Ann.Rep.Asahikawa Med.Coll. 1991.Vol.12, 1~11

A Study of Special Subspaces in a Finsler Space, II

Dedicated to Professor Dr. Makoto Matsumoto On his seventieth birth day

Hiroshi YASUDA and Vahid ALLI*)

Introduction. This paper is a continuation of the previous papers ([4],¹⁾ [8]). In Riemannian geometry, the following theorem is well known: If an n-dimensional Riemannian space M_n is of constant curvature and an m-dimensional subspace M_m of M_n is totally goedesic or totally umbilical, then M_n is also of constant curvature.

When, in particular, m = n - 1, that is, the subspace is a hypersurface of M_n , we, in the paper [4], discussed in detail under the TM (or TM(o))-connections how the above theorem is generalized to Finsler geometry. In the case where the codimension (n-m) is more than 1, we, in the paper [8], studied the same problem under the T (or T(o))-connections, which are the more general ones.

The principal purpose of the present paper is to develop the theory presented in the above paper [8]. The terminology and notations refer to papers [4]~[8] unless otherwise stated.

^{*)} This author's university is shown at the end of the paper.

¹⁾ Numbers in brackets refer to the references at the end of the paper.

§1. **Preliminaries.** Let M_n be an n-dimensional Finsler space with a fundamental function $L(x^i, y^i)$ and be endowed with a Matsumoto connection $M\Gamma = (\Gamma_j{}^i{}_k, \Gamma^i{}_k, \widetilde{C}_j{}^i{}_k)$. Then it follows ([5], [6]) that $\widetilde{C}_j{}^i{}_k$ is a (-1)p-homogeneous tensor and we have

$$(1.1) \Gamma_{k}^{i} = G_{k}^{i} + T_{k}^{i}, \Gamma_{ik}^{i} = \Gamma_{k|i}^{i} + Q_{ik}^{i} = G_{ik}^{i} + T_{ik}^{i} + Q_{ik}^{i}$$

where the symbol ||j| indicates the partial differentiation by y^i , G^i_k and G^i_j are the non-linear connection and h-connection of Berwald and T^i_k and Q^i_j are (1)p- and (0)p-homogeneous²⁾ tensors respectively.

Now we consider an m-dimensional subspace M_m of M_n defined by

$$(1.2) x^{i} = x^{i}(u^{a}) (i = 1, 2, \dots, n : \alpha = 1, 2, \dots, m),$$

where variables u^{α} form a coordinate system of M_m and the matrix with components B^i_{α} (= $\partial x^i/\partial u^{\alpha}$) is of rank m.

If we denote the components of a vector y^i tangent to a curve in M_m by $y^{\alpha 3}$ in terms of u^{α} -system, then we have

$$(1.3) y^i = B^i_{\beta} y^{\beta}, y^i_{\parallel \gamma} (= \partial y^i / \partial y^{\gamma}) = B^i_{\gamma}.$$

We choose (n-m) normal vector N_b^i $(b=m+1,\cdots,n)$ at each point (u^{α}) of M_m such that

$$(1. 4) g_{ij} N_b^i N_c^j = \delta_{bc}, B_{\gamma}^i N_i^b = 0, N_i^b := g_{ij} N_b^j,$$

where g_{ij} is the metric tensor on M_n .

Further we have

$$\bar{L} = L (x^{i}(u^{\alpha}), B^{i}_{\beta}y^{\beta}), g_{\beta\gamma} = g_{jk}B^{jk}_{\beta\gamma}, B^{jk}_{\beta\gamma} := B^{j}_{\beta}B^{k}_{\gamma},$$

$$(1.5) B_{i}^{\beta}{}_{\parallel g} = 2C_{b}^{\beta}{}_{\gamma} N_{i}^{b}, N_{b}^{i}{}_{\parallel \gamma} = -2C_{b}^{\beta}{}_{\gamma} B_{\beta}^{i} - \lambda_{b\gamma}^{c} N_{c}^{i},$$

$$N_{i}^{b}{}_{\parallel \gamma} = \lambda_{c\gamma}^{b} N_{i}^{c}, \lambda_{c\gamma}^{b} + \lambda_{b\gamma}^{c} = 2C_{b}^{c}{}_{\gamma} = 2C_{c}^{b}{}_{\gamma}, C_{b}^{\beta}{}_{\gamma} = C_{i}^{i}{}_{k} B_{i}{}^{\beta} B_{\gamma}^{k} N_{b}^{b}$$

^{2) &}quot;(r) p-homogeneous" means "positively homogeneous of degree r in y^i .

