

Journal of Hypertension (2008) 26(5):902-913.

Association of TNFRSF4 gene polymorphisms with essential hypertension.

Mashimo Y, Suzuki Y, Hatori K, Tabara Y, Miki T, Tokunaga K, Katsuya T, Ogihara T, Yamada M, Takahashi N, Makita Y, Nakayama T, Soma M, Hirawa N, Umemura S, Ohkubo T, Imai Y, Hata A.

Association of *TNFRSF4* gene polymorphisms with essential hypertension

Short title: TNFRSF4 gene and essential hypertension

Yoichi Mashimo^a, Yoichi Suzuki^a, Kazuko Hatori^a, Yasuharu Tabara^b, Tetsuro Miki^c, Katsushi Tokunaga^d, Tomohiro Katsuya^e, Toshio Ogihara^e, Michiko Yamada^f, Norio Takahashi^g, Yoshio Makita^h, Tomohiro Nakayamaⁱ, Masayoshi Soma^j, Nobuhito Hirawa^k, Satoshi Umemura^k, Takayoshi Ohkubo^l, Yutaka Imai^m, Akira Hata^{a,*}

^aDepartment of Public Health, Graduate School of Medicine, Chiba University, Chiba, Japan; Departments of ^bMedical Genomics and ^cGeriatric Medicine, School of Medicine, Ehime University, Ehime, Japan; ^dDepartment of Human Genetics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; ^eDepartment of Geriatric Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan; Departments of ^fClinical Studies and ^gGenetics, Radiation Effects Research Foundation, Hiroshima, Japan; ^hDepartment of Pediatrics, Asahikawa Medical College, Asahikawa, Japan; Divisions of ⁱMolecular Diagnostics, Advanced Medical Research Center and ^jNephrology and Endocrinology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan; ^kSecond Department of Internal Medicine, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan; and Departments of ¹Planning for Drug Development and Clinical Evaluation and ^mClinical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences and Medicine, Tohoku University, Sendai, Japan.

*Correspondence to Akira Hata M.D., Ph.D., Department of Public Health, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.

Tel: +81 43 2262067; Fax: +81 43 2262070; e-mail: ahata@faculty.chiba-u.jp

Sources of funding

This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Conflicts of interest

None

Word count

7228 words

Abbreviations

95% CI, 95% confidence interval; *Agt*, mouse angiotensinogen gene; ANOVA, analysis of variance; APC, antigen-presenting cell; CRP, C-reactive protein; DBP, diastolic blood pressure; EH, essential hypertension; HT, hypertensive; LD, linkage disequilibrium; MI, myocardial infarction; NT, normotensive; OR, odds ratio; PCR, polymerase chain reaction; SBP, systolic blood pressure; SD, standard deviation; SNP, single nucleotide polymorphism; TaqMan-ASA, TaqMan allele-specific amplification; TNFRSF4 (OX40), tumor necrosis factor receptor superfamily, member 4; TNFSF4 (OX40L), tumor necrosis factor (ligand) superfamily, member 4; UTR, untranslated region.

Abstract

Essential hypertension is a complex disorder that results from the interaction of a number of susceptibility genes and environmental factors. The TNFRSF4 (tumor necrosis factor receptor superfamily, member 4) gene was one of the genes that showed altered renal expression in long-term salt loading in mice. Moreover, association of the TNFRSF4 and TNFSF4 (tumor necrosis factor (ligand) superfamily, member 4) genes with myocardial infarction was recently reported. Since essential hypertension is a well-known risk factor for myocardial infarction, we hypothesized that TNFRSF4 could be a susceptibility gene for essential hypertension. We performed a case-control study of TNFRSF4 in two independent populations. Extensive investigation of SNPs of the entire gene suggested that it resided in one linkage disequilibrium block, and 4 SNPs in the 5' flanking region sufficiently represented major haplotypes. In the combined population, the frequency of the most frequent haplotype, C-C-A-A, was significantly lower ($P = 8.07 \times 10^{-5}$) and that of the second most frequent haplotype, C-T-G-A, was significantly higher ($P = 6.07 \times 10^{-4}$) in hypertensive subjects than in control subjects. This difference was observed only in female patients. The C-T-G-A haplotype showed a lower promoter activity than other haplotypes, suggesting a relationship with disease susceptibility. Our results suggest that TNFRSF4 is a female-specific susceptible gene for essential hypertension.

Condensed Abstract

We selected the *TNFRSF4* (*tumor necrosis factor receptor superfamily, member 4*) gene as a candidate gene for essential hypertension susceptibility and performed a case-control study of the gene in two independent populations. Haplotype analysis using 4 SNPs in the 5' flanking region of the gene revealed that the frequency of the most frequent haplotype was significantly lower and that of the second most frequent haplotype was significantly higher than controls, in female patients only. Furthermore, the second most frequent haplotype showed a lower promoter activity than other haplotypes. Our results suggest that *TNFRSF4* is a female-specific susceptible gene for essential hypertension.

Key Words

hypertension, essential; association studies; SNPs; haplotype; TNFRSF4 gene

Introduction

Hypertension affects more than 25% of the adult population worldwide [1]. Essential hypertension (EH) accounts for more than 90% of hypertension cases and is a multifactorial disorder resulting from the interaction of a number of susceptibility genes and environmental factors. It is estimated that the genetic contribution to blood pressure variation ranges from 30 to 50% [2]. Identification of susceptibility genes for hypertension would provide a clue to the pathophysiology of the disease.

There are several approaches for genetically dissecting EH; candidate-gene linkage studies, genome-scanning linkage studies, candidate-gene association studies, genetic studies in animal models, and gene expression profiling in animal models [3]. Each approach has its own strengths and weaknesses, and some argue integration of the approaches is a more efficient way forward [4]. The Millennium Genome Project for Hypertension in Japan has adopted the candidate-gene association strategy because of its relatively higher statistical power and convenience of collecting samples [5]. Candidate genes are selected based on the accumulation of experimental evidence (expression profiling in animal models) and information in the literature. As a first step in this project, we performed DNA microarray experiments in mice to screen genes whose renal expression was changed by long-term salt loading, because genes that showed salt sensitivity were considered to be candidate genes for EH. The results showed that more than 300 genes were either downregulated or upregulated. For the genetic association study, from these 300 genes we nominated 121 that had been reported in the literature as candidate genes. To date, 70 genes have been screened, 10 of which showed significant association with EH on haplotype-based analysis. Three of these 10 genes were positive in both the expression profiling and genetic association studies. The tumor necrosis factor receptor superfamily, member 4 (TNFRSF4) gene was one of the three.

TNFRSF4 (OX40) is a member of the tumor-necrosis factor receptor (TNFR) superfamily, and is primarily expressed as a transmembrane protein on activated CD4⁺ T cells after antigen recognition [6-9]. Tumor necrosis factor (ligand) superfamily, member 4 (TNFSF4, also called OX40L) [10], the ligand for TNFRSF4 on activated CD4⁺ T cells, is expressed on antigen-presenting cells (APCs) including activated B cells, macrophages and dendritic cells, as well as on endothelial cells and some activated T cells [11-14]. The TNFRSF4–TNFSF4 interaction between T cell and APC contributes to proinflammatory T cell function. In particular, TNFRSF4–TNFSF4 interactions are crucial for the generation of memory CD4⁺ T cells by promoting the survival of effector T cells [15-18]. Thus, it is suggested that the TNFRSF4-TNFSF4 pathway is involved in inflammation and immune response.

lymphocyte activation involving several receptor-ligand pairs Т such as TNFRSF4-TNFSF4 is suggested to promote atherosclerosis [12, 19, 20], which is now considered to be an inflammatory disease [21]. Recently, TNFSF4 was identified as a susceptibility gene for atherosclerosis and a genetic variation in TNFSF4 was reported to be associated with myocardial infarction (MI) and severity of coronary artery disease [22]. Genetic variation in TNFRSF4 was also shown to be associated with MI [23]. These reports suggested that the TNFRSF4–TNFSF4 pathway plays an important role in the pathogenesis of atherosclerosis and MI in humans. It is generally believed that hypertension is one of the major risk factors for atherosclerosis and MI [24]; however, MI and hypertension often coexist, as seen in the SHEEP study cohort in which MI patients were significantly associated with hypertension [25]. Thus, the association between MI and TNFRSF4/TNFSF4 in human subjects may be due to not only atherogenesis but also hypertension itself. We hypothesized that TNFRSF4 and/or TNFSF4 were potential candidate genes for EH.

The aim of the present study is to investigate the association between genetic variations of the *TNFRSF4* gene and EH in the Japanese population. We performed a case-control study

using two independent populations of Japanese patients with EH.

Methods

Study Subjects

Initial screening of candidate genes involved 1035 subjects with EH (762 males and 273 females) and 1058 age-matched controls (792 males and 266 females) who were recruited through the study group of the Millennium Genome Project for Hypertension [5]. Six medical institutes took part in the collaborative study and recruited subjects in Japan. Recruitment procedures, case-control criteria, and clinical characteristics are described in detail elsewhere [5].

The clinical characteristics of the subjects included in this study for *TNFRSF4* gene analyses are shown in (Table 1) and (Table 2). Subjects in population 1 were a part of the population recruited through the study group of the Millennium Genome Project for Hypertension [5]. Subjects in population 2 were recruited from Ohasama, a cohort in a rural community of northern Japan [26].

Each subject was assigned to one of the blood pressure diagnostic categories defined by the criteria of the 1999 WHO/ISH guidelines for the management of hypertension [27]. Hypertensive (HT) subjects had systolic blood pressure (SBP) \geq 140 mmHg or diastolic blood pressure (DBP) \geq 90 mmHg or were patients currently taking chronic antihypertensive medication. Normotensive (NT) subjects had SBP/DBP < 140/90 mmHg, and had never been treated with antihypertensive medication. Informed consent was obtained from each individual as per the protocol approved by each institution's ethics committee.

DNA microarray experiments in mice

In DNA microarray experiments, we used two lines of mice having different numbers of the functional mouse angiotensinogen gene (*Agt*) [28, 29], kindly donated by Professor Oliver

Smithies (Department of Pathology, University of North Carolina). To observe distinct effects by long-term salt loading, Agt 2/2 mice (with four wild-type copies of the Agt gene) were fed a high-salt diet containing 8% NaCl for six months, while Agt 0/1 mice (with one wild-type copy of the Agt gene) were fed a low-salt diet containing 0.3% NaCl. Total RNA was isolated from the kidneys of mice and differences in gene expression were examined using mouse cDNA microarray (Incyte Genomics, Inc.), which contains 9222 mouse cDNA clones.

Screening of candidate genes

We selected a total of 121 candidate genes (Supplemental Table 1) based on the following criteria: (i) were genes reported as candidates in the literature or with functions relevant to the blood pressure regulation, and (ii) were human homolog of genes in which renal expression was changed by long-term salt loading in mice. For an initial screening of these candidate genes, some of the available single nucleotide polymorphisms (SNPs) per gene were selected from the Japanese SNP database (http://snp.ims.u-tokyo.ac.jp/) or dbSNP database (http://www.ncbi.nlm.nih.gov/SNP/) and were genotyped in 1035 patients and 1058 controls using the PCR-SSP-FCS method [30]. Haplotype-based association analyses were performed using SNPAlyze v4.1 Pro software (DYNACOM, Mobara, Japan) based on an expectation/maximization (EM) algorithm. *P* values for overall distribution of haplotypes were calculated by permutation test at 1000 iterations. *P* values less than 0.05 were considered statistically significant.

Screening for polymorphisms in TNFRSF4

To identify genetic variants of the human *TNFRSF4* gene, we sequenced all 7 exons, the adjacent intronic sequence, 4 kb of the 5' flanking region and 1.5 kb of the 3' flanking region in 32 control subjects. Nineteen primer sets were designed on the basis of the *TNFRSF4*

genomic and mRNA sequences from the GenBank database (accession numbers NT_004350.18 and NM_003327, respectively). All polymerase chain reaction (PCR) products were sequenced using the BigDye Terminator v3.1 Cycle Sequencing kit and an ABI PRIZM 3100 Genetic Analyzer (Applied Biosystems, Foster City, CA). The sequences were analyzed and polymorphisms identified using the Genetyx program (Genetyx Corp., Tokyo, Japan).

Genotyping of polymorphisms in TNFRSF4

Genotyping of four SNPs in the *TNFRSF4* gene (P1: -3948C>T, P2: -3606C>T, P8: -1725A>G and P12: -530A>G) was performed using either the TaqManTM allele-specific amplification (TaqMan-ASA) method [31] or the Custom TaqManTM Genomic Assays kit (Applied Biosystems). In the TaqMan-ASA method, specific primers were designed on the basis of the *TNFRSF4* genomic sequence from the GenBank database (accession number NT_004350.18). The primer sequences are shown in (Table 3). The PCR mixture for the TaqMan-ASA method contained 5 μ l of 2 × TaqManTM Universal Mix (Applied Biosystems), 0.4 μ mol/L of each PCR primer, 0.12 μ mol/L of TaqMan probe, and 5 ng of template DNA in a final volume of 10 μ l. The samples were analyzed with an ABI PRIZM 7000 Sequence Detection system (Applied Biosystems). The thermoprofiles were 50°C for 2 min, 95°C for 10 min, followed by 40 cycles of 95°C for 15 sec and 60°C for 1 min.

