomal damage in murine spermatozoa (Matsuda et al., 1985; 

1989a,b; Matsuda and Tobari, 1989; Tateno et al., 1996a; Marchetti et al., 2004, 2007; 

Tusell et al., 2004; Kusakabe and Kamiguchi, 2004; Derijck et al., 2008) and human 

spermatozoa (Kamiguchi et al., 1990a,b; Tateno et al., 1996b; Alvarez et al., 1997; 

Kamiguchi and Tateno, 2002) after irradiation. The types of structural chromosomal 

aberrations and their incidence of one-cell embryos have been suggested to predict the 

genetic risk to the next generation in mice (Marchetti et al., 2004). However, several 

previous studies have shown that the incidence of structural chromosomal aberrations 

changes during the subsequent cleavages of one-cell mouse embryos exposed to either 

X-rays or neutrons (Weissenborn and Streffer, 1988a,b; Streffer, 1993) and two-cell 

mouse embryos exposed to X-rays (Weissenborn and Streffer, 1989). Supportive 

evidence was obtained with a micronucleus assay of two- to eight-cell mouse embryos 

exposed to fast neutrons at the one-cell stage (Pampfer et al., 1992).  

In addition to increases in structural chromosomal aberrations during embryo 

development, a high incidence (24–52%) of hypoploid metaphases at the second and 

third mitoses of one-cell mouse embryos has been reported when the embryos were 

exposed to relatively low doses of X-rays (0.47–1.88 Gy) or neutrons (0.25–0.75 Gy) 

(Weissenborn and Streffer, 1988a,b). An increased incidence of aneuploid blastomeres 

(31.6%) was reported in eight-cell mouse embryos derived from the spermatozoa of 

males exposed to 4 Gy γ-rays (Mozdarani and Salimi, 2006). However, in these 

previous studies, the distinction between aneuploid embryos and mosaic embryos was 

imperfect, so it is unclear whether the high incidence of aneuploid metaphases 

accurately represents the frequent occurrence of aneupoid embryos. It is worth noting 
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that there was a significant increase in mosaicism, involving hypoploid and euploid 

cells, in 8.5-day postimplantation embryos when preovulatory mouse oocytes were 

exposed to 4 Gy X-rays (Tease and Fisher, 1996).  
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In the present study, we analyzed the chromosomes of mouse embryos at the 

first (one-cell), second (two-cell), and third (four-cell) cleavages of ova fertilized with 

spermatozoa that had been exposed to γ-rays to comprehensively assess the quantitative 

and qualitative changes in structural chromosomal aberrations, aneuploidy, and 

mosaicism during early cleavages. To distinguish between aneuploidy and mosaicism, 

we obtained metaphase spreads of all the sister blastomeres in two-cell and four-cell 

embryos in which the sister blastomeres had not separated. Furthermore, the kinetics of 

different types of γ-ray-induced structural chromosomal aberrations was investigated to 

understand the mechanism(s) underlying the development of aneuploidy and 

mosaicism. 

 

Materials and methods 

Animals 

B6D2F1 (C57BL/6Cr×DBA/2Cr) hybrid mice (8–16 weeks of age) were 

purchased from Sankyo Labo Service Co. Inc. (Tokyo, Japan) and maintained under 

optimal conditions: light from 5:00 to 19:00 and room temperature at approximately 

23°C. Laboratory animal diet (Oriental Yeast Co., Ltd., Tokyo, Japan) and water were 

given ad libitum. All experiments were performed according to the guidelines for 

animal experiments of our university. 

 

Media 

Organic and inorganic reagents were purchased from Nacalai Tesque Inc. 
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(Kyoto, Japan), unless specifically stated. Toyoda–Yokoyama–Hosi medium (TYH 

medium) was used for the in vitro manipulation of spermatozoa and oocytes (Toyoda et 

al., 1972). Chatot–Ziomek–Bavister medium modified by supplementation with 5.56 

mM D-glucose (mCZB medium) was used to culture the embryos (Chatot et al, 1989). 