³⁾ If no confusion occurs then we use y^{α} in stead of the usual notation v^{α} .

where L and $g_{\beta\gamma}$ are the induced fundamental function and metric tensor on M_m respectively and

$$(1. 6) C_{ijk} = \frac{1}{2} g_{ijlk}, C_{jk}^{i} = C_{jsk} g^{si}, B_{i}^{\beta} = g_{ij} B_{\gamma}^{j} g^{\gamma\beta}, \lambda_{b\gamma}^{a} = -N_{i}^{a} N_{bl\gamma}^{i},$$

 g^{jk} and $g^{\beta\gamma}$ being the reciprocal tensors of g_{jk} and $g_{\beta\gamma}$ respectively.

The included Matsumoto connection $IM\Gamma = (\Gamma_{\beta}{}^{\alpha}{}_{\gamma}, \Gamma^{\alpha}{}_{\gamma}, \widetilde{C}_{\beta}{}^{\alpha}{}_{\gamma})$ on M_m is given by [5]

(1.7)
$$\Gamma_{\beta}{}^{\alpha}{}_{\gamma} = B_{i}{}^{\alpha} (B_{\beta}{}^{i}{}_{\gamma} + \Gamma_{j}{}^{i}{}_{k}B_{\beta}{}^{j}{}_{\gamma}) + \widetilde{C}_{\beta}{}^{\alpha}{}_{b} H_{\gamma}^{b},$$

$$\Gamma^{\alpha}{}_{\gamma} = B_{i}{}^{\alpha} (B_{\beta}{}^{i}{}_{\gamma} + \Gamma^{i}{}_{k}B_{\gamma}^{b}), \widetilde{C}_{\beta}{}^{\alpha}{}_{\gamma} = \widetilde{C}_{j}{}^{i}{}_{k}B_{i}{}^{\alpha}B_{\beta}{}^{j}{}_{\gamma}.$$

where
$$B_{\beta\gamma}^{i} = \partial B_{\beta}^{i}/\partial u^{\gamma}$$
, $B_{\beta\gamma}^{i} = B_{\beta\gamma}^{i}y^{\beta}$ and $C_{\beta\beta}^{a} = C_{\beta}^{i}kB_{\beta}^{a}B_{\beta}^{i}N_{b}^{k}$.

The normal curvature vector H_{γ}^{b} and the second fundamental tensor $H_{\beta}^{b}{}_{\gamma}$ in a direction N_{b}^{i} are given by

$$(1. 8) H_{\gamma}^{b} = N_{i}^{b} (B_{\alpha \gamma}^{i} + \Gamma_{k}^{i} B_{\gamma}^{k}).$$

$$(1.9) H_{\beta}{}^{b}{}_{\gamma} = N_{i}^{b} \left(B_{\beta}{}^{i}{}_{\gamma} + \Gamma_{j}{}^{i}{}_{k} B_{\beta}{}^{j}{}_{\gamma} \right) + \widetilde{C}_{\beta}{}^{b}{}_{c}, \ \widetilde{C}_{\beta}{}^{b}{}_{c} = \widetilde{C}_{j}{}^{i}{}_{k} B_{\beta}{}^{j}{}_{\beta} N_{c}^{k} N_{i}^{b}.$$

The h-curvature tensor $R_{\alpha\delta\beta\gamma}$ with respect to IM Γ is given by

$$R_{\alpha\delta\beta\gamma} = R_{jikh} B_{\alpha\delta}^{ji} B_{\beta\gamma}^{kh} + B_{\alpha\delta}^{ji} \{ P_{jikh} (B^{k}_{\beta} H_{\gamma}^{b} - B^{k}_{\gamma} H_{\beta}^{b}) N_{b}^{h}$$

$$+ S_{jikh} N_{b}^{k} N_{c}^{k} H_{\beta}^{b} H_{\gamma}^{h} \} + [H_{\alpha\beta}^{b} (g_{jk+\gamma} B^{j}_{\delta} N_{b}^{k} + \delta_{bc} H_{\delta\alpha}^{c}) - \beta | \gamma],$$

where R_{jikh} , P_{jikh} , S_{jikh} are the h-, hv-, v-curvature tensors with respect to $M\Gamma$ respectively and the symbol $\beta \mid \gamma$ means the interchange of indices β and γ in the foregoing terms within brackets.