Luciferase assay

TNFRSF4 reporter constructs of 3970 bp (nt -3968 to +2) were created by means of PCR amplification of genomic DNA from homozygous subjects who had alternative haplotypes with the use of following primers: forward, 5'-GGGGTACCGTGCCACATGGCTGGAATTTAC-3' (including *KpnI* site) and reverse,

5'-TCTAGCTAGCGTCTCTGCTGTCGCCAGAGTC-3' (including NheI site). Amplicons of three haplotypes (Pr-H1, Pr-H2 and Pr-H5) were cloned into the pGL4.10[luc2] vector (Promega, Madison, WI). Promoter constructs that contained one polymorphic change (Pr-P2-T, Pr-P3-T, Pr-P4-del, Pr-P6-G, Pr-P8-G, Pr-P9-G, Pr-P10-T, and Pr-P11-G) were created by site-directed mutagenesis carried out in the Pr-H1 plasmid using the GeneEditorTM in vitro site-directed mutagenesis system (Promega). All constructs were verified by sequencing. COS-7 cells (monkey kidney, SV40 T antigen-transformed) were cultured in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum and antibiotics. HEK293 cells (human embryonic kidney) were cultured in minimum essential medium supplemented with 2 mmol/L L-glutamine, 1% non-essential amino acids, 10% fetal bovine serum and antibiotics. Cells in 12-well plates at 50-70% confluence were transfected with 500 ng of each construct and 10 ng of pGL4.74[hRluc/TK] Renilla luciferase vector (Promega) as an internal control for transfection efficiency, using 1.5 µl of FuGENE 6 transfection reagent (Roche Diagnostics, Basel, Switzerland). After 24 hours of transfection, the cells were harvested, and firefly and *Renilla* luciferase activities were measured using the Dual-Luciferase Reporter Assay System and a TD-20/20 luminometer (Promega). Each experiment was repeated five or six times, and each sample was studied in triplicate.

Statistical analysis

Haploview version 3.32 (http://www.broad.mit.edu/mpg/haploview/index.php) was used to analyze and visualize the linkage disequilibrium (LD) and haplotypic patterns. Hardy-Weinberg equilibrium was assessed by χ^2 analysis. Overall distributions of the genotypes or alleles were analyzed by χ^2 analysis using 2×3 or 2×2 contingency tables between NT controls and HT patients. Haplotype frequencies were estimated using SNPAlyze v4.1 Pro software. The distributions of each haplotype between NT controls and HT patients were calculated both by χ^2 tests of one haplotype against the others (haplotype-wise test) and by permutation tests with 1000 iterations using SNPAlyze software. We calculated odds ratios (ORs) with 95% confidence intervals (CIs) using logistic regression analyses with or without clinical covariates (age, body mass index, total cholesterol, high-density lipoprotein cholesterol, and triglyceride). To estimate the contribution of the gene to the total variance of blood pressure, the variance component procedure with the analysis of variance (ANOVA) type III variance estimates was used. Comparisons in reporter assays were performed using Student's *t*-test or ANOVA. All statistical analyses were performed with SPSS software (SPSS Japan Inc, Tokyo, Japan) unless otherwise stated. *P* values less than 0.05 were considered statistically significant.

Results

DNA microarray experiments in mice

We used cDNA microarray analyses to compare the expression profiles of 9222 genes in the kidneys of Agt 2/2 mice (with four wild-type copies of the Agt gene) with a high-salt diet vs. those of Agt 0/1 mice (with one wild-type copy of the Agt gene) with a low-salt diet. Differential expression values greater than 1.3 based on internal quality control data are summarized in (Supplemental Table 2) and (Supplemental Table 3). We found that 119 genes were downregulated in the kidneys of Agt 2/2 mice by 1.3- to 3.1-fold compared with Agt 0/1 mice, and 192 genes were upregulated by 1.3- to 1.9-fold. Murine *TNFRSF4* gene (*Tnfrsf4*) was the gene downregulated 1.3 fold.

Screening of candidate genes by haplotype association study

We selected a total of 121 candidate genes (Supplemental Table 1) based on the following criteria: (i) were genes reported as candidates in the literature or with possible involvement of blood pressure regulation, and (ii) were human homolog of genes in which renal expression was changed by long-term salt loading in mice. We excluded genes whose genotype data were not available due to the following reasons: no SNP data was available in the databases; minor allele frequencies of SNPs in Japanese were too low (< 5%); or the genotyping of some SNPs was difficult. So far, 191 SNPs in 70 genes have been successfully genotyped for genetic association tests, and the genotyping of only a single SNP was completed in 8 genes. A haplotype-based association test was performed in 62 genes and a single SNP association study in 8 genes. *P* values for difference in overall distribution of the haplotype or genotype frequencies between NT and HT in total (male + female), male, and female subjects are shown in (Supplemental Table 4). Significant *P* values were observed for 10 genes;

Aquaporin-2 (AQP2), Estrogen receptor 2 (ESR2), Glycogen synthase 1 (GYS1), Kallikrein 1 (KLK1), Nephrin (NPHN), Solute carrier family 1 (glial high affinity glutamate transporter), member 2 (SLC1A2), Solute carrier family 9 (sodium/hydrogen exchanger), isoform 3 (SLC9A3), Steroidogenic acute regulatory protein (STAR), Syntaxin binding protein 1 (STXBP1) and TNFRSF4. Three genes (STAR, STXBP1, and TNFRSF4) are the human homologs to the mouse genes that showed changes in renal expression in the salt-loading experiment. The P value for overall distribution of the haplotype of TNFRSF4 was significant only in female subjects.

Identification of polymorphisms in TNFRSF4

We searched for polymorphisms in the *TNFRSF4* gene, including 4 kb of the 5' flanking region and 1.5kb of the 3' flanking region. By direct sequencing in 32 Japanese individuals, a total of 44 polymorphisms were identified; 20 in the 5' flanking region, 4 in exons, 7 in introns, and 13 in the 3' flanking region. Of those, 27 polymorphisms (P1-P27) with minor allele frequencies (MAF) \geq 5% (in 32 DNA samples) are presented in (Table 4). A graphical overview of the structure of the human *TNFRSF4* gene showing the location of the 27 polymorphisms identified in this study is shown in (Fig. 1). Pair-wise LD measuring r^2 between polymorphisms and defined haplotype block structures in this region was evaluated using the solid spine of LD method in Haploview (Fig. 1). Three haplotype blocks (blocks 1, 2 and 3) were defined in the *TNFRSF4* gene region with this method. Blocks 1 and 2 appear to be separated because P8 showed low LD to other polymorphisms and blocks 2 and 3 were separated by P22 for the same reason. However, strong LDs were observed among certain blocks, such as between P4 and P27 ($r^2 = 0.91$). In addition, multiallelic D' values between these blocks were high (0.86, between blocks 1 and 2; 1.0, between blocks 2 and 3). Thus, we decided to handle an entire gene region as one block, which could be analyzed by tag SNPs

from the entire region. Four SNPs in the 5' flanking region (P1: -3948C>T, P2: -3606C>T, P8: -1725A>G and P12: -530A>G) were employed for further analysis. The 4-SNP haplotypes constructed from these SNPs covered more than 85% of haplotype diversity of the entire *TNFRSF4* gene when P22 was not included for analysis.

Case-control study for TNFRSF4 polymorphisms

The clinical characteristics of the normotensive (NT) and hypertensive (HT) subjects in population 1 are summarized in (Table 1). Difference in age between the NT and HT subjects was significant when males and females were jointly compared (P = 0.011), whereas it was not significant when males and females were separately compared.

In population 1, 4 SNPs (P1, P2, P8 and P12) were genotyped in 562 NT controls and 587 HT patients. All of these SNPs were in Hardy-Weinberg equilibrium in the NT group. (Table 5) shows the distribution of genotypic and allelic frequencies of the 4 SNPs in each group. The overall distribution of genotype and allele did not significantly differ between the HT and NT groups for total, male or female subjects. The *P* value of χ^2 test for the difference in the genotypic frequency of P8 between the male HT and NT groups was 0.044, which was not significant after Bonferroni's correction (multiplied by 4).

We next analyzed the 4-SNP haplotype in population 1 (Table 6). Six common haplotypes (H1 to H6) covered approximately 99% of subjects in the HT and NT groups. The frequencies of each haplotype in males did not differ between the HT and NT groups. However, in females, the frequency of the major C-C-A-A haplotype (H1) of the HT subjects was significantly lower than that of the NT subjects (P = 0.031). Multiple logistic regression in females revealed that the association of the H1/H1 diplotype with hypertension remained significant (P = 0.006) after adjustment for age, body mass index, total cholesterol, high-density lipoprotein cholesterol, and triglyceride. The OR of the H1/H1 diplotype against

the others was 0.56 with a 95% CI of 0.37-0.85. The frequency of the minor C-C-A-G haplotype (H5) of the HT subjects was significantly higher than that of the NT subjects ($P = 6.78 \times 10^{-5}$). H5 haplotype was significantly associated with hypertension in a dominant model (P = 0.004) after adjustment for the above factors. The OR of the H5/H5+H5/other diplotype against the others was 6.93 with a 95% CI of 1.88-25.5.

To confirm an association of the 4-SNP haplotype with female EH, we genotyped 4 SNPs using the second case-control population (population 2) comprising 925 NT controls and 732 HT patients. (Table 2) presents the clinical features of the NT controls and HT patients in population 2. All genotype results of 4 SNPs in each group were consistent with Hardy-Weinberg equilibrium. (Table 7) shows the distribution of genotypic and allelic frequencies of 4 SNPs in each group of population 2. The overall distribution of genotype and allele of all 4 SNPs did not significantly differ between the HT and NT groups for total or male subjects. However, among women, significant differences were observed in the allelic frequencies of P2 (P = 0.005) and the genotypic and allelic frequencies of P8 (P = 0.005 and 0.003, respectively) between the HT and NT subjects even after Bonferroni's correction (multiplied by 4). P2 was still significantly associated with hypertension in females in both a dominant (P = 0.007) and recessive model (P = 0.038) after adjustment for age, body mass index, total cholesterol, high-density lipoprotein cholesterol, and triglyceride. The OR of T/T+C/T against C/C (dominant model) was 1.22 with a 95% CI of 1.05-1.40, and the OR of T/T against C/T+C/C (recessive model) was 1.94 with a 95% CI of 1.04-3.62. P22 was also significantly associated with hypertension in females in both a dominant model (P = 0.011) and recessive model (P = 0.002) after adjustment for the above factors. The OR of G/G+A/G against A/A (dominant model) was 1.20 with a 95% CI of 1.04-1.38, and the OR of G/G against A/G+G/G (recessive model) was 1.49 with a 95% CI of 1.16-1.92.

(Table 8) shows the frequency of 4-SNP haplotypes in population 2. Among females, the

HT subjects showed a significantly lower frequency of H1 (C-C-A-A) ($P = 8.48 \times 10^{-4}$) and a significantly higher frequency of H2 (C-T-G-A) ($P = 6.46 \times 10^{-4}$) than the NT subjects, whereas in males no significant difference in frequencies of haplotypes between the HT and NT groups was observed. Multiple logistic regression in females revealed that the association of H1 haplotype with hypertension remained significant in both a dominant (P = 0.006) and recessive model (P = 0.005) after adjustment for age, body mass index, total cholesterol, high-density lipoprotein cholesterol, and triglyceride. The OR of the H1/H1+H1/other diplotype against the others (dominant model) was 0.52 with a 95% CI of 0.32-0.83, and the OR of the H1/H1 diplotype against the others (recessive model) was 0.67 with a 95% CI of 0.50-0.89. The H2 haplotype was also significantly associated with hypertension in females in a dominant model (P = 0.001) after adjustment for the above factors. The OR of the H2/H2+H2/other diplotype against the others was 1.40 with a 95% CI of 1.18-1.65. In population 2, the frequency of H5 did not significantly differ between the HT and NT groups for females.

Although trends of frequency changes in the H1 and H2 haplotypes among women in the two independent populations were the same, the frequency of H2 showed a significant difference not in population 1 but in population 2. This discrepancy could have been caused by difference in the sample size. When we analyzed the differences in frequencies of each haplotype between the HT and NT groups in combined samples of the two populations (Table 9), female HT subjects showed a significantly lower frequency of H1 ($P = 8.07 \times 10^{-5}$) and a significantly higher frequency of H2 ($P = 6.07 \times 10^{-4}$) than the NT subjects. The frequency of H5 of female HT subjects was still significantly higher than that of NT subjects (P = 0.003). No significant difference in haplotype frequencies between male HT and NT groups was observed.

Variance component estimation of TNFRSF4

The variance estimates of the *TNFRSF4* diplotype and the residual in SBP of the control females of population 1 were 5.5 and 79.6, respectively. Therefore, the *TNFRSF4* gene explains 6.5% of the variation of SBP in this group. The values in DBP were 2.8 and 52.1, respectively, with the gene contributing 5.2% of the variation.