Both media were used at 37°C under 5% CO
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2. The chemical compositions of both 

media have been previously reported (Tateno and Kamiguchi, 2007). 

 

Exposure of spermatozoa to γ-rays and embryo production by in vitro fertilization (IVF) 

Male mice were kept in suitably-sized cylindrical plastic tubes, and the 

testicular regions were exposed to a single dose of 2 Gy or 4 Gy 137Cs γ-rays at a dose 

rate of 0.95 Gy/min. Within 24 h of irradiation, the spermatozoa were retrieved from 

the cauda epididymides and cultured in TYH medium for 1–1.5 h to induce 

capacitation. Three to five males were exposed to each dose. In some experiments, the 

spermatozoa from the same males were used to produce embryos at different 

developmental stages. 

Female mice were intraperitoneally injected with 10 IU pregnant mare serum 

gonadotropin (PMSG; Teikoku-Zoki Pharmaceuticals, Tokyo, Japan), followed 48 h 

later by an injection of 10 IU human chorionic gonadotropin (hCG; Aska 

Pharmaceuticals, Tokyo, Japan) to induce superovulation. At 15–16 h after the hCG 

injection, the oocytes with cumulus cells were released from the oviducts into TYH 

medium. The oocytes were cultured with the capacitated spermatozoa for IVF. Two 

hours later, the oocytes were washed with mCZB medium and further cultured in the 

same medium. 

 

Chromosome preparation and analysis 
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(1) One-cell embryos 150 
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At 6–8 h after insemination, the fertilized ova were transferred to mCZB 

medium containing 0.006 µg/mL vinblastine sulfate (Sigma-Aldrich, St. Louis, MO, 

USA) and cultured until they reached the first cleavage metaphase. At 18–20 h after 

insemination, the embryos were treated with 0.5% protease (commercially available as 

actinase E, Kaken Pharmaceuticals, Tokyo, Japan) in Dulbecco’s phosphate-buffered 

saline for 6–8 min to loosen the zona pellucida. They were then kept in a hypotonic 

solution of a 1:1 mixture of 1% sodium citrate and 30% fetal bovine serum (FBS; 

Sigma-Aldrich) for 8–10 min at room temperature. 

 

(2) Two-cell embryos 

Approximately 32 h after insemination, two-cell embryos were transferred into 

mCZB medium containing both 0.01 µg/mL vinblastine sulfate and 3 µg/mL 

nocodazole (Sigma-Aldrich). This mixture of two different mitotic inhibitors was 

effective in spreading the chromosomes of the sister blastomeres at this embryonic stage. 

When the nuclei of both sister blastomeres became invisible, the embryos were treated 

with 0.5% protease to digest the zona pellucida. To avoid the separation of the sister 

blastomeres during the following hypotonic treatment, 10 µg/mL concanavalin A 

(Sigma-Aldrich) was added to the enzyme solution. The hypotonic treatment was 

performed in a 2:3 mixture of 1% sodium citrate and 40% FBS for 10 min at room 

temperature. 

 

(3) Four-cell embryos 

Approximately 42 h after insemination, four-cell embryos were transferred into 

mCZB medium containing 0.01 µg/mL vinblastine sulfate and cultured until the nuclei 



 8

of all the sister blastomeres had disappeared. As described above, the embryos were 

placed in 0.5% protease solution containing 10 µg/mL concanavalin A to digest the zona 

pellucida without separating the sister blastomeres. They were then kept in a hypotonic 

solution (1:4 mixture of 1.2% sodium citrate and 60% FBS) for 10 min at room 

temperature. 
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(4) Fixation, staining and analysis 

The chromosomal slides of the embryos, regardless of their developmental 

stage, were prepared with the gradual fixation–air drying method (Mikamo and 

Kamiguchi, 1983). The slides were stained with 2% Giemsa (Merck KGaA, Darmstadt, 

Germany) in phosphate-buffered saline (pH 6.8) (Mitsubishi Kagaku Iatron Inc., Tokyo, 

Japan) for 8 min for conventional chromosome analysis. The slides were then processed 

for C-band staining to differentiate the centromeric heterochromatin of the mouse 

chromosomes except for the Y chromosome, as described elsewhere (Tateno et al., 

2000).  