If we contract (1. 10) by $y^{\alpha}y^{\beta}$ then we have

$$R_{o\delta o\gamma} = R_{oioh} B_{b\gamma}^{ih} + S_{oikh} B_{\delta}^{i} N_{b}^{k} N_{c}^{h} H_{o}^{b} H_{\gamma}^{c} + B_{\delta}^{i} N_{b}^{h} (P_{oioh} H_{\gamma}^{b} - P_{oikh} B_{\gamma}^{k} H_{o}^{b})$$

$$+ H_{o}^{b} (g_{jk+\gamma} B_{\delta} N_{b}^{k} + \delta_{bc} H_{\delta}^{c}) - H_{o}^{b} (g_{jk+\beta} y^{\beta} B_{\delta}^{j} + \delta_{bc} H_{\delta}^{c}).$$

$$(1.11)$$

§2. Totally geodesic subspaces. For the present, we assume that $M\Gamma$ is a geo-path connection, with respect to which any path in M_n is always a geodesic in M_n . In this case, it is known that the induced connection $IM\Gamma$ on M_m is also a geo-path connection on M_m and that M_m is totally geodesic if and only if each normal curvature vector vanishes i.e.,

(2.1)
$$H_{\gamma}^{b} = 0 \ (b = m + 1, \dots, n).$$

Hereafter we shall restrict our connection to $T\Gamma$ (or $T\Gamma_o$) i.e., $TM\Gamma$, $TMD\Gamma$ (or $TM\Gamma_o$, $TM\Gamma_o$) for the sake of simplicity. Then we have

$$\tilde{C}_{jk}^{i} = C_{jk}^{i}$$
 (or 0), $T_{o}^{i} = 0 = T_{k}^{o}$,

(2. 2)
$$Q_o{}^i{}_k = 0 = Q_j{}^o{}_k$$
 (for $TM\Gamma$ (or $TM\Gamma_o$)),
 $Q_{oik} + Q_{iok} = 0$ (for $TMD\Gamma$ (or $TMD\Gamma_o$)), $Q_{jik} = g_{is}Q_j{}^s{}_k$.

And we know that the condition (2. 1) is equivalent to

$$(2.3) H_{\beta}^{b}{}_{\gamma} = Q_{\beta}^{b}{}_{\gamma} (b = m + 1, \dots, n), Q_{\beta}^{b}{}_{\gamma} = Q_{j}^{i}{}_{k}B_{\beta\gamma}^{j}{}_{k}N_{i}^{b}. [5]$$

From (2. 1) and (2. 3) we can state

Lemma 2. 1. Let M_n be endowed with a $T\Gamma$ (or $T\Gamma_o$). Then in order that each normal curvature vector H_r^b on M_m vanishes if and only if each second fundamental tensor $H_{\beta}{}^b{}_{\gamma}$ vanishes, it is necessary and sufficient that each tensor $Q_{\beta}{}^b{}_{\gamma}$ vanishes.

By virtue of (1. 10) and Lemma 2. 1, we can state

Theorem 2. 1. Let M_n be endowed with a $T\Gamma$ (or $T\Gamma_o$) and M_m be totally geodesic. Then if each tensor Q_{β}^{b} , vanishes then the h-curvature tensor with respect to the induced connection $IT\Gamma$ (or $IT\Gamma_o$) is given as follows:

$$(2. 4) R_{\beta\alpha\gamma\delta} = R_{iikh} B_{\beta\alpha}^{ji} B_{\gamma\delta}^{kh}.$$

Immediately from Theorem 2. 1 we can state

Corollary 2. 1. 1. Let M_m be h-isotropic with R with respect to $T\Gamma$ (or $T\Gamma_o$). Then if M_m is totally geodesic and each tensor $Q_{\beta}{}^b{}_{\gamma}$ vanishes then M_m is also h-isotropic with R with respect to $IT\Gamma$ (or $IT\Gamma_o$).

Note 2. 1. In the above Corollary, R in general is not a constant. And the range of validity of the Corollary is fairly broad.

