

北海道放射線技術雑誌(1984.08)43~44号:237~240.

1次導関数まで連続なSpline関数を利用した,繰り返し逐次分割法による最小2乗近似について

西部茂美、石川幸雄、内藤智浩

1次導関数まで連続な Spline 関数を利用した, 繰り返し逐次分割法による最小2乗近似について

旭川医大病院放射線部 ◎西部 茂美 石川 幸雄

> 旭川厚生病院放射線科 内藤 智浩

I.緒 言

RIAの検量線への回帰には多数の近似関数があり、 線型・非線型を問わず、どの Assay 系にもすべて満 足するようなものはなく、ある種の関数によって回帰 させるのが現実であり、さらに回帰させた関数の各濃 度間は、あくまでも予測に基づくものである。

そこで我々は、1次微係数を用いて Spline 関数を構 成し、さらにその柔軟性を利用して、ほぼどのような Assay 系でも適合する独自の処理法を考え、誤差解析 と共に論ずる。

Ⅱ.方 法

〈1次微分値連続関数の定義〉

昨年の第38回日本放射線技術学会北海道部会におい て Spline 関数の異常屈曲点に対する柔軟性の検討に ついて述べた時に、2次微係数を用いて、Spline 関数 を構成した。すなわち、各 dose x_j での2次微係数 $S^*(x_j) を A_j (j=0,1,....n) とすると閉区間 [x_j,$ $<math>x_{j+1}]$ において、2次導関数 $S^*(x)$ は線分であり、こ こで $h_j=x_{j+1}-x_j$ とおくと、

る。(1)式を2回積分して,条件S(x_j)=y_j,S(x_{j+1})= y_{j+1}より積分定数を決めると,

$$S(\mathbf{x}) = A_{j} \left\{ \frac{(\mathbf{x}_{j+1} - \mathbf{x})^{3}}{6h_{j}} - \frac{\mathbf{x}_{j+1} - \mathbf{x}}{6} h_{j} \right\}$$
$$+ A_{j+1} \left\{ \frac{(\mathbf{x} - \mathbf{x}_{i})^{3}}{6h_{j}} - \frac{\mathbf{x} - \mathbf{x}_{j}}{6} h_{j} \right\}$$
$$+ \frac{\mathbf{x}_{j+1} - \mathbf{x}}{h_{j}} \mathbf{y}_{j} + \frac{\mathbf{x} - \mathbf{x}_{j}}{h_{j}} \mathbf{y}_{j+1} \dots \dots \dots (2) \vec{\mathbf{x}} \succeq t_{d}$$

^{る。}そこで今回は、1次微係数 B_jを用いて、閉区間 [x_j, x_{j+1}]において、

$$S(x) = B_{j} \frac{(x_{j+1}-x)^{*} (x-x_{j})}{h_{j}^{2}}$$

-B_{j+1} $\frac{(x-x_{j})^{2} (x_{j+1}-x)}{h_{j}^{2}}$
+y_j $\frac{(x_{j+1}-x)^{2} \{2(x-x_{j})+h_{j}\}}{h_{j}^{3}}$
+y_{j+1} $\frac{(x-x_{j})^{3} \{2(x_{j+1}-x)+h_{j})\}}{h_{j}^{3}}$ (3)

式となり、よって1次導関数は、

$$S'(x) = B_{j} \frac{(x_{j+1}-x)(2x_{j}+x_{j+1}-3x)}{h_{j}^{2}}$$
$$-B_{j+1} \frac{(x-x_{j})(2x_{j}+x_{j+1}-3x)}{h_{j}^{2}}$$

+ 6
$$\frac{y_{j+1}-y_j}{h_j^3}(x_{j+1}-x)(x-x_j)$$
(4) \vec{x}

となり、又2次導関数S"(x)は,

$$S''(x) = -2B_{j} \frac{2x_{j+1} + x_{j} - 3x_{j}}{h_{j}^{2}}$$
$$-2B_{j+1} \frac{2x_{j} + x_{j+1} - 3x_{j}}{h_{j}^{2}}$$

+ 6
$$\frac{y_{j+1} - y_j}{h_j^3}$$
 (x_{j+1}+x_j-2x) ………(5)式と

なる。3式が2次導関数まで連続であるためには, x_i(j=1,2,...., n-1)において,S"(x)を連続 にすればよいので,x_iにおけるS"(x)の右方,左方 の微分係数を求めると,

$$S''(\mathbf{x}_{j-}) = \frac{2B_{j-1} + 4B_j}{h_j} - 6 \frac{\mathbf{y}_j - \mathbf{y}_{j-1}}{h_j^2}$$
$$S''(\mathbf{x}_{j+}) = -\frac{4B_j + 2B_{j+1}}{h_{j+1}} + 6 \frac{\mathbf{y}_{j+1} - \mathbf{y}_j}{h_{j+1}^2}$$