Transcriptional effects of polymorphisms in the promoter region

To study transcriptional effects of the polymorphisms, we transfected COS-7 cells and HEK293 cells with promoter constructs containing the haplotypes in the TNFRSF4 gene (Pr-H1, Pr-H2 and Pr-H5). In COS-7 cells, promoter activity of the Pr-H2 construct was significantly lower than that of the Pr-H1 or Pr-H5 construct (0.89 for Pr-H2/Pr-H1, P =0.008 and 0.91 for Pr-H2/Pr-H5, P = 0.026; Fig 2a). The same results were observed in HEK293 cells (0.92 for Pr-H2/Pr-H1, P = 0.001 and 0.88 for Pr-H2/Pr-H5, P = 0.001; Fig 2c). There was no significant difference in promoter activity between the Pr-H1 and Pr-H5 constructs in both cells. These results suggest that expression of TNFRSF4 mRNA in cells is lower in individuals who have the H2 haplotype than in cells from individuals who have other types of haplotypes. To clarify the responsible SNP(s) for the lower promoter activity of Pr-H2, we performed an additional assay using a series of promoter constructs that contained only one polymorphic change (Pr-P2-T, Pr-P3-T, Pr-P4-del, Pr-P6-G, Pr-P8-G, Pr-P9-G, Pr-P10-T, and Pr-P11-G). In COS-7 cells, promoter activities of Pr-P2-T, Pr-P6-G and Pr-P11-G were significantly lower than that of Pr-H1 (0.69 for Pr-P2-T/Pr-H1, P < 0.0001, 0.90 for Pr-P6-G/Pr-H1, P = 0.016 and 0.88 for Pr-P11-G/Pr-H1, P = 0.015; Fig 2b). In HEK293 cells, as in COS-7 cells, Pr-P2-T showed significantly lower promoter activity when compared with Pr-H1 (0.71 for Pr-P2-T/Pr-H1, P = 0.0001; Fig. 2d). The results of other constructs, however, were different: promoter activities of Pr-P8-G and Pr-P11-G were

significantly higher than that of Pr-H1 (1.04 for Pr-P8-G/Pr-H1, P = 0.002 and 1.10 for Pr-P11-G/Pr-H1, P = 0.003; Fig 2d). Only Pr-P2-T showed consistent change in promoter activity in the two different cell lines. These results suggest that P2 had the largest impact on the decreased promoter activity of the H2 haplotype.

Discussion

The significance of TNFRSF4 in the pathogenesis of female EH was indicated in two independent sets of populations. Haplotype analysis using 4 SNPs (P1: -3948C>T, P2: -3606C>T, P8: -1725A>G and P12: -530A>G) in the 5' upstream region showed that the frequency of H1 (C-C-A-A) was significantly low among female HT patients when compared with female NT controls in both population 1 (P = 0.031) and population 2 ($P = 8.48 \times 10^{-4}$). The frequency of H2 (C-G-T-A) of female HT patients was significantly higher than that of female NT controls in population 2 ($P = 6.46 \times 10^{-4}$), but not in population 1. In the combined population, both significantly lower frequency of H1 ($P = 8.07 \times 10^{-5}$) and significantly higher frequency of H2 ($P = 6.07 \times 10^{-4}$) were observed in female HT patients compared to female NT controls. No difference in haplotype frequencies between the HT and NT groups was observed in the male subjects of either the combined or separate populations. These results of association of the TNFRSF4 haplotype with hypertension suggested that the H1 haplotype is a protective allele and that the H2 haplotype is a high-risk allele for EH in women. The promoter activity of the H2 haplotype was significantly lower than that of the H1 and H5 (C-C-A-G) haplotypes. Furthermore, the Pr-P2-T construct showed lower promoter activity than other constructs. Allelic association of P2 (-3606C>T, rs12036216) with female HT patients was significant in population 2 and the combined population (data not shown), but not in population 1. These data suggested that P2 is the responsive SNP that modifies the risk for hypertension in females, although it is possible that unidentified variant(s) in linkage disequilibrium with this haplotype have function(s) that influence disease susceptibility. We also observed a significant difference of frequency in the H5 haplotype in the combined population (P = 0.003) and in population 1 ($P = 6.78 \times 10^{-5}$), but not in population 2. However, we could not find any transcriptional effect of H5 haplotype.

The TNFRSF4-TNFSF4 interactions on T lymphocytes enhance proliferation and differentiation of the cells as well as generation and survival of memory CD4⁺ T cells in the process of inflammation and immune response [15-18]. Several inflammatory markers, such as soluble leukocyte adhesion molecules, cytokines, specific growth factors, heat shock proteins, CD40L, and C-reactive protein (CRP), were reported to increase in patients with EH [32-41]. Although the relationship between inflammation and hypertension has not been well established, a growing body of evidence indicates that vascular inflammation may be involved in both the initiation and development of hypertension [42-46]. Sesso et al. showed that elevated plasma CRP, a well-known marker of inflammation, was associated with the future development of hypertension in a dose-dependent manner [46]. Furthermore, hypertension has been suggested to trigger inflammation through the increased expression of several mediators, including leukocyte adhesion molecules, chemokines, specific growth factors, heat shock proteins, endothelin-1, and angiotensin [47-54]. Given our findings that variants of the TNFRSF4 gene, which might affect the inflammatory cascade, were associated with EH among women, it is likely that inflammation may play a role in initiation and/or development of hypertension.

Inflammatory process [21] and T lymphocyte activation [12, 19, 20] are implicated to be involved in the pathogenesis of atherosclerosis. Thus alteration(s) in the TNFRSF4–TNFSF4 pathway could influence atherosclerosis formation. Indeed, Wang *et al.* found that polymorphisms of *TNFSF4* are associated with myocardial infarction (MI) in women [22]. Furthermore, a polymorphism in *TNFRSF4* was also reported to be associated with MI [23]. These studies strongly suggested that genes involved in the TNFRSF4–TNFSF4 pathway play a role in the pathogenesis of atherosclerosis and MI, particularly in women.

Our findings combined with those of the reports mentioned above suggested that genetic variations in the TNFRSF4–TNFSF4 pathway may be involved in the pathogenesis of both

atherosclerosis and hypertension. So, which comes first, atherosclerosis or hypertension? Hypertension is one of the principal risk factors for atherosclerosis and MI [24], but the exact mechanism underlying the association is not fully understood. Although arterial stiffness, which is a predictor of atherosclerosis [55, 56], has been thought to be the result of hypertension rather than its cause, recent studies suggested that arterial stiffness is related to the development of hypertension [57, 58]. These data indicated that the relationship between hypertension and arterial stiffness may be bidirectional [59]. Therefore, three different scenarios are possible to explain the results that genetic variations in the TNFRSF4-TNFSF4 pathway are associated with both hypertension and MI. First, inflammation may directly increase arterial stiffness and induce the development of an atherosclerotic lesion, which may lead to the development of hypertension. Second, inflammation may induce hypertension, which may result in increasing arterial stiffness and atherosclerosis. Third, inflammation may promote the development of hypertension and atherosclerosis by different pathways. Although it is not clear whether atherosclerosis is a cause of hypertension, our findings and previous studies indicate that the inflammation may be an important part of the link between hypertension and atherosclerosis and cardiovascular events, such as MI.

TNFSF4 is also a potential candidate for a susceptibility gene involved in the pathogenesis of female EH. We therefore examined the putative association between polymorphisms in the *TNFSF4* gene and hypertension in population 1. The allele frequencies of 4 SNPs (rs1234315, rs3850641, rs1234313, and rs3861950) and its haplotype did not significantly differ between the HT group and the NT group for females (data not shown). In contrast to the case of MI where susceptibility was affected by variations of both *TNFRSF4* and *TNFSF4*, susceptibility for hypertension may be affected only by *TNFRSF4*, though more extensive studies are required before we conclude an association of *TNFSF4* with hypertension.

In the present study, we found that variations of TNFRSF4 affected hypertension susceptibility only in females. This is an interesting similarity to female-specific MI susceptibility exerted by TNFSF4 and TNFRSF4. Some case-control studies have identified gene variants associated with gender-specific susceptibility to EH [5, 60, 61]. Recently, Nakayama et al.[5] reported that an SNP in the 5'-untranslated region of the follicle-stimulating hormone receptor (FSHR) gene, in which mutations were reported to cause hereditary hypergonadotropic ovarian failure [62], was associated with EH in women and affected the levels of transcriptional activity. In this study the functional mutation of the gene was clearly identified in patients with EH in a gender-specific manner. Currently, the reason for female-specific association of TNFRSF4 with EH is an open question. One possibility is the involvement of the female sex hormone, estrogen. After menopause, females' risk for inflammatory cardiovascular diseases such as atherosclerosis and coronary heart disease increases, suggesting that estrogens modulate the initiation and progress of inflammation [63-65]. Recently, Xing et al. [66] suggested that estrogen may exert anti-inflammatory effects by inhibiting tumor necrosis factor-a-mediated chemokine production in vascular smooth muscle cells. However, estrogen is also known to increase CRP, which is an inflammatory marker [63]. These findings indicate that estrogen may modulate production of several proinflammatory molecules in distinct pathways. It is possible that TNFRSF4 and estrogen cross-talk in inflammation networks.

In conclusion, the present study revealed that haplotypes of the *TNFRSF4* gene were associated with EH among women in two Japanese populations, suggesting an involvement of the *TNFRSF4* gene in the pathogenesis of female essential hypertension.

Acknowledgements

We thank Naoto Ishii and Yoshihiro Onouchi for advice and assistance. We also thank Mieko Yoshida and Yoshiko Hotta for excellent technical assistance.

References

- 1. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. *Lancet* 2005; 365:217-23.
- Tanira MO, Al Balushi KA. Genetic variations related to hypertension: a review. J Hum Hypertens 2005; 19:7-19.
- 3. Cowley AW, Jr. The genetic dissection of essential hypertension. *Nat Rev Genet* 2006; 7:829-40.
- 4. Hubner N, Yagil C, Yagil Y. Novel integrative approaches to the identification of candidate genes in hypertension. *Hypertension* 2006; 47:1-5.
- 5. Nakayama T, Kuroi N, Sano M, Tabara Y, Katsuya T, Ogihara T, et al. Mutation of the follicle-stimulating hormone receptor gene 5'-untranslated region associated with female hypertension. *Hypertension* 2006; 48:512-8.
- Calderhead DM, Buhlmann JE, van den Eertwegh AJ, Claassen E, Noelle RJ, Fell HP. Cloning of mouse Ox40: a T cell activation marker that may mediate T-B cell interactions. *J Immunol* 1993; 151:5261-71.
- 7. Godfrey WR, Fagnoni FF, Harara MA, Buck D, Engleman EG. Identification of a human OX-40 ligand, a costimulator of CD4+ T cells with homology to tumor necrosis factor. *J Exp Med* 1994; 180:757-62.
- 8. Mallett S, Fossum S, Barclay AN. Characterization of the MRC OX40 antigen of activated CD4 positive T lymphocytes--a molecule related to nerve growth factor receptor. *Embo J* 1990; 9:1063-8.
- 9. Paterson DJ, Jefferies WA, Green JR, Brandon MR, Corthesy P, Puklavec M, et al. Antigens of activated rat T lymphocytes including a molecule of 50,000 Mr detected only on CD4 positive T blasts. *Mol Immunol* 1987; 24:1281-90.

- 10. Miura S, Ohtani K, Numata N, Niki M, Ohbo K, Ina Y, et al. Molecular cloning and characterization of a novel glycoprotein, gp34, that is specifically induced by the human T-cell leukemia virus type I transactivator p40tax. *Mol Cell Biol* 1991; 11:1313-25.
- 11. Akiba H, Miyahira Y, Atsuta M, Takeda K, Nohara C, Futagawa T, et al. Critical contribution of OX40 ligand to T helper cell type 2 differentiation in experimental leishmaniasis. *J Exp Med* 2000; 191:375-80.
- 12. Imura A, Hori T, Imada K, Ishikawa T, Tanaka Y, Maeda M, et al. The human OX40/gp34 system directly mediates adhesion of activated T cells to vascular endothelial cells. *J Exp Med* 1996; 183:2185-95.
- 13. Stuber E, Neurath M, Calderhead D, Fell HP, Strober W. Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. *Immunity* 1995; 2:507-21.
- 14. Weinberg AD, Wegmann KW, Funatake C, Whitham RH. Blocking OX-40/OX-40 ligand interaction in vitro and in vivo leads to decreased T cell function and amelioration of experimental allergic encephalomyelitis. *J Immunol* 1999; 162:1818-26.
- 15. Sugamura K, Ishii N, Weinberg AD. Therapeutic targeting of the effector T-cell co-stimulatory molecule OX40. *Nat Rev Immunol* 2004; 4:420-31.
- 16. Weinberg AD. OX40: targeted immunotherapy--implications for tempering autoimmunity and enhancing vaccines. *Trends Immunol* 2002; 23:102-9.
- 17. Weinberg AD, Evans DE, Thalhofer C, Shi T, Prell RA. The generation of T cell memory: a review describing the molecular and cellular events following OX40 (CD134) engagement. *J Leukoc Biol* 2004; 75:962-72.
- 18. Croft M. Co-stimulatory members of the TNFR family: keys to effective T-cell

immunity? Nat Rev Immunol 2003; 3:609-20.

- de Boer OJ, Becker AE, van der Wal AC. T lymphocytes in atherogenesis-functional aspects and antigenic repertoire. *Cardiovasc Res* 2003; 60:78-86.
- 20. Hansson GK, Libby P, Schonbeck U, Yan ZQ. Innate and adaptive immunity in the pathogenesis of atherosclerosis. *Circ Res* 2002; 91:281-91.
- 21. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. *Circulation* 2002; 105:1135-43.
- 22. Wang X, Ria M, Kelmenson PM, Eriksson P, Higgins DC, Samnegard A, et al. Positional identification of TNFSF4, encoding OX40 ligand, as a gene that influences atherosclerosis susceptibility. *Nat Genet* 2005; 37:365-72.
- 23. Ria M, Eriksson P, Boquist S, Ericsson CG, Hamsten A, Lagercrantz J. Human genetic evidence that OX40 is implicated in myocardial infarction. *Biochem Biophys Res Commun* 2006; 339:1001-6.
- 24. Wilson PW. An epidemiologic perspective of systemic hypertension, ischemic heart disease, and heart failure. *Am J Cardiol* 1997; 80:3J-8J.
- 25. Samnegard A, Silveira A, Lundman P, Boquist S, Odeberg J, Hulthe J, et al. Serum matrix metalloproteinase-3 concentration is influenced by MMP-3 -1612 5A/6A promoter genotype and associated with myocardial infarction. J Intern Med 2005; 258:411-9.
- 26. Sugimoto K, Katsuya T, Ohkubo T, Hozawa A, Yamamoto K, Matsuo A, et al. Association between angiotensin II type 1 receptor gene polymorphism and essential hypertension: the Ohasama Study. *Hypertens Res* 2004; 27:551-6.
- 27. 1999 World Health Organization-International Society of Hypertension Guidelines for the Management of Hypertension. Guidelines Subcommittee. J

Hypertens 1999; 17:151-83.