- (1) All GT-connections: $\Gamma^i_k = G^i_k + T^i_k$, $\Gamma^i_{jk} = G^i_{jk} + T^i_{jk}$. (or GT(0)-connections)
- (a) If $T\Gamma = H\Gamma$ (Hashiguchi connection) then R = 0 or M_n is a Riemannian space of constant curvature R.
 - (b) If $T\Gamma_o = B\Gamma$ (Berwald connection) then M_n is of constant curvature R.
 - (2) All TM (or TM(0))-connections with the following tensor Q_{jk}^{i} :

$$Q_{jk}^{i} = u_{j}h_{k}^{i} + h_{j}^{i}v_{k},$$

where u_j and v_k are both (o) p-homogeneous vectors and $u_j v^j = 0$.

(a)
$$AMN\Gamma$$
 (or $AMN\Gamma_o$): $T^i_k = fLh^i_k$, $Q^i_{jk} = -Lf_{\parallel i}h^i_k$.

(b)
$$AMB\Gamma$$
 (or $AMB\Gamma_o$): $\Gamma^i_k = fLh^i_k$, $Q^i_{jk} = 2fl_kh^i_j - Lf_{ij}h^i_k$.

where f = f(x, y) is a (o) p-homogeneous scalar.

In particular, if f is a constant then R = 0 or M_n is a Riemannian space of constant curvature R [4].

- (3) All TMD (or TMD(o))-connections with the following tensors $Q_j^{i_k}$: $Q_j^{i_k} = f(l_j h^{i_k} l^i h_{jk}) + v_k h^{i_j}$.
 - (a) $AMBD\Gamma$ (or $AMBD\Gamma_o$): $T^i_{k} = 0$, $Q^i_{jk} = f(l_j h^i_{k} + l_k h^i_{j} l^i h_{jk})$,
 - (b) $BD\Gamma$ (or $BD\Gamma_o$): $T^i_{\ k} = 0$, $Q^i_{j\ k} = f(l_j\delta^i_{\ k} l^ig_{jk})$.

Contracting (2. 3) by y^{β} , we obtain

$$(2.5) H_{a}^{b} = Q_{a}^{b} (= D^{i}_{k} N_{i}^{b} B^{k}_{\gamma}),$$

where D_k^i (= Q_{ok}^i) is the deflexion tensor on M_n .

The following assumption on $IM\Gamma$ is called the D-condition:

$$(2. 6) D^{b}_{\gamma} = 0 (b = m + 1, \dots, n).$$

From (1. 11), (2. 1), (2. 3), (2. 5) and (2. 6), we can state

Theorem 2. 2. Let M_n be endowed with a $T\Gamma$ (or $T\Gamma_o$) and M_m be totally geodesic. Then if the induced connection $IT\Gamma$ (or $IT\Gamma_o$) satisfied the D-condition then the contracted h-tensor $R_{\sigma\alpha\gamma\delta}$ and $R_{\sigma\alpha\sigma\delta}$ with respect to $IT\Gamma$ (or $IT\Gamma_o$) are given as follows:

$$(2.7) R_{\sigma\alpha\gamma\delta} = R_{\sigma ikh} B^{i}_{\alpha} B^{kh}_{\gamma\delta}, R_{\sigma\alpha\sigma\delta} = R_{\sigma i\sigma h} B^{ih}_{\alpha\delta}.$$

Immediately from Theorem 2. 2, we can state

Corollary 2. 2. 1. Suppose that M_n is endowed with a $T\Gamma$ (or $T\Gamma_o$). Then if M_m is totally geodesic and the induced connection $IT\Gamma$ (or $IT\Gamma_o$) satisfied the D-condition. Then if M_n is of scalar curvature R (resp. constant curvature R) with respect to $T\Gamma$ (or $T\Gamma_o$) then M_m is also of scalar curvature R (resp. constant curvature R) with respect to $IT\Gamma$ (or $IT\Gamma_o$).

6

Note 2. 2. The range of validity of the above Corollary is extensive.