となり,次の関係式を満足せねばならない。

$$\frac{1}{h_{j}}B_{j-1} + 2\left(\frac{1}{h_{j}} + \frac{1}{h_{j+1}}\right)B_{j} + \frac{1}{h_{j+1}}B_{j+1} =$$

-237 -

 $= 3 \frac{y_j - y_{j-1}}{h_j^2} + 3 \frac{y_{j+1} - y_j}{h_{j+1}^2}$

すなわち(7)式となる。(j=1,2, ……, n-1)

〈最小曲率化について〉

区間 [a, b] において、2次導関数まで連続で、尚 かつ関数 $f(x_i) = y_i (j=0, 1, \dots, n-1)$ となる すべての f(x) の内、 x_i を節点とするS"(a) = S"(b) = 0となる Spline 関数S(x) は、次の積分すなわち $\int_a^b 1 f''(x) 1^2 dx \dots (8)$ 式を最小にする唯一の関数で ある。2次導関数まで連続なすべての補間関数の内、 3次の Spline 関数は2次導関数の2乗の平均値を最 小にする。以下の独自の処理に関して、最小曲率化を 利用する。

〈逐次分割法について〉

- ① まず,初めに,各観測点に対して,従来通りSpline 関数処理を行う。
- ② 次に、最初の端点をそのままにして、2番目の観 測点をのぞき、3番目以降 Spline 関数処理する。
- ③ 1番目の観測点と3番目の観測点の方程式より、 2番目の期待値を予測する。すなわち、ここでさき ほどの最小曲率化の法測を用いて、すくなくとも2

** 4-PARAMETER LOGISTIC FUNCTION METHOD **

		# 5	STANDAR	ATAD-DS	4		
80	(CPM)	12941,12	2986	C.V.= 0	.17356	*	
ю.	ST.D-NO	00 B/T	(%) (COUNT(1)	COUNT	2)	C.V.(%)
1.	0.63	96.66	3709	12576	1248	36	0.359109
2.	1.25	92.77	5870	12140	1191	4	0.939552
з.	2.5	83.804	1528	10908	1082	20	0.405007
4.	5	71.52	7750	9404	914	1	1.41816
5.	10	56.805	5646	7460	726	8	1.30363
6.	20	40.428	3896	5254	522	28	0.248044
7.	40	28.38	7395	3656	370	4	0.652173
8.	80	20.88	1706	2739	267	'5	1.18212
	**** (CALCULAT	ION ***	•			
Ri	E-CAL.	3					
¥=	(A-D)/(1-	+(X/C)^B	+D				
NT		E 115	994451			210849	14 7052/5
TNI	UAL UE	101	799977	1 027	140 0	797640	11 544070
IN	AL VARIAN	VCE 0	005623	-0.000	379 0	.006215	-0.016625
NO	ST.D-NO	DO	CAL.B/	T (%)			
1.	0.63	\$	6.8455	592			
2.	1.25		2.2594	175			
З.	2.5	5	34.1815	531			
4.	. 5	-	1.8051	.35			
5.	. 10		56.1931	24			
6	20	4	10.6948	305			
7	. 40		28.5680	20			
8.	. 80	-	20,7278	800			
=	0.999922	2 ,	BISLOF	E.FACTE	R.) = 1	.037149	
	/	NALYSIS	OF VAR	TANCE T	ABLE		
	sv	SS	OF		MS	F	
ZEN	ITAI					F(0.05)	= 3.840
	IKI					F(0.05/3)	= 1.280
KAJ							
ZAN	ISA	7.398	12	S^2	= 0.617	NS	= 0.812
ZAN	ISA TEK I GOU	7.398	12 4	S^2 MSL	= 0.617 = 0.511	NS F.T	= 0.812