- 28. Kim HS, Krege JH, Kluckman KD, Hagaman JR, Hodgin JB, Best CF, et al. Genetic control of blood pressure and the angiotensinogen locus. *Proc Natl Acad Sci U S A* 1995; 92:2735-9.
- 29. Kim HS, Lee G, John SW, Maeda N, Smithies O. Molecular phenotyping for analyzing subtle genetic effects in mice: application to an angiotensinogen gene titration. *Proc Natl Acad Sci U S A* 2002; 99:4602-7.
- 30. Bannai M, Higuchi K, Akesaka T, Furukawa M, Yamaoka M, Sato K, et al. Single-nucleotide-polymorphism genotyping for whole-genome-amplified samples using automated fluorescence correlation spectroscopy. *Anal Biochem* 2004; 327:215-21.
- 31. Fujii K, Matsubara Y, Akanuma J, Takahashi K, Kure S, Suzuki Y, et al. Mutation detection by TaqMan-allele specific amplification: application to molecular diagnosis of glycogen storage disease type Ia and medium-chain acyl-CoA dehydrogenase deficiency. *Hum Mutat* 2000; 15:189-96.
- 32. Barbieri M, Ferrucci L, Corsi AM, Macchi C, Lauretani F, Bonafe M, et al. Is chronic inflammation a determinant of blood pressure in the elderly? *Am J Hypertens* 2003; 16:537-43.
- 33. Derhaschnig U, Shehata M, Herkner H, Bur A, Woisetschlager C, Laggner AN, et al. Increased levels of transforming growth factor-beta1 in essential hypertension. *Am J Hypertens* 2002; 15:207-11.
- 34. Ferri C, Desideri G, Baldoncini R, Bellini C, De Angelis C, Mazzocchi C, et al. Early activation of vascular endothelium in nonobese, nondiabetic essential hypertensive patients with multiple metabolic abnormalities. *Diabetes* 1998; 47:660-7.

- 35. Festa A, D'Agostino R, Jr., Howard G, Mykkanen L, Tracy RP, Haffner SM. Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). *Circulation* 2000; 102:42-7.
- 36. Lakoski SG, Cushman M, Palmas W, Blumenthal R, D'Agostino RB, Jr., Herrington DM. The relationship between blood pressure and C-reactive protein in the Multi-Ethnic Study of Atherosclerosis (MESA). J Am Coll Cardiol 2005; 46:1869-74.
- 37. Parissis JT, Korovesis S, Giazitzoglou E, Kalivas P, Katritsis D. Plasma profiles of peripheral monocyte-related inflammatory markers in patients with arterial hypertension. Correlations with plasma endothelin-1. *Int J Cardiol* 2002; 83:13-21.
- 38. Pockley AG, De Faire U, Kiessling R, Lemne C, Thulin T, Frostegard J. Circulating heat shock protein and heat shock protein antibody levels in established hypertension. *J Hypertens* 2002; 20:1815-20.
- 39. Ridker PM, Buring JE, Cook NR,Rifai N. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14 719 initially healthy American women. *Circulation* 2003; 107:391-7.
- 40. Sung KC, Suh JY, Kim BS, Kang JH, Kim H, Lee MH, et al. High sensitivity C-reactive protein as an independent risk factor for essential hypertension. *Am J Hypertens* 2003; 16:429-33.
- 41. Yan JC, Ma GS, Wu ZG, Kong XT, Zong RQ, Zhan LZ. Increased levels of CD40-CD40 ligand system in patients with essential hypertension. *Clin Chim Acta* 2005; 355:191-6.
- 42. Dorffel Y, Latsch C, Stuhlmuller B, Schreiber S, Scholze S, Burmester GR, et al. Preactivated peripheral blood monocytes in patients with essential hypertension.

Hypertension 1999; 34:113-7.

- 43. Grundy SM. Inflammation, hypertension, and the metabolic syndrome. *Jama* 2003; 290:3000-2.
- 44. Li JJ. Inflammation in hypertension: primary evidence. *Chin Med J (Engl)* 2006; 119:1215-21.
- 45. Li JJ, Fang CH, Hui RT. Is hypertension an inflammatory disease? *Med Hypotheses* 2005; 64:236-40.
- 46. Sesso HD, Buring JE, Rifai N, Blake GJ, Gaziano JM, Ridker PM. C-reactive protein and the risk of developing hypertension. *Jama* 2003; 290:2945-51.
- 47. Bataillard A, Renaudin C, Sassard J. Silica attenuates hypertension in Lyon hypertensive rats. *J Hypertens* 1995; 13:1581-4.
- 48. Bush E, Maeda N, Kuziel WA, Dawson TC, Wilcox JN, DeLeon H, et al. CC chemokine receptor 2 is required for macrophage infiltration and vascular hypertrophy in angiotensin II-induced hypertension. *Hypertension* 2000; 36:360-3.
- 49. Clozel M, Kuhn H, Hefti F, Baumgartner HR. Endothelial dysfunction and subendothelial monocyte macrophages in hypertension. Effect of angiotensin converting enzyme inhibition. *Hypertension* 1991; 18:132-41.
- 50. Haller H, Behrend M, Park JK, Schaberg T, Luft FC, Distler A. Monocyte infiltration and c-fms expression in hearts of spontaneously hypertensive rats. *Hypertension* 1995; 25:132-8.
- 51. Hilgers KF, Hartner A, Porst M, Mai M, Wittmann M, Hugo C, et al. Monocyte chemoattractant protein-1 and macrophage infiltration in hypertensive kidney injury. *Kidney Int* 2000; 58:2408-19.
- 52. Johnson RJ, Alpers CE, Yoshimura A, Lombardi D, Pritzl P, Floege J, et al.

Renal injury from angiotensin II-mediated hypertension. *Hypertension* 1992; 19:464-74.

- 53. McCarron RM, Wang L, Siren AL, Spatz M, Hallenbeck JM. Monocyte adhesion to cerebromicrovascular endothelial cells derived from hypertensive and normotensive rats. *Am J Physiol* 1994; 267:H2491-7.
- 54. Schmid-Schonbein GW, Seiffge D, DeLano FA, Shen K, Zweifach BW. Leukocyte counts and activation in spontaneously hypertensive and normotensive rats. *Hypertension* 1991; 17:323-30.
- 55. Herrington DM, Brown WV, Mosca L, Davis W, Eggleston B, Hundley WG, et al. Relationship between arterial stiffness and subclinical aortic atherosclerosis. *Circulation* 2004; 110:432-7.
- 56. van Popele NM, Grobbee DE, Bots ML, Asmar R, Topouchian J, Reneman RS, et al. Association between arterial stiffness and atherosclerosis: the Rotterdam Study. *Stroke* 2001; 32:454-60.
- 57. Dernellis J, Panaretou M. Aortic stiffness is an independent predictor of progression to hypertension in nonhypertensive subjects. *Hypertension* 2005; 45:426-31.
- 58. Liao D, Arnett DK, Tyroler HA, Riley WA, Chambless LE, Szklo M, et al. Arterial stiffness and the development of hypertension. The ARIC study. *Hypertension* 1999; 34:201-6.
- 59. Franklin SS. Arterial stiffness and hypertension: a two-way street? *Hypertension* 2005; 45:349-51.
- 60. O'Donnell CJ, Lindpaintner K, Larson MG, Rao VS, Ordovas JM, Schaefer EJ, et al. Evidence for association and genetic linkage of the angiotensin-converting enzyme locus with hypertension and blood pressure in men but not women in the

Framingham Heart Study. Circulation 1998; 97:1766-72.

- 61. Ono K, Mannami T, Iwai N. Association of a promoter variant of the haeme oxygenase-1 gene with hypertension in women. *J Hypertens* 2003; 21:1497-503.
- 62. Aittomaki K, Lucena JL, Pakarinen P, Sistonen P, Tapanainen J, Gromoll J, et al. Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure. *Cell* 1995; 82:959-68.
- 63. Stork S, van der Schouw YT, Grobbee DE, Bots ML. Estrogen, inflammation and cardiovascular risk in women: a critical appraisal. *Trends Endocrinol Metab* 2004; 15:66-72.
- 64. Rosano GM, Vitale C, Marazzi G, Volterrani M. Menopause and cardiovascular disease: the evidence. *Climacteric* 2007; 10 Suppl 1:19-24.
- 65. Nilsson BO. Modulation of the inflammatory response by estrogens with focus on the endothelium and its interactions with leukocytes. *Inflamm Res* 2007; 56:269-73.
- 66. Xing D, Feng W, Miller AP, Weathington NM, Chen YF, Novak L, et al. Estrogen modulates TNF-alpha-induced inflammatory responses in rat aortic smooth muscle cells through estrogen receptor-beta activation. *Am J Physiol Heart Circ Physiol* 2007; 292:H2607-12.

Tables

	Total subjects			Male subjects			Female subjects		
Parameters	NT	HT	Р	NT	HT	Р	NT	HT	Р
No. of subjects	562	587		301	316		261	271	
Age (years)	61.6±9.2	60.1±11.2	0.011*	59.9±9.0	58.5±11.1	0.083	63.6±9.1	62.0±11.1	0.056
BMI (kg/m^2)	22.2±2.8	23.9±3.3	< 0.001*	22.1±2.9	23.8±3.1	< 0.001*	22.3±2.7	24.0±3.6	< 0.001*
SBP (mmHg)	111.7±8.9	163.7±21.1	< 0.001*	111.8 ± 8.8	162.1±18.4	< 0.001*	111.5±9.1	166.1±24.4	< 0.001*
DBP (mmHg)	68.9±7.3	98.3±14.8	< 0.001*	69.4±7.3	98.7±14.0	< 0.001*	68.0±7.3	97.6±16.0	< 0.001*
TC (mg/dl)	205.5±38.0	207.1±34.9	0.596	195.8±35.7	198.7±33.0	0.294	216.2±37.6	216.0±34.7	0.970
HDL-C (mg/dl)	57.3±15.1	58.3±17.2	0.314	55.3±15.0	56.8±17.5	0.263	59.5±15.0	60.0±16.7	0.697
TG (mg/dl)	123.8±87.4	141.7±84.7	0.003*	132.1±106.2	147.0±94.5	0.133	116.7±67.4	135.4±71.3	0.007*

(Table 1) Characteristics of subjects in population 1

Values are mean ± SD. NT, normotensive; HT, hypertensive; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; HDL-C, HDL cholesterol; TG, triglyceride.

* Significant difference.

· ·	Total subject	Total subjects			ts		Female subjects		
Parameters	NT	HT	Р	NT	HT	Р	NT	HT	Р
No. of subjects	925	732		317	323		608	409	
Age (years)	54.6±11.5	61.6±9.7	< 0.001*	55.8±11.1	61.5±10.2	< 0.001*	54.0±11.6	61.7±9.3	< 0.001*
BMI (kg/m ²)	23.4±3.1	24.2±3.3	< 0.001*	23.5±3.0	23.6±3.1	0.506	23.4±3.1	24.6±3.4	< 0.001*
SBP (mmHg)	123.9±9.8	142.2±12.1	< 0.001*	125.4±8.6	143.9±11.4	< 0.001*	123.1±10.3	140.8 ± 12.5	< 0.001*
DBP (mmHg)	70.3±7.1	80.2±9.1	< 0.001*	71.6±6.9	81.9±9.4	< 0.001*	69.6±7.2	78.8 ± 8.6	< 0.001*
TC (mg/dl)	193.4±34.2	195.0±33.8	0.358	186.4±33.8	183.9 ± 34.0	0.352	197.1±33.9	203.8±31.0	0.001*
HDL-C (mg/dl)	55.3±14.1	53.8±14.6	0.028*	51.2±14.1	52.8±14.4	0.180	57.4±13.7	54.4±14.7	0.001*
TG (mg/dl)	128.9±73.4	142.5±89.8	0.001*	139.1±85.1	146.3±103.0	0.340	123.7±66.1	139.5±77.9	0.001*

(Table 2) Characteristics of subjects in population 2

Values are mean ± SD. NT, normotensive; HT, hypertensive; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; HDL-C, HDL cholesterol; TG, triglyceride.

* Significant difference.

((Table 3)) Primer sec	uence (5' –	→ 3") for Tac	Man-ASA	genotyping	
		,		-	,		DD	

SNP	Allele specific primer	Common primer	TaqMan probe ^a
P1	CACATGGCTGGAATTTACCATC	CTCAGCAGTGGGAGAAAAACAA	CCTCTGAAGCGTTTTCACTGGTATCATGTGT
	CACATGGCTGGAATTTACCTCT		
P2	GTCGCCTTTCCCCCTCCG	GCTGCAGCCAATAGGCACCTT	AATAGCCACTTCGTGCGGCTGG
	GTCGCCTTTCCCCCTCCA		
P8	GTCACAGGTCCAAGAAAGCCGT	GCAGGCTGCCTTACAGACCTT	TGAGCTCTGGGTCAGTGTCCA
	GTCACAGGTCCAAGAAAGCCGC		
P12	GGTCAGGAGTTCAAGACCAGTGT	CCACGCCCGAATAATTTTTG	AGTAGAGACGGGATTTCGCCATGTTAGC
	GGTCAGGAGTTCAAGACCAGTTC		

^a TaqMan probes contained a 5' FAM (6-carboxyfluorescein) reporter fluorophore and a 3' TAMRA (6-carboxytetramethylrhodamine) quencher.