- (1) All the TM (or TM(o))-connections.
- (2) All the TMD (or TMD(o))-connections whose deflexion tensors are given by $D_k^i = fLh_k^i$.
- §3. Totally ncd-free (or nc-constant) subspaces. In this section, we assume that M_n is endowed with a $T\Gamma$ (or $T\Gamma_o$) and the induced connection $IT\Gamma$ (or $IT\Gamma_o$) on M_m satisfies the TDQ-condition i.e.,

(3. 1)
$$T_{\gamma}^{b} (= T_{k}^{i} B_{\gamma}^{k} N_{i}^{b}) = 0, Q_{\gamma}^{b} (= Q_{j}^{i} B_{\gamma}^{j} N_{i}^{b} y^{k})$$
$$= 0 (b = m + 1, \dots, n)$$

together with the D-condition (2. 6).

Let M_m be totally ncd-free (resp. nc-constant). Then for direct-free scalars f^b $(f_{\parallel_{\gamma}} = 0)$ (resp. for constants f^b), we have

(3.2)
$$H_{\gamma}^{b} = L^{2} f^{b} (b = m + 1, \dots, n).$$

And further we have the following equivalent two equations:

(3.3)
$$H_{\gamma}^{b} = f^{b}y_{\gamma} - \frac{1}{2}\bar{L}^{2}\lambda_{c\gamma}^{b}f^{c}, \ y_{\gamma} = g_{\beta\gamma}y^{\beta}.$$

$$(3.4) \qquad \overset{b}{H}_{\beta}{}^{b}{}_{\gamma} = f^{b}g_{\beta\gamma} - f^{c} \left(\lambda_{c\beta}^{b}y_{\gamma} + \lambda_{c\gamma}^{b}y_{\beta} \right) - \frac{1}{2}\bar{L}^{2}f^{c} \left(\lambda_{c\gamma \parallel \beta}^{b} - \lambda_{d\beta}^{b}\lambda_{c\gamma}^{d} \right).$$

If we put

(3.5)
$$\frac{1}{2}(R_{\sigma_{\gamma}\sigma\delta} + R_{\sigma\delta\sigma\gamma}) = \frac{1}{2}(R_{\sigma i\sigma h} + R_{\sigma h\sigma i}) B_{\gamma\delta}^{ih} + \bar{L}^2 N^2 h_{\gamma\delta} + \frac{1}{2} \Phi_{\gamma\delta},$$

 $\Phi_{\gamma\delta} = U_{\gamma\delta} + V_{\gamma\delta}$, $N = N (u^{\beta}, y^{\beta})$: normal curvature in y^{β} -direction, then we have [8]

$$(3.6) \qquad U_{\gamma\delta} = \bar{L}^2 \left\{ \bar{L}^2 \left(f_b \lambda_{c\gamma}^b \lambda_{d\delta}^c f^d - C_{bc\delta 1\gamma} f^b f^c - \frac{1}{2} \sum_b \lambda_{c\gamma}^b \lambda_{d\delta}^b f^c f^d \right) - \left(C_{bc\gamma} y_{\delta} + C_{bc\delta} y_{\gamma} \right) f^b f^c \right\}, \text{ being } f_b = \delta_b f^c,$$

$$V_{\gamma\delta} = -\bar{L}^2 \left\{ T_{b\gamma\delta} + T_{b\delta\gamma} + 2 \left(C_{\gamma b\epsilon} T^{\epsilon}_{\delta} + C_{\delta b\epsilon} T^{\epsilon}_{\gamma} + 2 P_{\gamma b\delta} \right) + \left(g_{s\gamma} B^b_{\delta} + g_{s\delta} B^b_{\gamma} \right) D^s_{hlk} N_b^k \right\} f^b + \left\{ \frac{1}{2} \bar{L}^2 \left(T_{\gamma b} \lambda_{c\delta}^b + T_{\delta b} \lambda_{c\gamma}^b \right) - \left(T_{\gamma b} y_{\delta} + T_{\delta b} y_{\gamma} \right) \right\} f^b + g_{si} \left(D^s_{olk} - D^s_{b} \right) N_b^k \left\{ f^b \left(B^j_{\delta} y_{\gamma} + B^j_{\gamma} y_{\delta} \right) \right\}$$