		* A-PARA	METER LC	GISTI	C FUN	-110	N METHOD		
			STANDARD	-DATA					
20	(000)	12041	2007 0		0 . 70	ez •			
80	(CPM)	12941.	12986 0	v.=	0.1/3	26 4			
NO.	ST.D-NO	DO B/T	(%)						
1.	0.63	96.60	537						
2.	1.25	91.65	542						
3.	2.5	83.30	011						
4.	10	54 10	134						
6.	20	40.64	119						
7.	40	29.33	308						
8.	80	20.80	320						
	**** (CALCULA	TION ***						
R	E-CAL.	з							
¥=	(A-D)/(1-	+(X/C)^8	3)+0						
INI	TIAL VAL	UE 115	5.99644	1		5.	092124	1.	6 7054
FIN	AL VALUE	103	2.087453	0.99	6685	9.	826820	1	0.954316
FIN	AL VARIA	NCE (0.003197	0.00	0054	0.	007598	-	0.008684
NO	ST.D-N	000	CAL.B/T	(%)					
1	0.63		96.5497						
2	. 1.25		91.7407						
3	2.5		83.5378						
4			/1.3093						
6	20		Jo. 1242						
7	40		28 9948						
8	80		20.9859						
R =	0.99996	7	*B(SLOPE	FACT	ER.) =	= 0.	996685		
	*/	ANALYSIS	OF VARI	ANCE	TABLE				
	20	CC							
		22	UF		ms		+		
ZEN	IAI						F(0.05)		3:840
KAI	IKI)	F(0.05/3)		1.280
ZAN	ISA	0.888	12	S^2	= 0.0	74	NS	u	0.281
FUT	EKIGOU	0.888	4	MSL	= 0.2	222	F.T	2	0
JUL	GOSA	0.000	8	SE^2	= 0.0	000	NF		0

* NSL = 0.488 IF NSL > 2.2 RUN ASSAYS AGAIN 12 Fig. 2

番目の期待値は、最小値が求められるはずである。

 1番目の観測点,2番目の期待値,4番目の観測 値より,3番目の期待値を予測する。

⑤ 以下同様に処理を続ける。

Ⅲ.結 果

〈実 際 例〉

Fig.1は、ダイナボット社製 HGHの Assayの1 例で4係数処理したものである。図の分散分析表から 解るように、総誤差平方和(いわゆる繰り返しによる 誤差)は5.356と小さく、しかも模型不適合平方和は、 2.042となり、相関係数 R=0.999922となりきわめて、 回帰は適切とおもわれる。

Fig.2は、さきほどの方法により処理を繰り返して、 観察点からみた Assay 系の予測点ともいうべき期待値 に対して、さらに4係数処理を行う。図中の分散分析 表の総誤差平方和が0になっているのは、どのような 処理を行おうと変化する事はなく、ここでは関数の不 適合性をみるために、加味せず模型不適合平方和に重 点をおき、しかも独自の処理をすることにより、模型 不適合平方和が0.888ときわめて小さくなり、相関係数

及び分散分析表からも解るようにさらに処理系として 適切さはきわめて良好である。そこで、各 x-dose に 対する2次微分値の変化を調べることにより、予測回 場式の適合度を調べることにする。

Fig. 3 の左側は、さきほどの HGH のデータを、2 次微係数構成による Spline 処理をしたもので、実線で 示す曲線は、その時の2次微分値を各 x-dose に対し て目盛ったもので、破線で示す曲線は、独自の処理を ほどこしたものである。変曲点の数はどちらも同じで、 独自の処理系の方が、多少2次微分値が小さくなって いる事が解る。図中右側は、同じデータを1次微係数 構成による Spline 処理したもので、実線で示す曲線 は、その時の2次微分値を各 x-dose に対して目盛っ

** 4-PARAMETER LOGISTIC FUNCTION METHOD **

STANDARD-DATA # BO (CPM) 14281,14685 C.V.= 0.69096 % C.V.(%) NO. ST.D-NOOD B/T (%) COUNT(1) COUNT(2) 92.152577 82.792780 74.374250 13090 13050 0.153022 10 11789 11696 10492 10605 0.535621 55.816822 4. 40 7998 7835 1.02949 80 30.896143 22.974688 45 4255 .89 6. 320 3316 3201 1.76461 **** CALCULATION *** *RE-CAL .* ··· 2 $Y=(A-D)/(1+(X/C)^{B})+D$ 110.503092 1 99.525079 1.103879 -0.002231 0.000101 INITIAL VALUE 110,583092 30,928634 18.379750 39.013914 FINAL VARIANCE 0.002268 NO. ST.D-NODO CAL .B/T (2) 91.669848 84.284958 72.436079 57.083591 41.884700 1.2.3.4.5. 10 20 40 80 6. 160 30.360706 23.267213 R = 0.999046 *B(SLOPE, FACTER.) = 1,103879 *ANALYSIS OF VARIANCE TABLE* SV SS D MS ZENTAL F(0.05) = 4.350KAIKI F(0.05)/3 = 1.450 ZANSA 20.375 10 \$^2 = 2.037 NS = 1.549 FUTEK I GOU 16.404 3 MSL = 5.468 F.T = 9.641 JUNGOSA 3.970 SE^2 = 0.567 NF = 2.216

* NSL = 2.530 IF NSL > 2.2 RUN ASSAYS AGAIN !?

