Ann.Rep. Asahikawa Med. Coll. 1993. Vol.14, 1 ~ 5

On Scalar Curvatures of Tangent Bundles of Riemannian Manifolds

Kazunari Yamauchi

Introduction.

Let M be an n-dimensional Riemannian manifold and T(M) be its tangent bundle. It is well known that there exist many Riemannian or pseudo-Riemannian metrics in T(M), which are defined by K.Yano and S.Ishihara. ([1]). Concerning these metrics, they showed following theorem.

Theorem 1. Let M be an n-dimensional Riemannian manifold and T(M) be its tangent bundle with the metric I or I + I, then the scalar curvatur of T(M) vanishes.

The purpose of the present paper is to calculate the scalar curvatures of T(M) with the metric I + III or II + IIII, and prove the following theorem.

Theorem 2. Let M be an n-dimensional Riemannian manifold and T(M) be its tangent bundle with the metric I + III or II + IIII. If the scalar curvature of T(M) is constant, then M is a locally flat space.

For the case with the metric I + III, see [2].

§1. Preliminaries.

Let π be the natural projection of T(M) onto M and $\{(U, x^h)\}$ be a local coordinate system of M. Then each $\pi^{-1}(U)$ admits the induced coordinates (x^h, y^h) . Putting $x^{\bar{h}} = y^h$, we often write (x^h, y^h) as (x^A) . The indices a, b, c, ..., h, i, j, ... run over the range 1, 2, 3, ..., n and A, B, C, ..., P, Q, R, ... run over the range $1, 2, 3, ..., n, \bar{1}, \bar{2}, \bar{3}, ..., \bar{n}$. The summation convention will be used with respect to this system of indices.

1. 1. Non-linear connections. Let N be a non-linear connection of T(M), that is, N is a distribution $N: \overline{p} \in T(M) \longrightarrow N_{\overline{p}} \subset T(T(M))_{\overline{p}}$ such that

$$T(T(M))_{\bar{P}} = N_{\bar{P}} + T(T(M))^{v}$$
, (direct sum),

where $T(T(M))_{\bar{p}}$ is a tangent space of T(M) at \bar{p} and $T(T(M))^{\bar{v}}$ is a subspace of $T(T(M))_{\bar{p}}$ generated by $\partial/\partial y^{h}$ (h=1, 2, ..., n). Functions N_{i}^{h} on T(M) which satisfy the following coordinates transformation rule are called coefficients of the nonlinear connection N:

$$(1. 1) N^{\mathbf{h'}_{\mathbf{i'}}} = \frac{\partial x^{\mathbf{h'}}}{\partial x^{\mathbf{h}}} \left(\frac{\partial x^{\mathbf{i}}}{\partial x^{\mathbf{i'}}} N^{\mathbf{h}_{\mathbf{i}}} + \frac{\partial^2 x^{\mathbf{h}}}{\partial x^{\mathbf{i'}} \partial x^{\mathbf{a'}}} y^{\mathbf{a'}} \right).$$

Let Γ_{i}^{h} be the coefficients of a Riemannian connection of M, then

$$(1. 2) y^{a}\Gamma_{a_{i}}^{h}$$

satisfy the transformation rule (1. 1), thus, in the following, we use (1. 2) as the coefficients of the non-linear connection of T(M). We put

$$(1. 3) \qquad \frac{\delta}{\delta x^{i}} = \frac{\partial}{\partial x^{i}} - N^{h_{i}} \frac{\partial}{\partial y^{h}},$$

then we can easily prove $\{\delta/\delta x^i|i=1, 2, ..., n\}$ is a local basis of $N_{\overline{P}}$, and we call $(\delta/\delta x^h, \partial/\partial y^h)$ the N frame of T(M). In the following, we write $(X_h, X_{\overline{h}})$ for the local basis $(\delta/\delta x^h, \partial/\partial y^h)$ of T(T(M)) for simplicity and let $(dx^h, \delta y^h)$ be the dual basis of $(X_h, X_{\overline{h}})$.