$$\begin{split} &-\frac{1}{2}\bar{L}^{2}\left(B^{j}_{\gamma}\lambda^{b}_{\epsilon\delta}+B^{j}_{\delta}\lambda^{b}_{\epsilon\gamma}\right)f^{\epsilon}\right\}+\left[-\bar{L}^{2}\left(C_{\gamma b \epsilon}D^{\epsilon}_{\delta}+C_{\delta b \epsilon}D^{\epsilon}_{\gamma}\right)f^{b}\right.\\ &+\left\{\left.C_{\epsilon \gamma b}y_{\delta}+C_{\epsilon \delta b}y_{\gamma}-\frac{1}{2}\bar{L}^{2}\left(C_{\epsilon \gamma b}\lambda^{b}_{\epsilon \delta}+C_{\epsilon \delta b}\lambda^{b}_{\epsilon\gamma}\right)\right\}D^{\epsilon}J^{\epsilon}\right],\end{split}$$

where all the terms in brackets vanish for $IT\Gamma_a$.

Suppose that the tensor $\Phi_{\gamma\delta}$ in (3. 5) is expressible in

$$(3. 8) \Phi_{\gamma\delta} = 2L^2 \mu h_{\gamma\delta}.$$

Then from (3.5) and (3.8) we can state [8]

Theorem A. Suppose that M_n is endowed with a $T\Gamma$ (or $T\Gamma_o$) and the induced connection $IT\Gamma$ (or $IT\Gamma_o$) satisfies the TDQ-condition and that the tensor $\Phi_{\gamma b}$ is expressible in (3. 8) for a scalar μ (resp. a constant μ). Then if M_n is of scalar curvature R (resp. of constant curvature R) with respect to $T\Gamma$ (or $T\Gamma_o$) and M_m is totally ncd-free (resp. nc-constant) with N then M_m is of scalar curvature ($R + N^2 + \mu$) (resp. of constant curvature ($R + N^2 + \mu$) with respect to $IT\Gamma$ (or $IT\Gamma_o$).

Since the tensor $U_{\gamma\delta}$ is very complicated, we need to impose some conditions in order to simplify it. Firstly we shall consider the following assumption called the CN-condition [8]:

(3. 9)
$$g_{ij}N_b^i N_c^j|_{\gamma} = g_{ij}N_c^i N_b^j|_{\gamma}$$
, i.e., $\lambda_{c\gamma}^b = \lambda_{b\gamma}^c$.

From (1. 5) and (3. 9), we get $\lambda_{\epsilon\gamma}^b = C_{\epsilon\gamma}^b$ and hence (3. 5) becomes

(3. 10)
$$U_{\gamma\delta} = \bar{L}^{2} \left\{ \bar{L}^{2} \left(\frac{1}{2} C_{bd\gamma} C_{c\ \delta}^{\ d} - C_{bc\delta \parallel \gamma} \right) - \left(C_{bc\gamma} y_{\delta} + C_{bc\delta} y_{\gamma} \right) \right\} f^{b} f^{c},$$
where $C_{bc\gamma} = C_{ijk} N_{b}^{i} N_{c}^{j} B_{\ \gamma}^{k} = C_{b\ \gamma}^{\ c} = C_{c\ \gamma}^{\ b}.$

Secondary we consider another assumption called the SN-condition

(3. 11)
$$C_{bc\gamma}f^b = 0$$
 i.e., $g_{ij}N_b^i\overline{N}_{1\gamma}^j = 0$, being $\overline{N}^j = N_b^jf^b$.

Then it follows from (3. 10) and (3. 11) that the tensor $U_{\gamma\delta}$ vanishes under both the CN- and SN-conditions.

Now we shall consider a special TM (or TM(o))-connection $TMA\Gamma$ (or $TMA\Gamma_o$), whose non-linear connection is defined by $\Gamma^i_k = G^i_k + fLh^i_k$. In this case, we have

$$T^{i}_{k} = fLh^{i}_{k}, T^{i}_{ik} = Lf_{\parallel i}h^{i}_{k} + f(l_{i}h^{i}_{k} - l_{k}h^{i}_{i} - l^{i}h_{ik}),$$

$$(3. 12) T_{ik} = g_{is}T^{s}_{k}, T_{jik} = g_{is}T^{s}_{jk}, Q^{i}_{ok} = D^{i}_{k} = 0 = Q^{o}_{jk},$$

$$T^{b}_{\gamma} = 0$$
, $T^{b}_{\beta\gamma} = 0$, $T^{\epsilon}_{\gamma} = f\bar{L}h^{\epsilon}_{\gamma}$, $T_{b\gamma\delta} = \bar{L}f_{\parallel j}N^{j}_{b}h_{\gamma\delta}$.