		-PARMIL ILN	Luoisiic ii	onoriton namos	0.5
		# STANDA	RD-DATA #		
80	(CPM) 14	281,14085	C.V.= 0.6	9096 %	
ŧ0.	ST.D-N000	B/T (%)			
1.	5	92.1526			
2.	10	86.0877			
3.	20	72.4701			
4.	40	56.5219			
5.	80	42.1658			
6.	160	31.4449			
7.	320	22.9747			
	**** CAL	CULATION **			
R	E-CAL. ···	3			
Y=	(A-D)/(1+()	(/C)^B)+D			
INT	TTAL VALUE	110,58313	2 1	28,383885	18,3803
FIN	AL VALUE	101.46237	4 1.08279	2 37,509785	15.881565
FIN	AL VARIANCE	0.01917	1 -0.00072	70100075	-0.014332
NO	ST.D-NOD	CAL.E	B/T (%)		
1	. 5	92.786	53		
2	. 10	84.956	54		
3	. 20	72.703	27		
4	. 40	57.183	35		
5	. 80	42.040	56		
6	. 160	30.611	18		
7	. 320	23.53	10		
D =	0 999425	*B/SI	DE EACTER	1 = 1.092792	

ANALYSIS OF VARIANCE TABLE

SV	SS	DF	MS	F	
ZENTAI				F(0.05) =	4.350
KAIKI				F(0.05/3) =	1.450
ZANSA	6.380	10	S^2 = 0.638	NS =	0.867
FUTEKIGOU	6.380	З	MSL = 2.127	F.T =	: 0
					0

* NSL = 1.583 IF NSL > 2.2 RUN ASSAYS AGAIN !?

Fig. 5

たもので,破線で示す曲線は,独自の処理をほどこし たものであるが,変曲点の数はこれもどちらも同じで あった。さらに1次微係数構成による Spline 処理の端 点は、1次微分値を強制的に0とおくので、2次微分 値に解離がみられ、その時の端点の状況を良く反映し ていると思われる。そこで1次微係数構成による Spline 処理は端点を除く、すべての点に対して、2次微分値 が、±100を越えない場合は、予測回帰式としては問 題にはならないと我々は考えている。そこで次に一般 回帰式では不適当な例を示す。

Fig.4は, 栄研社製の2抗体法によるαFPのAssay の1例で,、4係数処理したものである。この処理例で は、分散分析表からも解るように、総誤差平方和は、 3.970と小さいが、模型不適合平方和は、16.404とな り、Assayの再度の検討を用するもので、メーカーの 標準血清が正しい濃度を示さないか、あるいは何らか の物理的・化学的な要素が加味して、不適合度を示す のか解らず、そこで、さきほどの方法により独自の処 理を行う。

Fig.5はその時の処理例であり、分散分析表からも 解るように、模型不適合による平方和は、6.380と小さ

-239-

く, このような Assay 系でも処理する事ができ,総誤 差をふまえた上で,不適合度指数の改善をはかること ができる。但し,繰り返しによる誤差すなわち,総誤 差平方和がきわめて,大きいような場合には,Assay のやり直しを用する。さらに2次微分値の変化を調べ ることにより,詳細に解析する。

Fig.6中左は、さきほどのαFPのデータを2次微 係数構成による Spline 処理をしたもので、実線で示す 曲線は、その時の2次微分値を各x-dose に対して目 盛ったもので、変曲点の数が5個あり、しかもx-dose 20と40の点で大きな解離がみられる。そこで独自の処 理をほどこした場合、変曲点の数が2個になり、かな り解離のようすは改善されるが、x-dose が10の点で 2次微分値が100を越えたままである。そこで図中右 は、同じデータを1次微係数構成による Spline 処理し たもので、実線で示す曲線は、その時の2次微分値を 各x-dose に対して目盛ったもので、変曲点の数が4 個あり、1次微係数構成による Spline 処理の方が変

曲点の数でまさり,さらに破線は、独自の処理をほど こした場合で、変曲点の数が2個になり、端点を除き、 各 x-doseに対する2次微分値は、100を越えるもの は改善された。

Fig.7 中左は、さらに独自の処理を数回繰り返すと、 さきほどの a FP のデータの2 次微分値は、破線に示さ れるごとく、左右のバランスのとれた値におちつき、 図中右上は、Original の観測点に対する予測値との 残差平方和を縦軸に目盛ったもので、さらに右下は、 予測回帰式に対する Original の観測点とのようすを 示し、残差平方和と共に解離の程度を表わす。

IV.結 語

1次微係数構成 Spline (拡張)を用いて、さきほど の述べた方法による独自の方法で、さらに数回処理を 繰り返す事により、ほぼどのような Assay 系でも、予 測回帰式を得る事が出来た。尚計算時間は YHP-Model 30 処理でどれも 2 分間位であった。