As illustrated in our previous paper (Tateno and Kamiguchi, 2007), structural 

chromosome aberrations found in one-cell embryos were classified into seven 

categories, i.e., chromosome break, chromosome gap, dicentric, translocation, ring, 

chromatid break, chromatid gap and chromatid exchange. In addition to these categories, 

deletions were scored in chromosome analysis of two-cell and four-cell embryos when 

degenerative acentric fragments were observed. Acentric fragments of unknown origin 

were scored as extra fragments.  

Aneuploidy and mosaicism were identified by counting C-band positive 

chromosomes. A dicentric chromosome was considered as consisting of two 

centoromeric chromosomes. Degenerative chromosomes or lagging chromosomes in the 
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cleavage furrow were excluded from the centromere count. 200 
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When the metaphase spreads were incomplete owing to technical errors during 

slide preparation, the embryos were eliminated from structural and numerical 

chromosome analyses. Chromosome analysis of two-cell and four-cell embryos was 

limited to those embryos in which the metaphase spreads of all the sister blastomeres 

could be analyzed. Polyploid embryos arising from polyspermy were excluded from the 

data. 

 

Statistical analysis 

The chi-square test or Fisher’s exact test was used to compare differences in the 

percentages of embryos with chromosomal aberrations. Differences in the frequencies 

of structural chromosomal aberrations per cell (blastomere) were analyzed with a 

nonparametric multiple comparison test. Differences were considered significant when 

P < 0.05. 

 

Results 

Development of mouse embryos derived from γ-irradiated spermatozoa 

The rate of diploid one-cell embryos that reached the first cleavage metaphase 

was 100% in the 2 Gy group (n = 317), and 99.4% in the 4 Gy group (n = 352). The 

high developmental capacity of embryos after γ-irradiation was maintained at two-cell 

stage, because almost all the embryos reached metaphase after 2 Gy (98.9%, n = 186) or 

4 Gy (98.2%, n = 222). The percentage of four-cell embryos, in which all the sister 

blastomeres reached metaphase, was still high in the 2 Gy group (96.4%, n = 197), 

although the percentage of these embryos in the 4 Gy group (93.7%, n = 190) was 

statistically (p < 0.05) lower than in the non-irradiated control group (97.9%, n = 285). 
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Overall, these results show no significant bias toward an underestimation of 

chromosomal damage attributable to developmental arrest in these cleavage embryos.  
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Structural chromosomal aberrations at each embryonic stage 

As demonstrated in many previous studies, when spermatozoa exposed to 

γ-rays, the incidence of structural chromosomal aberrations was clearly enhanced in the 

resultant one-cell embryos (Table I). Most of these aberrations were of 

chromosome-type. In addition to the dramatic occurrence of chromosome breaks, the 

incidence of dicentric aberrations and translocations was significantly increased. 

Furthermore, there was a significant increase in chromatid breaks in the 2 Gy and 4 Gy 

groups and chromatid exchange in the 4 Gy group. 

In the analysis of two-cell embryos, the embryos were scored as 

chromosomally abnormal when structural chromosomal aberrations were detected in at 

least one sister blastomere. As shown in Table I, the incidence of embryos with 

structural chromosomal aberrations was significantly higher in both irradiation groups 

than in the control group. Although the incidence of abnormalities at the two-cell stage 

was low in both irradiation groups compared with that at the one-cell stage, the 

difference was not statistically significant. The types of structural chromosomal 

aberrations found at the two-cell stage were similar to those at the one-cell stage, 

although deletions were newly apparent. From the one-cell stage to the two-cell stage, 

the incidence of chromosome breaks and dicentric aberrations decreased considerably, 

and chromatid breaks and exchanges became negligible (Figure 2). 