Name	Polymorphism ^a	Location	Amino acid change	MAF ^b	dbSNP ID	JSNP ID
P1	-3943C>T	5' Flanking		0.06		
P2	-3601C>T	5' Flanking		0.27	rs12036216	
P3	-3119G>T	5' Flanking		0.27	rs11721	
P4	-2577delA	5' Flanking		0.22		
P5	-2568C>G	5' Flanking		0.06		
P6	-2461C>G	5' Flanking		0.27		
P7	-2167C>T	5' Flanking		0.06		
P8	-1720A>G	5' Flanking		0.30	rs3813201	JST-IMS173304
P9	-936A>G	5' Flanking		0.19	rs34115518	
P10	-699C>T	5' Flanking		0.16	rs35339498	
P11	-669C>G	5' Flanking		0.19	rs35659545	
P12	-525A>G	5' Flanking		0.11	rs35107976	
P13	150+47G>C	Intron1		0.11	rs35737009	
P14	376-16C>G	Intron3		0.11	rs34108055	
P15	442+32ins35bp	Intron4		0.25		
P16	442+248C>T	Intron4		0.19	rs9661697	
P17	539G>A	Exon5	Glu178Glu	0.25	rs17568	
P18	639+25C>T	Intron5		0.19	rs2298212	JST-IMS053053
P19	640-31T>G	Intron5		0.20	rs2298211	JST-IMS053052
P20	921C>T	Exon7 (3' UTR)		0.11	rs2298210	JST-IMS053051
P21	989C>G	Exon7 (3' UTR)		0.11	rs2298209	JST-IMS053050
P22	1067+308G>A	3' Flanking		0.08	rs2298208	JST-IMS053049
P23	1067+941G>C	3' Flanking		0.20	rs34067070	
P24	1067+1224delTT	3' Flanking		0.20		
P25	1067+1240G>C	3' Flanking		0.20	rs34279802	
P26	1067+1266T>C	3' Flanking		0.20	rs35916760	
P27	1067+1296C>T	3' Flanking		0.20	rs36057244	

(Table 4) Polymorphisms with minor allele frequencies \geq 5 % detected in the *TNFRSF4* genomic region in 32 Japanese controls

^a Numbering according to the cDNA sequence of *TNFRSF4* (accession number NM_003327). ^b Minor allele frequency (MAF) on the basis of the sequencing of 32 DNA samples.

	· • •	Total subjects	Total subjects		Male subjects			Female subjects		
		NT	HT	D ^a	NT	HT	D ^a	NT	HT	D ^a
		n = 562	n = 587	Г	n = 301	n = 316	Г	n = 261	n = 271	Г
P1	Genotype									
	CC	448 (0.799)	455 (0.776)		238 (0.793)	245 (0.775)		210 (0.805)	210 (0.778)	
	СТ	109 (0.194)	124 (0.212)		60 (0.200)	67 (0.212)		49 (0.188)	57 (0.211)	
	TT	4 (0.007)	7 (0.012)	0.524	2 (0.007)	4 (0.013)	0.691	2 (0.008)	3 (0.011)	0.722
	Allele									
	С	1005 (0.896)	1034 (0.882)		536 (0.893)	557 (0.881)		469 (0.898)	477 (0.883)	
	Т	117 (0.104)	138 (0.118)	0.305	64 (0.107)	75 (0.119)	0.506	53 (0.102)	63 (0.117)	0.429
P2	Genotype									
	CC	324 (0.578)	319 (0.544)		166 (0.553)	170 (0.538)		158 (0.605)	149 (0.552)	
	СТ	208 (0.371)	220 (0.375)		121 (0.403)	117 (0.370)		87 (0.333)	103 (0.381)	
	TT	29 (0.052)	47 (0.080)	0.129	13 (0.043)	29 (0.092)	0.055	16 (0.061)	18 (0.067)	0.455
	Allele									
	С	856 (0.763)	858 (0.732)		453 (0.755)	457 (0.723)		403 (0.772)	401 (0.743)	
	Т	266 (0.237)	314 (0.268)	0.089	147 (0.245)	175 (0.277)	0.203	119 (0.228)	139 (0.257)	0.263
P8	Genotype									
	AA	284 (0.506)	280 (0.478)		144 (0.480)	154 (0.487)		140 (0.536)	126 (0.467)	
	AG	238 (0.424)	248 (0.423)		137 (0.457)	125 (0.396)		101 (0.387)	123 (0.456)	
	GG	39 (0.070)	58 (0.099)	0.182	19 (0.063)	37 (0.117)	0.044	20 (0.077)	21 (0.078)	0.250
	Allele									
	А	806 (0.718)	808 (0.689)		425 (0.708)	433 (0.685)		381 (0.730)	375 (0.694)	
	G	316 (0.282)	364 (0.311)	0.129	175 (0.292)	199 (0.315)	0.376	141 (0.270)	165 (0.306)	0.202
P12	Genotype									
	AA	401 (0.716)	393 (0.671)		209 (0.699)	215 (0.680)		192 (0.736)	178 (0.659)	
	AG	148 (0.264)	175 (0.299)		84 (0.281)	88 (0.278)		64 (0.245)	87 (0.322)	
	GG	11 (0.020)	18 (0.031)	0.179	6 (0.020)	13 (0.041)	0.318	5 (0.019)	5 (0.019)	0.144
	Allele									
	А	950 (0.848)	961 (0.820)		502 (0.839)	518 (0.820)		448 (0.858)	443 (0.820)	
	G	170 (0.152)	211 (0.180)	0.069	96 (0.161)	114 (0.180)	0.355	74 (0.142)	97 (0.180)	0.093

(Table 5) Genotype and allele frequencies among NT and HT subjects in population 1

^a Significant *P*-value after Bonferroni's correction for four loci is 0.0125 (0.05/4).

		Male subjects	5			Female subjects			
	Hanlotyne ^a	NT	HT	D b	Permutation	NT	HT	p ^b	Permutation
	Паріотуре	n = 298	n = 316	Γ	Р	n = 261	n = 270	Γ	Р
H1	C-C-A-A	404 (0.677)	413 (0.653)	0.371	0.363	376 (0.720)	356 (0.659)	0.031	0.021 *
H2	C-T-G-A	81 (0.136)	96 (0.152)	0.419	0.420	60 (0.116)	75 (0.138)	0.267	0.259
H3	T-T-G-G	63 (0.106)	73 (0.115)	0.584	0.559	52 (0.099)	62 (0.115)	0.405	0.402
H4	C-C-G-G	16 (0.026)	21 (0.033)	0.484	0.470	17 (0.033)	14 (0.027)	0.578	0.617
H5	C-C-A-G	17 (0.029)	18 (0.029)	0.967	0.958	1 (0.002)	19 (0.036)	$6.78 \times 10^{-5} *$	< 0.001 *
H6	C-C-G-A	12 (0.021)	5 (0.008)	0.063	0.066	9 (0.018)	12 (0.021)	0.646	0.682
	others	3 (0.005)	6 (0.010)			7 (0.013)	2 (0.004)		
Enti	re distribution				0.722 ^c				0.003 ^{c,} *

(Table 6) 4-SNP haplotype (P1-P2-P8-P12) frequency among NT and HT subjects in population 1

^a Four loci are P1, P2, P8, P12, and six predominant haplotypes are listed; "others" category includes minor haplotypes with < 1% frequency. ^b Significant *P*-value after Bonferroni correction for major six haplotypes is 0.0083 (0.05/6). ^c *P*-value for the entire distribution with permutation test.

* Significant difference.

		Total subjects	.		Male subject	S		Female subjects		
		NT	HT	D ^a	NT	HT	D ^a	NT	HT	D ^a
		n = 925	n = 732	Γ	n = 317	n = 323	Γ	n = 608	n = 409	Γ
P1	Genotype									
	CC	729 (0.792)	573 (0.786)		253 (0.801)	249 (0.778)		476 (0.788)	324 (0.792)	
	СТ	181 (0.197)	147 (0.202)		58 (0.184)	66 (0.206)		123 (0.204)	81 (0.198)	
	TT	10 (0.011)	9 (0.012)	0.929	5 (0.016)	5 (0.016)	0.770	5 (0.008)	4 (0.010)	0.949
	Allele									
	С	1639 (0.891)	1293 (0.887)		564 (0.892)	564 (0.881)		1075 (0.890)	729 (0.891)	
	Т	201 (0.109)	165 (0.113)	0.721	68 (0.108)	76 (0.119)	0.530	133 (0.110)	89 (0.109)	0.927
P2	Genotype									
	CC	550 (0.598)	403 (0.553)		176 (0.555)	182 (0.567)		374 (0.620)	221 (0.542)	
	СТ	323 (0.351)	282 (0.387)		118 (0.372)	123 (0.383)		205 (0.340)	159 (0.390)	
	TT	47 (0.051)	44 (0.060)	0.176	23 (0.073)	16 (0.050)	0.488	24 (0.040)	28 (0.069)	0.017
	Allele									
	С	1423 (0.773)	1088 (0.746)		470 (0.741)	487 (0.759)		953 (0.790)	601 (0.737)	
	Т	417 (0.227)	370 (0.254)	0.069	164 (0.259)	155 (0.241)	0.477	253 (0.210)	215 (0.263)	0.005 *
P8	Genotype									
	AA	464 (0.508)	342 (0.472)		146 (0.465)	157 (0.489)		318 (0.530)	185 (0.458)	
	AG	384 (0.420)	316 (0.436)		139 (0.443)	143 (0.445)		245 (0.408)	173 (0.428)	
	GG	66 (0.072)	67 (0.092)	0.189	29 (0.092)	21 (0.065)	0.436	37 (0.062)	46 (0.114)	0.005 *
	Allele									
	А	1312 (0.718)	1000 (0.690)		431 (0.686)	457 (0.712)		881 (0.734)	543 (0.672)	
	G	516 (0.282)	450 (0.310)	0.080	197 (0.314)	185 (0.288)	0.321	319 (0.266)	265 (0.328)	0.003 *
P12	Genotype									
	AA	630 (0.686)	479 (0.659)		214 (0.677)	208 (0.650)		416 (0.691)	271 (0.666)	
	AG	265 (0.289)	220 (0.303)		93 (0.294)	100 (0.313)		172 (0.286)	120 (0.295)	
	GG	23 (0.025)	28 (0.039)	0.213	9 (0.028)	12 (0.038)	0.690	14 (0.023)	16 (0.039)	0.301
	Allele	. /	· /			. /		· · /		
	А	1525 (0.831)	1178 (0.810)		521 (0.824)	516 (0.806)		1004 (0.834)	662 (0.813)	
	G	311 (0.169)	276 (0.190)	0.128	111 (0.176)	124 (0.194)	0.405	200 (0.166)	152 (0.187)	0.231

(Table 7) Genotype and allele frequencies among NT and HT subjects in population 2

^a Significant *P*-value after Bonferroni's correction for four loci is 0.0125 (0.05/4). * Significant difference.

		Male subject	S			Female subje	ects		
	Haplotype	NT	HT	D ^b	Permutation	NT	HT	D ^b	Permutation
	а	n = 303	n = 299	Г	Р	n = 584	n = 388	Г	Р
H1	C-C-A-A	403 (0.665)	403 (0.674)	0.743	0.714	839 (0.718)	502 (0.647)	$8.48 \times 10^{-4} *$	< 0.001 *
H2	C-T-G-A	86 (0.142)	75 (0.125)	0.400	0.388	115 (0.098)	116 (0.149)	$6.46 \times 10^{-4} *$	0.001 *
H3	T-T-G-G	66 (0.109)	71 (0.119)	0.592	0.593	125 (0.107)	84 (0.108)	0.939	0.926
H4	C-C-G-G	30 (0.049)	24 (0.040)	0.429	0.443	47 (0.040)	45 (0.058)	0.067	0.074
H5	C-C-A-G	11 (0.018)	20 (0.034)	0.095	0.113	21 (0.018)	18 (0.023)	0.434	0.451
H6	C-C-G-A	8 (0.014)	4 (0.007)	0.265	0.374	15 (0.013)	8 (0.010)	0.606	0.583
	others	2 (0.003)	1 (0.002)			6 (0.005)	3 (0.004)		
Enti	re								
distr	ibution				0.533 °				0.026 ^{c,} *

(Table 8) 4-SNP haplotype (P1-P2-P8-P12) frequency among NT and HT subjects in population 2

^a Four loci are P1, P2, P8, P12, and six predominant haplotypes are listed; "others" category includes minor haplotypes with <1% frequency.
^b Significant *P*-value after Bonferroni correction for major six haplotypes is 0.0083 (0.05/6).
^c *P*-value for the entire distribution with permutation test.

* Significant difference.