1. 2. Linear connections. Let $\overline{\nabla}$ be a linear connection on T(M) and $\overline{\Gamma}_{B}{}^{A}{}_{C}$ be the coefficients of $\overline{\nabla}$, that is, $\overline{\Gamma}_{B}{}^{A}{}_{C}$ satisfy the following

$$(1. 4) \begin{array}{c} \overline{\nabla}_{\mathbf{x}_{i}} X_{\mathbf{j}} = \overline{\Gamma}_{\mathbf{j}}^{\mathbf{m}_{i}} X_{\mathbf{m}} + \overline{\Gamma}_{\mathbf{j}}^{\overline{\mathbf{m}}_{i}} X_{\overline{\mathbf{m}}}, \\ \overline{\nabla}_{\mathbf{x}_{i}} X_{\overline{\mathbf{j}}} = \overline{\Gamma}_{\overline{\mathbf{j}}}^{\mathbf{m}_{i}} X_{\mathbf{m}} + \overline{\Gamma}_{\overline{\mathbf{j}}}^{\overline{\mathbf{m}}_{i}} X_{\overline{\mathbf{m}}}, \\ \overline{\nabla}_{\mathbf{x}_{\overline{i}}} X_{\mathbf{j}} = \overline{\Gamma}_{\mathbf{j}}^{\mathbf{m}_{\overline{i}}} X_{\mathbf{m}} + \overline{\Gamma}_{\mathbf{j}}^{\overline{\mathbf{m}}_{\overline{i}}} X_{\overline{\mathbf{m}}}, \\ \overline{\nabla}_{\mathbf{x}_{\overline{i}}} X_{\overline{\mathbf{j}}} = \overline{\Gamma}_{\overline{\mathbf{j}}}^{\overline{\mathbf{m}}_{\overline{i}}} X_{\mathbf{m}} + \overline{\Gamma}_{\overline{\mathbf{j}}}^{\overline{\mathbf{m}}_{\overline{i}}} X_{\overline{\mathbf{m}}}, \end{array}$$

from which, we have

$$(1. 5) \begin{array}{c} \overline{\nabla}_{\mathbf{x}_{l}}dx^{\mathbf{h}} = -\overline{\Gamma}_{\mathbf{m}}{}^{\mathbf{h}}{}_{\mathbf{i}}dx^{\mathbf{m}} - \overline{\Gamma}_{\overline{\mathbf{m}}}{}^{\mathbf{h}}{}_{\mathbf{i}}\delta y^{\mathbf{m}}, \\ \overline{\nabla}_{\mathbf{x}_{l}}\delta y^{\mathbf{h}} = -\overline{\Gamma}_{\mathbf{m}}{}^{\overline{\mathbf{h}}}{}_{\mathbf{i}}dx^{\mathbf{m}} - \overline{\Gamma}_{\overline{\mathbf{m}}}{}^{\overline{\mathbf{h}}}{}_{\mathbf{i}}\delta y^{\mathbf{m}}, \\ \overline{\nabla}_{\mathbf{x}_{\overline{l}}}dx^{\mathbf{h}} = -\overline{\Gamma}_{\mathbf{m}}{}^{\mathbf{h}}{}_{\overline{\mathbf{i}}}dx^{\mathbf{m}} - \overline{\Gamma}_{\overline{\mathbf{m}}}{}^{\mathbf{h}}{}_{\overline{\mathbf{i}}}\delta y^{\mathbf{m}}, \\ \overline{\nabla}_{\mathbf{x}_{\overline{l}}}\delta y^{\mathbf{h}} = -\overline{\Gamma}_{\mathbf{m}}{}^{\overline{\mathbf{h}}}{}_{\overline{\mathbf{i}}}dx^{\mathbf{m}} - \overline{\Gamma}_{\overline{\mathbf{m}}}{}^{\overline{\mathbf{h}}}{}_{\overline{\mathbf{i}}}\delta y^{\mathbf{m}}. \end{array}$$

According to (1. 1) and (1. 2), the Lie brackets satisfy the following

$$(X_{\mathbf{i}}, X_{\mathbf{j}}) = y^{\mathbf{r}} K_{\mathbf{j} \mathbf{i} \mathbf{r}}{}^{\mathbf{m}} X_{\bar{\mathbf{m}}},$$

$$(1. 6) (X_i, X_{\overline{i}}) = \Gamma_{i i}^{m} X_{\overline{m}},$$

$$(X_{\bar{i}}, X_{\bar{j}}) = 0,$$

where K_{jir}^{m} denote the components of the curvature tensor of M and $\Gamma_{j}^{m}{}_{i}$ the coefficients of a Riemannian connection of M.