In the chromosomal analysis of four-cell embryos, the control embryos 

displayed a relatively high incidence of structural chromosomal aberrations (Table I). 

Nevertheless, the incidence of embryos with structural chromosomal aberrations was 
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significantly elevated in both irradiation groups. When the net incidence of 

radiation-induced structural chromosomal aberrations was calculated according to the 

formula of Kamiguchi et al. (1990a), the aberration rates at the four-cell stage were 

similar to those at the one-cell stage (Figure 1A). From the two-cell stage to the 

four-cell stage, there was a reduction in dicentric aberrations and an increase in 

chromatid breaks in the 2 Gy group, and an increase in chromosome and chromatid 

breaks in the 4 Gy group. Certain of dicentric chromosomes and acentric fragments 

evidently survived two cleavage divisions (Figure 2).  
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Aneuploidy at each embryo stage 

 In chromosome analysis at two-cell and four-cell embryonic stages, the 

embryos were scored as hypoploidy when all sister blastomeres had hypoploid 

metaphase, and as hyperploidy when all sister blastomeres had hyperploid metaphase. 

There was no significant increase in aneuploidy in the one-cell embryos after both doses 

of γ-rays (Table II), indicating that the irradiation of spermatozoa is not the primary 

cause of aneuploidy. However, a significant increase in aneuploid embryos was 

observed at the two-cell stage after irradiation. Hypoploid embryos were predominantly 

observed. Interestingly, nearly half of them displayed degenerative or lagging 

chromosomes in the cleavage furrow (Figure 3A). At the four-cell stage, the incidence 

of aneuploidy in both irradiation groups was significantly higher than that in the control 

group. However, the incidence declined from the two-cell stage to the four-cell stage 

(Figure 1B). 

 

Mosaicism at each embryo stage 

Table III shows the incidence of mosaic embryos and the combination of sister 
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blastomeres with different chromosome numbers. At the two-cell stage, the incidence of 

mosaic embryos in the 2 Gy group was higher than that in the control group, but the 

difference was not statistically significant. The incidence increased significantly after 

irradiation with 4 Gy. All 17 mosaic embryos found in both irradiation groups had a 

hypoploid sister blastomere. There were degenerative chromosomes in 21.1% (4/19) of 

the hypoploid sister blastomeres (Figure 3B) and dicentric chromosomes in 80% (4/5) 

of the hyperploid sister blastomeres. At the four-cell stage, the incidence of mosaic 

embryos increased dose-dependently. A total of 65 mosaic embryos were found in both 

irradiation groups, and 60 (92.3%) had at least one hypoploid sister blastomere. In the 

106 hypoploid blastomeres scored, 17% had degenerative chromosomes. Dicentric 

chromosomes were observed in 51.4% of the 35 hyperploid blastomeres. Some embryos 

still displayed degenerative chromosomes in the cleavage furrows. The net incidence of 

radiation-induced mosaicism increased stage-dependently (Figure 1C). 
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Discussion 

In this study, over 90% of the one-cell embryos derived from irradiated 

spermatozoa developed to the four-cell cleavage metaphase. Therefore, we could detect 

unstable structural chromosomal aberrations and numerical chromosomal aberrations 

with a minimum of developmental arrest. However, the incidence of chromosomal 

deletions might have been underestimated in this study because this aberration type is 

difficult to detect with Giemsa and C-band staining. Balanced-type aberrations, such as 

reciprocal translocations and insertions, were not fully scored in these results because a 

fluorescent in situ hybridization (FISH) technique was not applied to the chromosome 

preparations. The incidence of these aberrations has been reported by Marchetti et al. 