		Male subjects			Female subject		
	Hanlotyne ^a	NT	HT	D b	NT	HT	p ^b
	Парютурс	n = 602	n = 615	1	n = 845	n = 658	1
H1	C-C-A-A	806 (0.671)	816 (0.663)	0.682	1215 (0.719)	858 (0.652)	8.07×10 ⁻⁵ *
H2	C-T-G-A	167 (0.139)	171 (0.139)	0.989	175 (0.104)	191 (0.145)	6.07×10 ⁻⁴ *
H3	T-T-G-G	129 (0.107)	144 (0.117)	0.446	177 (0.104)	146 (0.111)	0.578
H4	C-C-G-G	45 (0.038)	45 (0.036)	0.846	64 (0.038)	60 (0.045)	0.306
H5	C-C-A-G	29 (0.024)	38 (0.031)	0.263	22 (0.013)	37 (0.028)	0.003 *
H6	C-C-G-A	21 (0.017)	9 (0.008)	0.033	24 (0.014)	20 (0.015)	0.906
	others	5 (0.004)	7 (0.006)		13 (0.008)	6 (0.004)	

(Table 9) 4-SNP haplotype (P1-P2-P8-P12) frequency among NT and HT subjects in the combined population (populations 1 and 2)

^a Four loci are P1, P2, P8, P12, and six predominant haplotypes are listed; "others" category includes minor haplotypes with <1% frequency. ^b Significant *P*-value after Bonferroni correction for major six haplotypes is 0.0083 (0.05/6).

* Significant difference.

Figures

(Fig. 1)

(Fig. 2)

Figure Legends

(Fig. 1)

Haplotype block structure of the *TNFRSF4* gene. *Top* Organization of the *TNFRSF4* gene. Exons are indicated by boxes (black, coding sequences; white, untranslated sequences). *Bottom* Linkage disequilibrium structure of polymorphisms across the *TNFRSF4* gene region using data from 32 Japanese controls. Haplotype blocks were defined by the solid spine of LD method in Haploview. The number in each cell represents the LD parameter r^2 (× 100), blank cells denote $r^2 = 1$. Each cell is painted with graduated color relative to the strength of LD between markers, which is defined by the r^2 value.

(Fig. 2)

Effect of haplotypes (a, c) and each polymorphism (b, d) on the transcriptional activity of the *TNFRSF4* promoter. Relative luciferase activities after transient transfection in COS-7 (a, b) and HEK293 (c, d) cell lines are shown. Activities of the Pr-H1 constructs were considered as 100%. Each experiment was conducted in triplicate for each sample, and the results are expressed as mean \pm SD for six (COS-7) or five (HEK293) independent experiments. * *P*<0.05, ** *P*<0.01, *** *P*<0.001.

Supplemental Tables

Gene name	Gene symbol
Acrosin	ACR
Adducin-1, alpha	ADD1
Adducin-2, beta	ADD2
Adrenomedullin	ADM
Angiopoietin-like 2	ANGPTL2
Angiotensin converting enzyme 2	ACE2
Aquaporin-1(proximal)	AQP1
Aquaporin-2(collecting duct)	AQP2
Aquaporin-3(collecting duct)	AQP3
Aquaporin-4(medulally collecting duct)	AQP4
Aquaporin-6(podocyte)	AQP6
Aromatic L-amino acid decarboxylase	DDC
ATPase, H+ transporting, lysosomal (vacuolar proton pump), subunit 1	ATP6AP1
ATPase, Na+K+ transporting, alpha-1 polypeptide	ATP1A1
Beta-2-adrenergic receptor	ADRB2
Calcium channel, voltage-dependent, T type, alpha 1G subunit	CACNA1G
Calcium/calmodulin-dependent serine protein kinase	CASK
Calpain 10	CAPN10
Carbonic anhydrase 3	CA3
Catepsin	CAT
CD36 antigen	CD36
CD97 antigen	<i>CD</i> 97
CDC-like kinase	CLK1
Chloride channel, kidney, B	CLCNKB
Chloride channel-5	CLCN5
Claudin 4	CLDN4
Cytochrome c oxidase, subunit VIa, polypeptide 1	COX6A1
Cytochrome P450, 4a11	CYP4A11
Death-associated protein kinase 3	DAPK3
Dopamin receptor D1	DRD1
Dopamin receptor D1B	DRD1B
Dopamine receptor D3	DRD3
Dopamine-beta-hydroxylase	DBH
Estrogen receptor 1	ESR1

(Supplemental Table 1) A total 121 candidate genes for essential hypertention

Estrogen receptor 2	ESR2
Fatty acid binding protein 4, adipocyte	FABP4
FXYD domain-containing ion transport regulator 2	FXYD2
Gap junction protein, beta 2	GJB2
Glutathione S-transferase, alpha 2 (Yc2)	GSTA2
Glycogen synthase 1	GYS1
Glycogen synthase 2	GYS2
Granzyme B	GZMB
Guanine nucleotide binding protein (G protein), gamma transducing	GNGT2
activity polypeptide 2	
Heat shock 70kD protein 5 (glucose-regulated protein, 78kD)	HSPA5
Hepatoma-derived growth factor, related protein 3	HDGFRP3
Hyaluronidase 1	HYAL1
Hydroxysteroid 11-beta dehydrogenase 1	HSD11B1
Insulin-like growth factor binding protein 5	IGFBP5
Kallikrein 1	KLK1
Kallikrein 13	KLK13
Kallistatin	SERPINA4
Kinesin family member 21B	KIF21B
Kininogen	KKG
Kit ligand	KITLG
Latent transforming growth factor beta binding protein 2	LTBP2
Leucine rich repeat (in FLII) interacting protein 1	LRRFIP1
Maternally expressed gene 3	MEG3
Molybdenum cofactor synthesis 2	MOCS2
Natriuretic peptide precursor B	NPPB
Natriuretic peptide precursor C	NPR3
Natriuretic peptide receptor A/guanylate cyclase A	NPR1
Natriuretic peptide receptor C	NPR3
Nephrin	NPHN
Nephrocystin	NPHP1
Nitric oxide synthase 3	NOS3
Nuclear receptor subfamily 2, group F, member 6	NR2F6
Parvalbumin	PVALB
Phosphodiesterase 1A, calmodulin-dependent	PDE1A
Placental growth factor	PGF
Platelet derived growth factor receptor, beta polypeptide	PDGFRB
Potassium inwardly-rectifying channel, subfamily J, member 1	KCNJ1

Potassium inwardly-rectifying channel, subfamily J, member 11	KCNJ11
Potassium inwardly-rectifying channel, subfamily J, member 6	KCNJ6
Potassium large conductance calcium-activated channel, subfamily M,beta	KCNMB1
member 1	
Proline-serine-threonine phosphatase-interacting protein 1	PSTPIP1
Prostaglandin E receptor EP4 subtype	PTGER4
Protein C receptor, endothelial	PROCR
Receptor (calcitonin) activity modifying protein 2	RAMP2
Ribosomal protein S4, X-linked	RPS4X
SAPK/ERK kinase-1	SEK1
Serine/threonine kinase 19	STK19
Serine/threonine kinase 6	AURKA
SFFV proviral integration 1	SPI1
Sodium channel, nonvoltage-gated 1, alpha	SCNN1A
Sodium channel, nonvoltage-gated 1, beta	SCNN1B
Sodium channel, nonvoltage-gated 1, gamma	SCNN1G
Sodium channel, voltage-gated, type I, delta polypeptide	SCNN1D
Solute carrier family 1 (glial high affinity glutamate transporter), member	SLC1A2
2	
Solute carrier family 12 member 1	SLC12A1
Solute carrier family 12 sodium/potassium/chloride transporters)	SLC12A3
Solute carrier family 14 (monocarboxylic acid transporters), member 2	SLC14A2
Solute carrier family 16, member 1	SLC16A1
Solute carrier family16,member 7	SLC16A7
Solute carrier family 18 (vesicular monoamine), member 1	SLC18A1
Solute carrier family 19 (folate transporter), member 1	SLC19A1
Solute carrier family 21, member 3 (organic anion transporter)	SLCO1A2
Solute carrier family 22 (organic cation transporter), member 1-like	SLC22A1L
Solute carrier family 26, member 4	SLC26A4
Solute carrier family 4, anion exchanger, member 1	SLC4A1
(erythrocytemembrane protein band 3, Diego blood group)	
Solute carrier family 6 (neurotransmitter transporter,	SLC6A2
noradrenalin),member 2	
Solute carrier family 8, member 1 (sodium-calcium exchanger-1)	SLC8A1
Solute carrier family 9 (sodium/hydrogen exchanger), isoform 3	SLC9A3
Solute carrier family 9 (sodium/hydrogen exhanger), isoform 1	SLC9A1
Splicing factor, arginine/serine-rich 5 (SRp40, HRS)	SFRS5
Steroidogenic acute regulatory protein	STAR

Syntaxin binding protein 1	STXBP1
Synuclein, alpha	SNCA
Thyroid hormone responsive SPOT14 homolog	THRSP
TNF superfamily member 11	TNFSF11
Ttk protein kinase	TTK
TNF receptor superfamily, member 11b (osteoprotegerin)	TNFRSF11B
TNF receptor superfamily, member 18	TNFRSF18
TNF receptor superfamily, member 4	TNFRSF4
Uncoupling protein, mitochondrial	UCP1
Vaccinia related kinase 1	VRK1
Vascular endothelial growth factor C	VEGFC
Vesicle-associated membrane protein 3	VAMP3
Villin 2	VIL2
WNK lysine deficient protein kinase 1	PRKWNK1
WNK lysine deficient protein kinase 4	PRKWNK4
WW domain binding protein 1	WBP1

Accession	GeneName	Fold
Number		change
AA521869	steroidogenic acute regulatory protein	-3.1
AI386062	carbonic anhydrase 3	-2.5
AA080270	fatty acid binding protein 4, adipocyte	-2.4
AA980357	gelsolin	-1.9
AA458072	adipocyte complement related protein of 30 kDa	-1.8
W41372	uncoupling protein, mitochondrial	-1.8
AI120315	splicing factor, arginine/serine-rich 5 (SRp40, HRS)	-1.6
AA276616	steroidogenic acute regulatory protein	-1.6
W10293	androgen regulated vas deferens protein	-1.5
W15725	cell death-inducing DNA fragmentation factor, alpha subunit-like	-1.5
	effector A	
AA437572	inner centromere protein	-1.5
W34620	kallikrein 26	-1.5
AI892379	aminolevulinic acid synthase 1	-1.4
AA066458	cadherin 16	-1.4
AA061218	DNA segment, Chr 17, human D6S81E 1	-1.4
AA760070	esterase 1	-1.4
AA624690	fibroblast growth factor regulated protein	-1.4
AA546842	hypothetical protein MGC7720	-1.4
AA413767	interferon regulatory factor 3	-1.4
AA003609	ISL1 transcription factor, LIM/homeodomain, (islet-1)	-1.4
W36421	Moloney leukemia virus 10	-1.4
AI451780	prostate specific ets transcription factor	-1.4
AA387891	RAD1 homolog (S. pombe)	-1.4
AA712003	resistin like alpha	-1.4
AA244388	retinoic acid early transcript gamma	-1.4
AA065574	solute carrier family 12, member 1	-1.4
AA437805	SWAP complex protein, 70 kDa	-1.4
AA756672	thyroid hormone responsive SPOT14 homolog (Rattus)	-1.4
AI553108	a disintegrin-like and metalloprotease (reprolysin type) with	-1.3
	thrombospondin type 1 motif, 5 (aggrecanase-2)	
AA413485	A kinase anchor protein	-1.3
W82672	aconitase 1	-1.3
AA606587	adenylosuccinate lyase	-1.3

(Supplemental Table 2) List of genes downregulated in the kidneys of four-copy (Agt 2/2) mice versus one-copy (Agt 0/1) mice

AA794074	aldo-keto reductase family 1, member B1 (aldose reductase)	-1.3
AI386037	alpha-2-HS-glycoprotein	-1.3
AA755981	angiopoietin-like 2	-1.3
W40608	anterior gradient 2 (Xenepus laevis)	-1.3
AI325603	apolipoprotein E	-1.3
AA239727	ATP-binding cassette, sub-family B (MDR/TAP), member 1	-1.3
AA967857	brain protein	-1.3
AA546660	calpain 10	-1.3
AI325851	CD97 antigen	-1.3
AA684191	CDC-like kinase	-1.3
AI894016	complement component 1, q subcomponent, c polypeptide	-1.3
AA117547	cyclin D1	-1.3
W12527	cytochrome P450, 2b19	-1.3
AA117605	cytotoxic granule-associated RNA-binding protein 1	-1.3
W89290	dante	-1.3
AI510645	DEAD (aspartate-glutamate-alanine-aspartate) box polypeptide, Y	-1.3
	chromosome	
AI120685	decay accelerating factor 1	-1.3
AA123152	diacylglycerol acyltransferase	-1.3
AA017823	dishevelled 2, dsh homolog (Drosophila)	-1.3
AA215144	DNA segment, Chr 16, ERATO Doi 36, expressed	-1.3
AA624262	DNA segment, Chr 2, Brigham & Women's Genetics 0886	-1.3
	expressed	
AA863502	embryonic stem cell phosphatase	-1.3
AA681602	enolase 3, beta muscle	-1.3
AI326499	epidermal growth factor	-1.3
AI509558	formin-like	-1.3
AA177916	fusion 2 (human)	-1.3
AA458241	G0/G1 switch gene 2	-1.3
AI386181	gamma-glutamyl carboxylase	-1.3
AA930013	gasdermin	-1.3
AI385860	GLI-Kruppel family member GLI	-1.3
AI325384	glucokinase activity	-1.3
AI326575	glucose-6-phosphatase, catalytic	-1.3
AI154009	guanine nucleotide binding protein (G protein), gamma	-1.3
	transducing activity polypeptide 2	
AA450922	heat shock 70kD protein 5 (glucose-regulated protein, 78kD)	-1.3
AI661389	hepatoma-derived growth factor, related protein 3	-1.3