1. 3. Riemannian or pseudo-Riemannian metrics of T(M). Let g_{ii} be the components of a Riemannian metric of M, then we see that

 $I : g_{ji}dx^{j}dx^{i},$ $II : 2g_{ji}dx^{j}\delta y^{i},$ $III : g_{ji}\delta y^{j}\delta y^{i},$

are all quadratic differential forms defined globally in the tangent bundle T(M) and that

$$\begin{split} & \hspace{0.1in} \mathbb{I} \hspace{0.1in} : \hspace{0.1in} 2g_{ji}dx^{j}\delta y^{i}, \\ & \hspace{0.1in} \text{I} \hspace{0.1in} + \hspace{0.1in} \mathbb{I} \hspace{0.1in} : \hspace{0.1in} g_{ji}dx^{j}dx^{i} + 2g_{ji}dx^{j}\delta y^{i}, \\ & \hspace{0.1in} \text{I} \hspace{0.1in} + \hspace{0.1in} \mathbb{I} \hspace{0.1in} : \hspace{0.1in} g_{ji}dx^{j}dx^{i} + g_{ji}\delta y^{j}\delta y^{i}, \\ & \hspace{0.1in} \mathbb{I} \hspace{0.1in} + \hspace{0.1in} \mathbb{I} \hspace{0.1in} : \hspace{0.1in} 2g_{ji}dx^{j}\delta y^{i} + g_{ji}\delta y^{j}\delta y^{i}, \end{split}$$

are all non-singular and consequently can be regarded as Riemannian or pseudo-Riemannian metrics in the tangent bundle T(M).

§2. The coefficients $\overline{\Gamma}_{B}{}^{A}{}_{C}$ of $\overline{\nabla}$.

Let \overline{g} be the Riemannian or pseudo-Riemannian metric defined above and $\overline{\nabla}$ be the Levi-Civita connection of T(M), that is, $\overline{\nabla}$ satisfies

(2. 1)
$$\overline{\nabla}_{\mathbf{x}}\overline{g} = 0$$
, for $\forall X \in T(T(M))$, and

(2. 2) $T(X, Y) = \overline{\nabla}_X Y - \overline{\nabla}_Y X - (X, Y) = 0$, for $\forall X, Y \in T(T(M))$, where T(X, Y) denotes the torsion tensor of T(M).

From (1. 4), (1. 6) and (2. 2), the coefficients $\overline{\Gamma}_{B}{}^{A}{}_{c}$ of the Levi-Civita connection $\overline{\nabla}$ satisfy the following

(2. 3)
$$\frac{\overline{\Gamma}_{j}^{h}_{i} = \overline{\Gamma}_{i}^{h}_{j}}{\overline{\Gamma}_{j}^{h}_{i} = \overline{\Gamma}_{i}^{h}_{j} + y^{r} K_{jir}^{h}},
\overline{\Gamma}_{j}^{h}_{i} = \overline{\Gamma}_{i}^{h}_{j},
\overline{\Gamma}_{j}^{h}_{i} = \overline{\Gamma}_{i}^{h}_{j},
\overline{\Gamma}_{j}^{h}_{i} = \overline{\Gamma}_{i}^{h}_{j},
\overline{\Gamma}_{j}^{h}_{i} = \overline{\Gamma}_{i}^{h}_{j}.$$

Then from (1. 5), (2. 1) and (2. 3), we have the following propositions.

Proposition 2. 1. Let M be an n-dimensional Riemannian manifold and T(M) be its tangent bundle with the metric Π , then the coefficients $\overline{\Gamma}_B{}^A{}_C$ satisfy

$$\overline{\Gamma_{j}}_{i}^{h} = \Gamma_{j}^{h}_{i}, \qquad \overline{\Gamma_{j}}_{i}^{h} = y^{r} K_{rij}^{h},
\overline{\Gamma_{i}}_{i}^{h} = 0, \qquad \overline{\Gamma_{i}}_{i}^{h} = 0.$$

- On Scalar Curvatures of Tangent Bundles of Riemannian Manifolds -

$$\overline{\Gamma_{\bar{j}}}_{\bar{i}}^{\bar{h}} = \Gamma_{j}^{h}_{i}, \qquad \overline{\Gamma_{j}}_{\bar{i}}^{\bar{h}} = 0,
\overline{\Gamma_{\bar{j}}}_{\bar{i}}^{h} = 0, \qquad \overline{\Gamma_{\bar{j}}}_{\bar{i}}^{\bar{h}} = 0.$$