(2004). 
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Our finding that the exposure of spermatozoa to γ-rays causes structural 

chromosomal aberrations in the resultant one-cell embryos is consistent with the results 

of previous studies. However, the incidence of structural chromosome aberrations in the 

present study was usually higher than that in the previous studies, even when the 

spermatozoa were irradiated with the same dose of γ-rays. For example, the aberration 

rate in one-cell embryos derived from spermatozoa following exposure to 4 Gy was 

35.7% in the present study with B6D2F1 mice. This value is higher than the rates of 

20.1% reported for B6C3F1 mice (Marchetti et al., 2004), 21.5% for C57BL/6J mice 

(Marchetti et al., 2007), and 14.7% for CBA×C57BLF1 mice (Tusell et al., 2004). In 

those studies, the spermatozoa were fertilized with oocytes within 7 days of irradiation, 

while the spermatozoa were used within 24 h of irradiation in the present study. 

However, radiation-induced sperm DNA damage can persist in maturing spermatozoa 

for at least 7 days before fertilization (Marchetti et al., 2007), because mammalian 

spermatozoa lack the ability to repair radiation-induced DNA damage (Sega et al., 1978; 

van Loon et al., 1991, 1993). Furthermore, it is unlikely that there were quantitative or 

qualitative differences in the radiation-induced sperm DNA damage among these mouse 

strains. In contrast, mammalian zygotes have the ability to repair DNA damage (Jaroudi 

and SenGupta, 2007), so sperm DNA damage can be repaired within the ooplasm after 

fertilization. When the repair proficient mouse strains were used, there were no 

strain-specific differences in the capacity of zygotes to repair the sperm DNA damage 

induced by ionizing radiation (Generoso et al., 1979; Derijck et al., 2008). Therefore, it 

is likely that the discrepancies in aberration rates between the present study and 

previous studies are largely attributable to the artificial loss of small acentric fragments 

during the fixation of the embryos.  
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chromosomal aberrations in one-cell embryos fluctuated during subsequent cleavages 

(Figure 1A). Weissenborn and Streffer (1988a) also found that when mouse one-cell 

embryos were exposed to a higher dose range of X-rays (0.94-1.88 Gy) and neutrons 

(0.375-0.75 Gy) at 1 h post-conception, the aberration rates decreased from the first to 

the third mitosis after X-rays, whereas the aberration rates decreased at the second 

mitosis and increased at the third mitosis after neutrons. Furthermore, the investigators 

reported that the aberration rates decreased at the second mitosis and increased at the 

third mitosis in one-cell embryos exposed to X-rays (0.94 Gy) at 3 h, 6 h and 9 h 

post-conception (Weissenborn and Streffer, 1988b). A similar tendency was reported by 

Tusell et al. (2004), where the incidence of structural chromosomal aberrations at the 

two-cell stage was lower than that at the one-cell stage in mouse embryos after males 

exposed to 4 Gy X-rays were mated.  
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It has been suggested that the reduction in the incidence of radiation-induced 

structural chromosomal aberrations at the two-cell stage is attributable to the loss of 

acentric fragments during the first cleavage division, and that the increase in 

radiation-induced structural chromosome aberrations from the two-cell stage to the 

four-cell stage is attributable to the formation of new fragments (Weissenborn and 

Streffer, 1988a, b). In this study, the incidence of acentric fragments originating from 

chromosome and chromatid breaks, and dicentric chromosomes decreased considerably 

from the one-cell stage to the two-cell stage (Figure 2). These chromosomal losses 

would accounts for the reduction in the overall structural chromosome aberration rate in 

two-cell embryos. Chromosome analysis of four-cell embryos revealed that there were 

an increase in chromosome breaks/fragments in the 4 Gy group and an increase in 

chromatid breaks in both irradiation groups (Figure 2). The data may support the 

formation of new aberrations in postradiation cell cycles (Weissenborn and Streffer, 
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1988a, b). 350 
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In mouse preimplantation embryos, there are no functional G1/S and G2/M 

checkpoints in one- and two-cell stages, but S-phase checkpoint exist in one-cell stage. 