AA473972	heterogeneous nuclear ribonucleoprotein H1	-1.3
AA688635	hyaluronidase 1	-1.3
AI789916	hydroxysteroid 11-beta dehydrogenase 1	-1.3
AA432994	hypothetical protein, MNCb-2032	-1.3
W15610	integrin beta 4	-1.3
AI430631	just another zinc finger protein	-1.3
AA760344	keratin complex 1, acidic, gene 15	-1.3
AI645902	kinesin family member 21B	-1.3
AI099009	latent transforming growth factor beta binding protein 2	-1.3
AI614021	leucine rich repeat (in FLII) interacting protein 1	-1.3
W97303	maternally expressed gene 3	-1.3
W34188	Moloney leukemia virus 10	-1.3
AI592114	molybdenum cofactor synthesis 2	-1.3
AI036466	Mus musculus adult male testis cDNA, RIKEN full-length	-1.3
	enriched library, clone:4921528E07, full insert sequence	
AA611779	Mus musculus adult male xiphoid cartilage cDNA, RIKEN	-1.3
	full-length enriched library, clone:5230400J22, full insert	
	sequence	
AA672784	Mus musculus mRNA for erythroid differentiation regulator,	-1.3
	partial	
AA606711	myeloid-associated differentiation marker	-1.3
AA276726	natural killer cell BY55 precursor	-1.3
AA619774	next to the Brca1	-1.3
AA512708	nitric oxide synthase 2, inducible, macrophage	-1.3
AA517353	nuclear factor of kappa light chain gene enhancer in B-cells	-1.3
	inhibitor, alpha	
AI117296	Paneth cell enhanced expression	-1.3
AA106128	phosphoenolpyruvate carboxykinase 1, cytosolic	-1.3
AI327450	phospholipase A2, group IB, pancreas	-1.3
AA271866	phospholipase A2, group VI	-1.3
AA982549	placental growth factor	-1.3
AA624552	platelet derived growth factor receptor, beta polypeptide	-1.3
AA517595	polymerase (DNA directed), delta 2, regulatory subunit (50 kDa)	-1.3
AA466979	pre B-cell leukemia transcription factor 1	-1.3
AI326527	preproacrosin	-1.3
AA980931	proline-serine-threonine phosphatase-interacting protein 1	-1.3
AA016910	protein C receptor, endothelial	-1.3
AA221322	protein tyrosine phosphatase, non-receptor type 5	-1.3

AA051479	Public domain EST	-1.3
AI614454	reduced in osteosclerosis transporter	-1.3
AA681171	RNA polymerase 1-2 (128 kDa subunit)	-1.3
AA238294	sema domain, immunoglobulin domain (Ig), transmembrane	-1.3
	domain (TM) and short cytoplasmic domain, (semaphorin) 4G	
AI605734	septin 3	-1.3
AI180767	serine/threonine kinase 19	-1.3
W47914	sialyltransferase 8 (alpha-2, 8-sialytransferase) B	-1.3
AI120278	solute carrier family 16 (monocarboxylic acid transporters),	-1.3
	member 2	
AA066386	solute carrier family 22 (organic cation transporter), member 1-like	-1.3
AI156032	solute carrier family 26, member 4	-1.3
AI894071	sparc/osteonectin, cwcv and kazal-like domains proteoglycan 1	-1.3
AA414787	t-complex testis-expressed 3	-1.3
AI466119	transducin-like enhancer of split 2, homolog of Drosophila E(spl)	-1.3
AI385796	transketolase	-1.3
AA274169	tumor necrosis factor receptor superfamily, member 18	-1.3
AI323199	tumor necrosis factor receptor superfamily, member 4	-1.3
AW210120	vesicle-associated membrane protein 3	-1.3
AA066685	villin 2	-1.3
W53568	WW domain binding protein 1	-1.3

Accession	GeneName	Fold
Number		change
AA498760	syntaxin binding protein 1	1.9
AA638765	metallothionein 1	1.8
W15809	hemoglobin, beta adult major chain	1.7
W36474	metallothionein 2	1.7
AA517682	repeat family 3 gene	1.7
AA106071	hemoglobin, beta adult major chain	1.6
AA066763	hemoglobin, beta adult major chain	1.6
AA183239	insulin-like growth factor binding protein 5	1.5
AA106365	cytochrome P450, 4a14	1.5
AI182724	suppressor of initiator codon mutations, related sequence 1 (S. cerevisiae)	1.5
AI481911	IG ALPHA CHAIN C REGION	1.5
AA432457	ELAV (embryonic lethal, abnormal vision, Drosophila)-like 2 (Hu antigen B)	1.5
AI892243	ferritin heavy chain	1.5
AI553078	CD36 antigen	1.5
W08923	cytochrome c oxidase, subunit VI a, polypeptide 1	1.5
AA108723	FXYD domain-containing ion transport regulator 2	1.5
AA763351	death-associated kinase 3	1.4
AA273270	ribosomal protein S4, X-linked	1.4
AA244820	retinol dehydrogenase type 6	1.4
AI390326	ribosomal protein S6	1.4
AA003877	nel-like 2 homolog (chicken)	1.4
AA461886	tumor necrosis factor receptor superfamily, member 11b	1.4
	(osteoprotegerin)	
AI048040	claudin 4	1.4
AI604245	protocadherin 7	1.4
AI642307	ribosomal protein S11	1.4
AA065880	nuclear factor I/B	1.4
AA106894	carbonic anhydrase 4	1.4
AA067971	ral guanine nucleotide dissociation stimulator	1.4
AA066072	phosphatidylcholine transfer protein	1.4
AA709984	RAB17, member RAS oncogene family	1.4
AA619950	cyclin I	1.4

(Supplemental Table 3) List of genes upregulated in the kidneys of four-copy (Agt 2/2) mice versus one-copy (Agt 0/1) mice

AA437994	baculoviral IAP repeat-containing 4	1.4
AA414425	translocase of inner mitochondrial membrane 23 homolog (yeast)	1.4
AA146478	IG ALPHA CHAIN C REGION	1.4
AA606908	ring finger protein 10	1.4
AA544212	cellular repressor of E1A-stimulated genes	1.4
AA727017	immediate early response 2	1.4
AA596753	latexin	1.4
AA469630	choline kinase	1.4
AA265490	bone morphogenetic protein receptor, type 1A	1.4
AA183318	ATPase, H+ transporting, lysosomal (vacuolar proton pump), subunit 1	1.4
AA624897	ribosomal protein S16	1.4
AA795558	Ttk protein kinase	1.4
AA673731	chitinase 3-like 3	1.4
AI510034	synuclein, alpha	1.4
AI892747	glutathione S-transferase, alpha 2 (Yc2)	1.4
AA450910	brachyury	1.4
AI597531	gap junction membrane channel protein beta 2	1.4
AA474223	centrin 2	1.4
AI550227	Mus musculus unknown protein mRNA, partial cds	1.4
AI390129	proteasome (prosome, macropain) subunit, alpha type 2	1.3
AA027530	placental lactogen 2	1.3
AI020130	granzyme B	1.3
AA675376	DNA segment, Chr 7, ERATO Doi 373, expressed	1.3
AA674571	radixin	1.3
AI552258	reversion-inducing-cysteine-rich protein with kazal motifs	1.3
AA423123	histocompatibility 2, T region locus 17	1.3
AA290362	origin recognition complex, subunit 5 homolog (S. cerevisiae)	1.3
AI390207	calcium/calmodulin-dependent serine protein kinase	1.3
AA221832	four jointed box 1 (Drosophila)	1.3
AI390473	T-cell acute lymphocytic leukemia 1	1.3
AA230517	retinoic acid receptor, gamma	1.3
AA182058	zinc finger protein 318	1.3
AA189288	etoile	1.3
AI324355	mesenchyme homeobox 2	1.3
AA014972	granzyme F	1.3
AA165899	LIM-domain containing, protein kinase	1.3
W17640	aplysia ras-related homolog D (RhoD)	1.3

W16027	phosphodiesterase 1A, calmodulin-dependent	1.3
W14436	matrix metalloproteinase 9	1.3
AA174428	Unc-51 like kinase 2 (C. elegans)	1.3
AA067153	platelet-activating factor acetylhydrolase, isoform 1b, beta1 subunit	1.3
AA104976	staufen (RNA-binding protein) homolog 2 (Drosophila)	1.3
AA666910	membrane protein, palmitoylated 6 (MAGUK p55 subfamily member 6)	1.3
AA617414	nucleosome binding protein 1	1.3
AA763056	suppressor of clear, C. elegans, homolog of	1.3
AA798766	selectin, lymphocyte	1.3
AA716921	Mus musculus adult male testis cDNA, RIKEN full-length enriched library, clone:4932441D06, full insert sequence	1.3
AA645995	TG interacting factor	1.3
AA755273	protein related to DAC and cerberus	1.3
AA672766	Mouse mRNA for TI-227	1.3
AI385493	crystallin, gamma B	1.3
AA570965	Mouse complement factor H-related protein mRNA, complete cds, clone 9C4	1.3
AI385457	retinol binding protein 2, cellular	1.3
AI323047	splicing factor 3a, subunit 2, 66kD	1.3
AA671019	procollagen, type IX, alpha 3	1.3
AI549654	programmed cell death 10	1.3
AA210568	DNA methyltransferase 3B	1.3
AA438152	guanine nucleotide binding protein, alpha inhibiting 3	1.3
AA212042	RAB9, member RAS oncogene family	1.3
AA450855	peroxiredoxin 5	1.3
AA437837	core binding factor beta	1.3
AI550200	SEC61, alpha subunit 2 (S. cerevisiae)	1.3
AI121593	X-linked myotubular myopathy gene 1	1.3
AI390848	aplysia ras-related homolog G (RhoG)	1.3
AI120332	ribosomal protein L41	1.3
AI159330	globin inducing factor, fetal	1.3
W13748	ribosomal protein L12	1.3
AI158823	immunoglobulin heavy chain 3 (serum IgG2b)	1.3
AI156457	cytochrome P450, 7b1	1.3
AI158565	guanine nucleotide binding protein (G protein), gamma 10	1.3
AA771678	protein kinase, cGMP-dependent, type II	1.3

AI550872	RAB11a, member RAS oncogene family	1.3
AA510654	SEC22 vesicle trafficking protein-like 1 (S. cerevisiae)	1.3
AA497627	intersectin (SH3 domain protein 1A)	1.3
AA466550	poliovirus receptor-related 3	1.3
AA415862	SRY-box containing gene 2	1.3
W35084	hematopoietic zinc finger	1.3
AA474336	synaptonemal complex protein 3	1.3
AA414670	mitogen activated protein kinase kinase 4	1.3
AA437876	degenerative spermatocyte homolog (Drosophila)	1.3
AA437878	Rho-associated coiled-coil forming kinase 1	1.3
AA444231	ribosomal protein S5	1.3
AA259281	LIM homeobox protein 2	1.3
AA245183	mab-21-like 2 (C. elegans)	1.3
AA161823	lymphocyte antigen 116	1.3
AA671424	fibroblast growth factor inducible 14	1.3
AA638960	casein alpha	1.3
AA178447	plexin 6	1.3
AA562552	glutathione peroxidase 1	1.3
AA543948	phosphatidylcholine transfer protein-like	1.3
AA474438	profilin 2	1.3
AA880295	immunoglobulin joining chain	1.3
AI536384	differential display and activated by p53	1.3
AI390811	glutamine fructose-6-phosphate transaminase 2	1.3
AA726944	vascular endothelial growth factor C	1.3
AA727051	myeloid leukemia factor 1	1.3
AA866934	vesicle transport through interaction with t-SNAREs 1b homolog	1.3
AA596456	prostaglandin E receptor EP4 subtype	1.3
AA596742	testis derived transcript	1.3
AA068464	ect2 oncogene	1.3
AA068624	hydroxyacid oxidase (glycolate oxidase) 3	1.3
AA065684	helicase, lymphoid specific	1.3
AI326554	aldo-keto reductase family 1, member C1 (aldehyde reductase)	1.3
AA066598	Kruppel-like factor 9	1.3
AI597336	tripartite motif protein TRIM2	1.3
AA450785	Y box protein 1	1.3
AI390104	destrin	1.3
W16222	septin 1	1.3
W16059	glutathione S-transferase like	1.3

AA967493	mitogen activated protein kinase kinase kinase 7	1.3
AA473417	cytochrome b-245, alpha polypeptide	1.3
AA237845	coagulation factor XIII, beta subunit	1.3
AA250679	aldo-keto reductase AKR1C12	1.3
AA239479	hydroxyacid oxidase 1, liver	1.3
AA270885	parvalbumin	1.3
AA198237	nuclear receptor subfamily 2, group F, member 6	1.3
AI644821	vaccinia related kinase 1	1.3
AA220400	integrin binding sialoprotein	1.3
AI893749	serine/threonine kinase 6	1.3
AA118767	guanine nucleotide binding protein (G protein), gamma 12	1.3
AI893970	platelet derived growth factor, alpha	1.3
AA118183	origin of replication 3 homolog (S. cerevisiae)	1.3
AA114742	Mus musculus E-cadherin binding protein E7 mRNA, complete	1.3
	cds	
W89951	insulin-like growth factor binding protein 3	1.3
AA833460	histocompatibility-2 complex class 1-like sequence	1.3
AA739464	killer cell lectin-like receptor, subfamily A, member 3	1.3
AI893936	hepatic nuclear factor 4	1.3
AA870247	mitogen regulated protein, proliferin 3	1.3
AA546971	membrane-spanning 4-domains, subfamily A, member 2	1.3
AA267725	DNA segment, Chr 1, ERATO Doi 622, expressed	1.3
AA198236	kit ligand	1.3
AA254942	carbonic anhydrase-like sequence 1	1.3
AA239990	SFFV proviral integration 1	1.3
AA242256	zinc finger protein of the cerebellum 1	1.3
AI509951	calcium channel, voltage-dependent, T type, alpha 1G subunit	1.3
AW209707	hemoglobin Z, beta-like embryonic chain	1.3
AA623561	retinoblastoma binding protein 4	1.3
AA623498	X-linked lymphocyte-regulated complex	1.3
AA624429	mannosidase 1, beta	1.3
AA624421	cornichon homolog (Drosophila)	1.3
AA607085	polymerase, gamma	1.3
AA606561	PFTAIRE protein kinase 1	1.3
AI594243	CD8beta opposite strand	1.3
AA606973	ribosomal protein, mitochondrial, L7	1.3
AA575501	calmodulin 2	1.3
AA437942	cytokine inducible SH2-containing protein 1	1.3