Applying (3.12) to (3.7), we obtain

(3. 13)
$$V_{\gamma\delta} = -\bar{L}^2 \left\{ 2f_{\parallel j} N_b^j h_{\gamma\delta} + 4 \left(C_{\gamma b\delta} f \bar{L} + P_{\gamma b\delta} \right) \right\} f^b.$$

If we apply (3. 10) and (3. 13) to (3. 8) through (3. 5) then we get

(3. 14)
$$(f_{1j}N_{b}^{j}f^{b} + \mu)h_{\gamma\delta} + 2(C_{\gamma b\delta}f\bar{L} + P_{\gamma b\delta})f^{b} + \frac{1}{2}\bar{L}^{2}(C_{bc\gamma}y_{\delta} + C_{bc\delta}y_{\gamma} + C_{bc\delta}y_{\gamma} - \frac{1}{2}C_{bd\gamma}C_{c\delta}^{d})f^{b}f^{c} = 0.$$

Under both the CN- and SN-conditions, the above (3. 14) reduces to

(3. 15)
$$(f_{ij}N_b^j f^b + \mu) h_{\gamma\delta} + 2(C_{\gamma b\delta}f\bar{L} + P_{\gamma b\delta}) f^b = 0.$$

Thus from (3. 14), (3. 15) and Theorem A, we can state

Theorem 3. 1. Suppose that M_n is endowed with a TMA Γ (or TMA Γ_o) and the induced connection ITMA Γ (or ITMA Γ_o) satisfies the Q-condition ($Q_{\beta}{}^{b}{}_{o}=0$). Then if M_n is of scalar curvature R (resp. of constant curvature R) with respect to TMA Γ (or TMA Γ_o) and M_m is totally ncd-free (resp. nc-constant) with N then M_m is of scalare curvature ($R + N^2 + \mu$) (resp. of constant curvature ($R + N^2 + \mu$)) with respect to ITMA Γ (or ITMA Γ_o) under the following facts:

- (1) For a scalar μ (resp. a constant μ), the relation (3. 14) holds under the CN-condition.
- (2) For a scalar μ (resp. a constant μ), the relation (3. 15) holds under both CN-and SN-conditions.

Note 3. 1. In the above Theorem, the tensor
$$Q_j^i{}_k$$
 may be written in $Q_j^i{}_k = W_j^i{}_k + h^i{}_j v_k$,

where W_{jk}^{i} is a (o) p-homogeneous tensor satisfying $W_{ok}^{i} = W_{jo}^{i} = W_{jo}^{o} = 0$ and v_{k} is a (o) p-homogeneous vector. Examples are as follows:

- (1) $AMN\Gamma$ (or $AMN\Gamma_o$): $Q_{jk}^i = -Lf_{ij}h_k^i (v_k = 0)$.
- (2) $AMB\Gamma$ (or $AMB\Gamma_0$): $Q_{jk}^i = -2fl_k h^i_j Lf_{\parallel j} h^i_k (v_k = -2fl_k)$.
- (3) $AMC\Gamma$ (or $AMC\Gamma_o$): $Q_{jk}^i = 2fl_k h^i_j Lf_{lj} h^i_k P_{jk}^i (v_k = 2fl_k)$.
- (4) $AMR\Gamma$ (or $AMR\Gamma_0$): $Q_{jk}^i = -Lf_{ij}h_k^i + fl_kh_j^i fLC_{jk}^i P_{jk}^i$ ($v_k = fl_k$).

We shall call a $TMD\Gamma$ (or $TMD\Gamma_o$) a $AM\widetilde{D}\Gamma$ (or $AM\widetilde{D}\Gamma_o$) if the tensors T^i_k and D^i_k are given by $T^i_k = fLh^i_k$ and $D^i_k = -T^i_k$. Then the h-connection is expressible in $\Gamma_j^{i_k} = G_j^{i_k}$, where $W_j^{i_k}$ is a (o) p-homogeneous tensor satisfying $W_o^i_k = 0 = W_j^o_k$. And we have

$$\Gamma^{i}_{k} = G^{i}_{k} + T^{i}_{k}, \ Q^{i}_{jk} = W^{i}_{jk} - T^{i}_{jk}, \ Q^{i}_{ok} = -T^{i}_{k},$$

$$(3. 16) \quad Q^{o}_{jk} = T_{jk}, \ Q^{i}_{jo} = W^{i}_{jo} + T^{i}_{j}, \ T^{b}_{\gamma} = 0,$$

$$g_{s\gamma}B^{b}_{b}D^{s}_{kllb}N^{o}_{b}f^{b} = -g_{s\gamma}B^{b}_{b}T^{s}_{bk}N^{b}_{b}f^{b} = -T_{b\gamma\delta}.$$