Apoptotic cells do not appear until morula stage in embryos derived from irradiated 

spermatozoa (Toyoshima, 2009). Derijck et al. (2006, 2008) demonstrated that 

phosphorylation of histone H2AX (γH2AX), which is maker for DNA double-strand 

breaks (DSBs), increased in remodeled male chromatin of mouse one-cell embryos 

derived from irradiated spermatozoa. Interestingly, Derijck et al. (2008) found that when 

the irradiation was performed during early S-phase of one-cell embryos, γH2AX foci 

were usually positioned in a single chromatid at the first mitotic metaphase. Adiga et al. 

(2007) and Yukawa et al. (2007) reported that when mouse pronuclear embryos from 

S-phase to G2-phase were exposed to γ-rays, γH2AX foci were detected at the four-cell 

stage. Thus, the previous results suggest that single strand DNA breaks, base damage or 

unrepaired DSBs in one-cell embryos can be persisted beyond cell divisions. This may 

be a reason why incremental appearance of chromosomal breaks was observed at the 

four-cell stage in embryos derived from irradiated spermatozoa in the present results. 

Recently, Ziegler-Birling et al. (2009) found higher levels of γH2AX during mitotic 

division of mouse four-cell and eight-cell embryos even in the absence of any induced 

DNA damage. They explained that γH2AX may play an important role in the chromatin 

remodeling during cleavage. It remains to be investigated whether levels of γH2AX is 

concerned with frequent occurrence of chromatid breaks/gaps at the four-cell stage in 

control embryos (Table I).  

In this study, we found that the irradiation of spermatozoa markedly induced 

hypoploidy at the two-cell stage of the resultant embryos. Our chromosome 

preparations of cleavage embryos in which the sister blastomeres were not separated 
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allowed us to identify degenerative chromosomes that remained in the cleaving furrow 

of hypoploid embryos. These degenerative chromosomes probably came from the 

anaphase lag of aberrant chromosomes at the first cleavage division. This phenomenon 

is consistent with the observation of Weissenborn and Streffer (1988a,b). Therefore, it 

appears certain that anaphase lag is a leading cause of hypoploidy at the two-cell stage. 

The incidence of aneuploidy in our study was much lower than that in two- to four-cell 

mouse embryos exposed to lower doses of X-rays or neutrons (Weissenborn and Streffer, 

1988a,b, 1989) and that in eight-cell mouse embryos derived from spermatozoa after 

exposure to 4 Gy γ-rays (Mozdarani and Salimi, 2006). In the present study, we found a 

significant increase in mosaic embryos consisting of hypoploid sister blastomeres, 

whereas no previous studies have noted the occurrence of mosaic embryos. It seems 

likely that the high incidence of hypoploidy reported in previous studies resulted from 

the frequent occurrence of the hypoploid blastomeres of mosaic embryos.  
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In a chromosomal analysis of mosaic embryos, we observed degenerative 

chromosomes in hypoploid blastomeres and dicentric chromosomes in hyperploid 

blastomeres. This strongly suggests that the loss of damaged chromosomes during the 

cell cycles of sister blastomere(s) and the nondisjunction of dicentric chromosomes 

between sister blastomeres during cleavage are the main mechanisms underlying the 

development of mosaicism in embryos derived from irradiated spermatozoa. There is 

supportive evidence to show that dicentric chromosomes induced in oocytes after 

exposure to X-rays at diakinesis survived two meiotic divisions and caused 

nondisjunction (de Boer and van der Hoeven, 1991). In our study, the incidence of 

mosaic embryos increased in γ-ray-dose- and embryo stage-dependent ways, whereas in 

contrast, the incidence of aneuploid embryos decreased from the two-cell stage to the 

four-cell stage (Figure 1). Tease and Fisher (1996) also found a significant increase in 
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mosaicism, involving hyperploid and euploid cells, in 8.5-day postimplantation mouse 

embryos derived from oocytes exposed to 4 Gy X-rays. These findings indicate that 

aneuploidy can eventually be converted to mosaicism during cleavage.  