4

Proposition 2. 2. Let M be an n-dimensional Riemannian manifold and T(M) be its tangent bundle with the metric I + II, then the coefficients $\overline{\Gamma}_B{}^A{}_C$ satisfy

$$\begin{split} & \overline{\Gamma_{j}}^{h}{}_{i} = \Gamma_{j}^{h}{}_{i}, & \overline{\Gamma_{j}}^{\bar{h}}{}_{i} = y^{r}K_{rij}{}^{h}, \\ & \overline{\Gamma_{j}}^{h}{}_{i} = \theta, & \overline{\Gamma_{j}}^{h}{}_{\bar{i}} = \theta, \\ & \overline{\Gamma_{j}}^{\bar{h}}{}_{\bar{i}} = \Gamma_{j}{}^{h}{}_{i}, & \overline{\Gamma_{j}}^{\bar{h}}{}_{\bar{i}} = \theta, \\ & \overline{\Gamma_{\bar{i}}}^{\bar{h}}{}_{\bar{i}} = \theta, & \overline{\Gamma_{\bar{i}}}^{\bar{h}}{}_{\bar{i}} = \theta. \end{split}$$

Proposition 2. 3. Let M be an n-dimensional Riemannian manifold and T(M) be its tangent bundle with the metric I + III, then the coefficients $\overline{\Gamma}_B{}^A{}_C$ satisfy

$$\overline{\Gamma_{j}}_{i}^{h} = \Gamma_{j}^{h}_{i}, \qquad \overline{\Gamma_{j}}_{i}^{h} = \frac{1}{2} y^{r} K_{jir}^{h},
\overline{\Gamma_{j}}_{i}^{h} = \frac{1}{2} y^{r} K_{rji}^{h}, \qquad \overline{\Gamma_{j}}_{i}^{h} = \frac{1}{2} y^{r} K_{rij}^{h},
\overline{\Gamma_{j}}_{i}^{h} = \Gamma_{j}^{h}_{i}, \qquad \overline{\Gamma_{j}}_{i}^{h} = 0,
\overline{\Gamma_{j}}_{i}^{h} = 0, \qquad \overline{\Gamma_{j}}_{i}^{h} = 0.$$

Proposition 2. 4. Let M be an n-dimensional Riemannian manifold and T(M) be its tangent bundle with the metric $\mathbb{I} + \mathbb{II}$, then the coefficients $\overline{\Gamma}_B{}^A{}_C$ satisfy

$\S 3$. The scalar curvatures of T(M).

The curvature tensor \overline{K} of T(M) is defined by

$$\overline{K}(X, Y)Z = \overline{\nabla_X} \overline{\nabla_Y} Z - \overline{\nabla_Y} \overline{\nabla_X} Z - \overline{\nabla_{[X,Y]}} Z$$

and let \bar{g}_{AB} be the components of \bar{g} and \bar{K}_{ABCD} the components of \bar{K} , that is,

$$\overline{K}_{ABCD} = \overline{g}(\overline{K}(X_A, X_B)X_C, X_D).$$

Then the scalar curvatur \overline{S} of T(M) is given by

$$\overline{S} = \overline{g}^{AB} \overline{K}_{CAB}^{C}$$

where \bar{g}^{AB} denote the components of the inverse matrix of (\bar{g}_{AB}) and $\bar{K}_{CAB}{}^{C} = \bar{g}^{CD} \bar{K}_{CABD}$.

By means of Proposition 2.1 or Proposition 2.2, we can easily prove Theorem 1.

From Proposition 2. 3 or Proposition 2. 4, we can prove the following propositions.

Proposition 3.1. Let M be an n-dimensional Riemannian manifold and T(M) be its tangent bundle with the metric I + III, then the scalar curvature \overline{S} of T(M) is given by

$$\overline{S} = S - \frac{1}{4} v^r v^s K_{rabc} K_s^{abc}$$

where S denotes the scalar curvature of M.

Proposition 3. 2. Let M be an n-dimensional Riemannian manifold and T(M) be its tangent bundle with the metric $\mathbb{I} + \mathbb{I} \mathbb{I}$, then the scalar curvature \overline{S} of T(M) is given by

$$\bar{S} = -\frac{1}{2} S + \frac{3}{8} y^{r} y^{s} K_{rabc} K_{s}^{abc}$$

where S denotes the scalar curvature of M.

From Proposition 3. 1 or Proposition 3. 2, it follows that

Theorem 2. Let M be an n-dimensional Riemannian manifold and T(M) be its tangent bundle with the metric I + III or II + IIII. If the scalar curvature of T(M) is constant, then M is a locally flat space.

References

- [1] K. Yano & S. Ishihara: Tangent and Cotangent Bundles, Marcel Dekker, Inc. 1973.
- [2] K. Yamauchi: A Remark on the Curvature Tensors in Tangent Bundles, Science Reports of Kagoshima University, No. 35 (1986) 91-94.

Department of Mathematics Asahikawa Medical College Asahikawa, Japan