AA517509	transcription factor Dp 1	1.3
AI596527	ribosomal protein L26	1.3
AA981355	Mus musculus DNA cytosine methyltransferase mRNA	1.3
AI324371	interleukin 4	1.3
AA655648	neuronal protein 15.6	1.3
AA717170	BCR downstream signaling 1	1.3
AA795621	lymphocyte antigen 84	1.3
AA822050	NAD(P) dependent steroid dehydrogenase-like	1.3
AI323028	thymidylate synthase	1.3
AI552765	S-adenosylmethionine decarboxylase 1	1.3
AI386059	acidic ribosomal phosphoprotein PO	1.3
AA080175	claudin 8	1.3
AA080181	myelin protein zero	1.3
AI326538	integrin, alpha E, epithelial-associated	1.3
AI595008	Sin3-associated polypeptide 18	1.3

Gene name	Gene symbol	SNP ID ^a	Male +	Male	Female
			Female	Р	Р
			P value ^b	value ^b	value ^b
Acrosin	ACR	IMS-JST33261	0.667	0.651	1.000
Adducin-1, alpha	ADD1	IMS-JST032023	0.554	0.20	0.506
		IMS-JST005769			
Adducin-2, beta	ADD2	IMS-JST126484	0.53	0.387	0.135
		IMS-JST108417			
		IMS-JST024418			
		IMS-JST024420			
Angiopoietin-like 2	ANGPTL2	rs1281157	0.131	0.062	0.138
		IMS-JST052573			
Aquaporin-1 (proximal)	AQP1	IMS-JST003211	0.311	0.455	0.090
		IMS-JST003212			
		IMS-JST021256			
		IMS-JST008162			
		IMS-JST008162			
Aquaporin-2 (collecting	AQP2	IMS-JST138705	0.038*	0.4	0.081
duct)		IMS-JST092583			
		IMS-JST138708			
		IMS-JST138709			
Aquaporin-3 (collecting	AQP3	IMS-JST111570	0.980	0.970	0.931
duct)		IMS-JST111570			
		IMS-JST111569			
		IMS-JST016827			
Aquaporin-4 (medulally	AQP4	IMS-JST116766	0.108	0.634	0.984
collecting duct)		IMS-JST116767			
		IMS-JST116771			
		IMS-JST003213			
		IMS-JST003214			
		IMS-JST116776			-
Aromatic L-amino acid	DDC	rs2044859	0.818	0.971	0.323
decarboxylase		rs1470750			
		rs2060761			_
ATPase, H+ transporting,	ATP6AP1	IMS-JST082807	0.265	0.119	0.391

(Supplemental Table 4) Genotyped SNPs and *P* values for overall distribution of haplotypes in initial screening of candidate genes

lysosomal (vacuolar		IMS-JST098943			
proton pump), subunit 1					
Beta-2-adrenergic	ADRB2	IMS-JST087866	0.91	0.948	0.208
receptor		IMS-JST132959			
		IMS-JST132960			
Calcium channel,	CACNA1G	IMS-JST011704	0.359	0.504	0.519
voltage-dependent, T		IMS-JST095890			
type, alpha 1G subunit					
Calpain 10	CAPN10	IMS-JST149659	0.762	0.987	0.072
		IMS-JST100982			
Carbonic anhydrase 3	CA3	IMS-JST111349	0.75	0.884	0.13
		IMS-JST111350			
		IMS-JST111351			
		IMS-JST111352			
		IMS-JST064895			
Catepsin	CAT	IMS-JST055760	0.615	0.466	0.968
		IMS-JST009272			
		IMS-JST009271			
CD36 antigen	CD36	IMS-JST005702	0.332	0.901	0.086
CD97 antigen	CD97	IMS-JST059524	0.856	0.781	0.557
		IMS-JST059522			
Chloride channel, kidney,	CLCNKB	IMS-JST052374	0.947	0.521	0.080
В					
Dopamine receptor D3	DRD3	rs1385884	0.257	0.240	0.428
		rs1872575			
Dopamine-beta-hydroxyla	DBH	IMS-JST090738	0.920	0.296	0.083
se					
		IMS-JST000449			
Estrogen receptor 2	ESR2	IMS-JST051491	0.016*	0.018*	0.415
		IMS-JST051808			
		IMS-JST030988			
		IMS-JST030987			
FXYD domain-containing	FXYD2	IMS-JST053456	0.135	0.107	0.616
ion transport regulator 2		IMS-JST072429			
Glycogen synthase 1	GYS1	IMS-JST065629	0.021*	0.127	0.071
		IMS-JST097169			
Granzyme B	GZMB	IMS-JST069533	0.679	0.902	0.083

		IMS-JST069532			
		IMS-JST016601			
Guanine nucleotide	GNGT2	rs634370	0.343	0.504	0.236
binding protein (G		rs850526			
protein), gamma					
transducing activity					
polypeptide 2					
Heat shock 70kD protein	HSPA5	IMS-JST119759	0.08	0.104	0.597
5 (glucose-regulated					
protein, 78kD)					
Hydroxysteroid 11-beta	HSD11B1	IMS-JST017377	0.495	0.881	0.201
dehydrogenase 1		IMS-JST031982			
		IMS-JST031983			
		IMS-JST017380			
		IMS-JST017380			
Insulin-like growth factor	IGFBP5	IMS-JST012990	0.126	0.119	0.688
binding protein 5		IMS-JST108187			
		IMS-JST012991			
Kallikrein 1	KLK1	IMS-JST060444	0.084	0.449	0.029*
		IMS-JST179918			
Kallistatin	SERPINA4	IMS-JST115784	0.571	0.663	0.375
		IMS-JST005765			
		IMS-JST005765			
Kininogen	KKG	IMS-JST061447	0.432	0.61	0.069
		IMS-JST061448			
		IMS-JST061450			
Kit ligand	KITLG	IMS-JST138554	0.192	0.086	0.792
		IMS-JST138552			
Latent transforming	LTBP2	IMS-JST093976	0.123	0.828	0.075
growth factor beta binding		IMS-JST093978			
protein 2		IMS-JST093979			
		IMS-JST093980			
Maternally expressed	MEG3	IMS-JST139888	0.415	0.341	0.776
gene 3		IMS-JST139889			
Natriuretic peptide	NPR3	IMS-JST150214	0.131	0.062	0.234
precursor C		IMS-JST150204			
Nephrin	NPHN	IMS-JST175323	0.078	0.048*	0.148
		IMS-JST000541			_

Nephrocystin	NPHP1	IMS-JST066065	0.055	0.093	0.421
Nitric oxide synthase 3	NOS3	IMS-JST117271	0.181	0.313	0.281
		IMS-JST117269			
Parvalbumin	PVALB	IMS-JST033721	0.361	0.399	0.374
		IMS-JST033718			
		IMS-JST033714			
Placental growth factor	PGF	IMS-JST139888	0.415	0.341	0.776
		IMS-JST139889			
Platelet derived growth	PDGFRB	IMS-JST109456	0.079	0.070	0.428
factor receptor, beta		IMS-JST109453			
polypeptide		IMS-JST012450			
		IMS-JST087370			
Potassium	KCNJ6	IMS-JST144710	0.083	0.065	0.081
inwardly-rectifying		IMS-JST144706			
channel, subfamily J,		IMS-JST144687			
member 6					
Potassium large	KCNMB1	IMS-JST006470	0.19	0.111	0.983
conductance		IMS-JST057105			
calcium-activated					
channel, subfamily M,beta					
member 1					
Protein C receptor,	PROCR	IMS-JST047041	0.445	0.731	0.132
endothelial					
Serine/threonine kinase 19	STK19	rs474534	0.168	0.522	0.193
		IMS-JST033921			
		rs377370			
		rs389883			
Serine/threonine kinase 6	AURKA	IMS-JST114769	0.615	0.818	0.156
		IMS-JST144216			
Sodium channel,	SCNN1A	IMS-JST006608	0.571	0.663	0.375
nonvoltage-gated 1, alpha		IMS-JST092986			
		IMS-JST092985			
Sodium channel,	SCNN1B	IMS-JST059724	0.561	0.81	0.305
nonvoltage-gated 1, beta		IMS-JST059723			
		IMS-JST059722			
		IMS-JST095265			
Solute carrier family 1	SLC1A2	IMS-JST069326	0.017*	0.04*	0.014*
(glial high affinity		IMS-JST069329			

glutamate transporter),		IMS-JST117720			
member 2					
Solute carrier family 12	SLC12A1	IMS-JST027033	0.124	0.338	0.471
member 1		IMS-JST027035			
		IMS-JST043660			
Solute carrier family 12	SLC12A3	IMS-JST040573	0.487	0.354	0.883
sodium/potassium/chlorid					
e transporters)					
Solute carrier family 14	SLC14A2	IMS-JST082696	0.409	0.247	0.06
(monocarboxylic acid		IMS-JST143078			
transporters), member 2		IMS-JST072854			
Solute carrier family 18	SLC18A1	IMS-JST111224	0.099	0.143	0.522
(vesicular monoamine),		IMS-JST065233			
member 1		IMS-JST065231			
Solute carrier family 22	SLC22A1L	IMS-JST018612	0.097	0.168	0.355
(organic cation		IMS-JST018613			
transporter), member		IMS-JST058628			
1-like		IMS-JST037271			
Solute carrier family 26,	SLC26A4	IMS-JST046871	0.628	0.844	0.312
member 4		IMS-JST046872			
		IMS-JST089508			
		IMS-JST007917			
Solute carrier family 4,	SLC4A1	IMS-JST000828	0.274	0.218	0.373
anion exchanger, member		IMS-JST035905			
1 (erythrocytemembrane		IMS-JST007939			
protein band 3, Diego					
blood group)					
Solute carrier family 6	SLC6A2	IMS-JST113472	0.306	0.358	0.343
(neurotransmitter		IMS-JST113474			
transporter, noradrenalin),		IMS-JST065623			
member 2		IMS-JST014686			
		IMS-JST014687			
		IMS-JST014688			
Solute carrier family 8,	SLC8A1	IMS-JST008552	0.608	0.284	0.449
member 1		IMS-JST008552			
(sodium-calcium		IMS-JST024796			
exchanger-1)		IMS-JST012941			
Solute carrier family 9	SLC9A3	IMS-JST109880	0.255	0.984	0.005*

(sodium/hydrogen		IMS-JST025479			
exchanger), isoform 3					
Steroidogenic acute	STAR	IMS-JST005138	0.048*	0.02*	0.076
regulatory protein		IMS-JST005139			
Syntaxin binding	STXBP1	IMS-JST111612	0.014*	0.014*	0.51
protein 1		IMS-JST037891			
		IMS-JST012952			
		IMS-JST012952			
Synuclein, alpha	SNCA	IMS-JST131016	0.612	0.432	0.288
		IMS-JST131014			
		IMS-JST130997			
Thyroid hormone	THRSP	rs545869	0.684	0.937	0.110
responsive SPOT14					
homolog					
Ttk protein kinase	ТТК	IMS-JST049829	0.401	0.532	0.862
		IMS-JST157819			
TNF receptor	TNFRSF4	IMS-JST053050	0.452	0.63	0.024*
superfamily, member 4		IMS-JST053049			
Vascular endothelial	VEGFC	IMS-JST130723	0.487	0.607	0.153
growth factor C		IMS-JST130724			
		IMS-JST109095			
Vesicle-associated	VAMP3	IMS-JST011175	0.088	0.063	0.123
membrane protein 3		IMS-JST007813			
Villin 2	VIL2	IMS-JST110282	0.965	0.836	0.834
		IMS-JST088251			
		IMS-JST088249			
WNK lysine deficient	PRKWNK1	IMS-JST088249 rs1159744	0.726	0.542	0.294
WNK lysine deficient protein kinase 1	PRKWNK1	IMS-JST088249 rs1159744 rs2158502	0.726	0.542	0.294
WNK lysine deficient protein kinase 1	PRKWNK1	IMS-JST088249 rs1159744 rs2158502 rs718389	0.726	0.542	0.294
WNK lysine deficient protein kinase 1 WNK lysine deficient	PRKWNK1 PRKWNK4	IMS-JST088249 rs1159744 rs2158502 rs718389 rs324075	0.726	0.542	0.294

^a IMS-JST# number from the Japanese SNP database (http://snp.ims.u-tokyo.ac.jp/) or rs# number from dbSNP database (http://www.ncbi.nlm.nih.gov/SNP/).

^b P values for overall distribution of haplotypes were calculated by permutation test at 1000 iterations using SNPAlyze v4.1 Pro software (DYNACOM, Mobara, Japan).

* Significant difference.