Preimplantation genetic diagnosis of human embryos revealed that mosaicism was 

frequently generated through post-zygotic chromosome errors (Wells and Delhantry, 

2000; Voullaire et al., 2000; Delhanty, 2005; Vanneste et al., 2009; Santos et al., 2010). 

Mosaic embryos were often accompanied with structural chromosome aberrations 

(Wells and Delhantry, 2000; Vanneste et al., 2009). Therefore, it is reasonable to 

consider a heritable risk of mosaicism rather than aneuploidy in embryos derived from 

spermatozoa after irradiation. 
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Figure legends 

Figure 1. Changing aspects of net incidences of embryos with γ-ray-induced structural 

chromosome aberrations (A), aneuploidy (B) and mosaicism (C) during early 

cleavages after 2 Gy ( ) and 4 Gy ( ). 

The net incidences were calculated according to the following formula of 

Kamiguchi et al. (1990a). 

 

 

Figure 2. Fate of different types of γ-ray-induced structural chromosome aberrations 

during early cleavages after 2 Gy ( ) and 4 Gy ( ). The net incidence 

of chromosome aberrations per cell (blastomere) was calculated according to 

the following formula of Kamiguchi et al. (1990a). 

Incidence of embryos with radiation-induced chromosome aberrations (%) = 
 
       Number of embryos with a normal karyotype / Number of embryos analyzed (irradiated) 

1 –                                                                            × 100
       Number of embryos with a normal karyotype / Number of embryos analyzed (control) 

Incidence of radiation-induced chromosome aberrations per cell = 
 
       1 – Number of chromosome aberrations / Number of embryos analyzed / 40* (irradiated) 

1 –                                                                            × 40*
       1 – Number of chromosome aberrations /Number of embryos analyzed /40* (control) 
 
*40: the diploid number of the mouse. 

 

 

 

Figure 3. Chromosome preparations of two-cell embryos derived from spermatozoa 

after γ-irradiation. A: Whole chromosome preparation showing two anaphase 

lagging chromosomes (arrows) in a cleavage furrow after 2 Gy. Owing to the 

loss of these chromosomes, the chromosome number of both sister 
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blastomeres is 38. pb: Nucleus of a second polar body. B: Metaphase spread 

of one sister blastomere with a degenerative chromatin (arrow) after 4 Gy. 

Bars indicate 20 µm.  
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Table I Incidence of structural chromosomal aberrations at different developmental stages of mouse embryos derived from spermatozoa after γ-irradiation 

 

No. of different types of structural chromosomal aberrations [per blastomere] 

Chromosome-type Chromatid-type   

Embryo 
stage 

Dose
(Gy)

No. of 
males 
used 

No. of 
embryos 
analyzed 

No. (%) of 
embryos with 
structural 
chromosomal 
aberrations 

Total no. of 
structural 
chromosomal 
aberrations  
[per blastomere] 

break/ 
fragment gap dicentric trans- 

location deletion ring break/ 
fragment gap exchange 

one-cell 0 6 503  8 (1.6) 8 
[0.016] 

4 
[0.008]

0 
[0.0] 

1 
[0.002]

0 
[0.0] 

0 
[0.0] 

0 
[0.0] 

3 
[0.006]

0 
[0.0] 

0 
[0.0] 

 2 5 317  82 (25.9) c 105 
[0.331] c

44 
[0.139]c

2 
[0.006] 

24 
[0.076] c

6 
[0.019] b

0 
[0.0] 

0 
[0.0] 

27 
[0.085] c

1 
[0.003] 

1 
[0.003] 

 4 4 350  125 (35.7) c 163 
[0.466] c

64 
[0.183] c

4 
[0.011]a

50 
[0.143] c

7 
[0.020] b

0 
[0.0] 

1 
[0.003]

29 
[0.083] c

1 
[0.003] 

7 
[0.020] b

Two-cell 0 8 187  5 (2.7) 7 
[0.019] 

2 
[0.005]

0 
[0.0] 

2 
[0.005]

0 
[0.0] 

0 
[0.0] 

0 
[0.0] 

3 
[0.008]

0 
[0.0] 

0 
[0.0] 

 2 4 132  23 (17.4) c 45 
[0.170] c

22 
[0.083] b

0 
[0.0] 

11 
[0.042] a

4 
[0.015] a

4 
[0.015] a

0 
[0.0] 

3 
[0.011]

0 
[0.0] 

1 
[0.004] 

 4 4 133  36 (27.1) c 91 
[0.342] c

41 
[0.154] c

1 
[0.004] 

26 
[0.098] c

11 
[0.041] b

10 
[0.038] b

0 
[0.0] 

1 
[0.004]

0 
[0.0] 

1 
[0.004] 

Four-cell 0 5 200  52 (26.0) 74 
[0.093] 

9 
[0.011]

1 
[0.001] 

1 
[0.001]

1 
[0.001]

2 
[0.003]

0 
[0.0] 

40 
[0.050]

19 
[0.024] 

1 
[0.001] 

 2 4 174  75 (43.1) c 161 
[0.231] c

56 
[0.080] c

2 
[0.003] 

14 
[0.020] b

13 
[0.019] b

7 
[0.010]

2 
[0.003]

56 
[0.080] a

7 
[0.010] a

4 
[0.006] 

 4 3 164  82 (50.0) c 290 
[0.442] c

125 
[0.191] c

2 
[0.003] 

65 
[0.099] c

24 
[0.037] c

28 
[0.043] c

0 
[0.0] 

42 
[0.064]

2 
[0.003] b

2 
[0.003] 

a,b.c Significantly different from the non-irradiated control (0 Gy) in the same column: aP < 0.05; bP < 0.01; cP < 0.001  



 
Table II  Incidence of aneuploidy at different developmental stages of mouse embryos derived  

from spermatozoa after γ-irradiation 

                                                       
Embryo 
stage 

Dose 
(Gy) 

No. of 
embryos 
analyzed 

No. (%) of 
aneuploid 
embryos  

hyperploidy hypoploidy 

One-cell 0 503 9 (1.8) 3 6 

 2 317 5 (1.6) 1 4  

 4 350 2 (0.6) 1  1 

Two-cell 0 187 2 (1.1) 1 1  

 2 132 13 (9.8)b 2  11  

 4 133 19 (14.3)b 3 16  

Four-cell 0 200 0 0 0 

 2 174 5 (2.9)a 0 5 

 4 164 4 (2.4)a 1 3 

                     a,b Significantly different from the non-irradiated control (0 Gy) : aP < 0.05; b P< 0.001  

 



 
 
 

Table III  Incidence of mosaicism at different developmental stages of mouse embryos derived from spermatozoa after γ-irradiation 

                                                       

Combinations of sister blastomeres with different chromosome numbers* Embryo 
stage 

Dose 
(Gy) 

No. of  
embryos 
analyzed 

No. (%) of 
mosaic 
embryos 2n–/2n– 2n–/2n 2n–/2n/2n+ 2n–/2n+ 2n/2n+ 

Two-cell 0 187 3 (1.6) 0 2 - 1 0 

 2 132 7 (5.3) 0 6 - 1 0 

 4 133 10 (7.5)a 2 4 - 4 0 

Four-cell 0 200 10 (5.0) 0 9 1 0 0 

 2 174 23 (13.2)a 1 14 8 0 0 

 4 164 42 (25.6)b 2 21 9 5 5 

       a,b Significantly difference from the non-irradiated control (0 Gy) : aP < 0.01; bP < 0.001  

         *2n–, 2n and 2n+ indicate hypoploidy, euploidy and hyperploidy, respectively. 
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