Applying (3. 16) to (3. 7), we obtain

$$(3. 17) V_{\gamma\delta} = -2\bar{L}^2 (f\bar{L}C_{\gamma\delta\delta} + 2P_{\gamma\delta\delta}) f^b \qquad (\text{for } AM\widetilde{D}\Gamma),$$

$$V_{\gamma\delta} = -4\bar{L}^2 (f\bar{L}C_{\gamma\delta\delta} + P_{\gamma\delta\delta}) f^b \qquad (\text{for } AM\widetilde{D}\Gamma_o).$$

From (3. 17), we have in the same way as before

$$2 \{ \mu h_{\gamma\delta} + (f\bar{L}C_{\gamma b\delta} + 2P_{\gamma b\delta}) f^b \} + \Omega_{\gamma\delta} = 0 \qquad (\text{for } AM\tilde{D}\Gamma),$$

$$(3. 18) \quad 2 \{ \mu h_{\gamma\delta} + 2(f\bar{L}C_{\gamma b\delta} + P_{\gamma b\delta}) f^b \} + \Omega_{\gamma\delta} = 0 \qquad (\text{for } AM\tilde{D}\Gamma_o),$$

$$\Omega_{\gamma\delta} = \{ \bar{L}^2 (\frac{1}{2}C_{bd\gamma}C_{c}^{\ d}_{\ \delta} - C_{bc\delta}|_{\gamma}) - (C_{bc\gamma}y_{\delta} + C_{bc\delta}y_{\gamma}) \} f^b f^c,$$

$$\mu h_{\gamma\delta} + (f\bar{L}C_{\gamma b\delta} + 2P_{\gamma b\delta}) f^b = 0 \qquad (\text{for } AM\tilde{D}\Gamma),$$

$$(3. 19) \quad \mu h_{\gamma\delta} + 2(fLC_{\gamma b\delta} + P_{\gamma b\delta}) f^b = 0 \qquad (\text{for } AM\tilde{D}\Gamma_o).$$

From (3. 18), (3. 19) and Theorem A, we can state

Theorem 3. 2. Suppose that M_n is endowed with an $AM\widetilde{D}\Gamma$ (or $AM\widetilde{D}\Gamma_o$) and the induced connection $IAM\widetilde{D}\Gamma$ (or $IAM\widetilde{D}\Gamma_o$) satisfies the Q-condition. Then if M_n is of scalar curvature R (resp. of constant curvature R) with respect to $AM\widetilde{D}\Gamma$ (or $AM\widetilde{D}\Gamma_o$) and M_m is totally ncd-free (resp. nc-constant) with N then M_m is of scalar curvature $(R + N^2 + \mu)$ (resp. of constant $(R + N^2 + \mu)$) with respect to $IAM\widetilde{D}\Gamma$ (or $IAM\widetilde{D}\Gamma_o$) under the following facts:

- (1) For a scaler μ (resp. a constant μ), the relation (3. 18) holds under the CN-condition.
- (2) For a scalar μ (resp. a constant μ), the relation (3. 19) holds under both the CN- and SN-conditions.

Note 3. 2. In the above Theorem, the tensor $W_j^i{}_k$ may be written in $W_j^i{}_k = \overline{W}_j^i{}_k + h^i{}_j v_k$,

Where \overline{W}_{jk}^i is a (0) p-homogeneous tensor satisfying $\overline{W}_{ok}^i = \overline{W}_{jo}^i = \overline{W}_{jk}^o = 0$ and v_k is a (0) p-homogeneous vector. An example is as follows:

$$AMD\Gamma$$
 (or $AMD\Gamma_o$): $\overline{W}_{jk}^i = -fLC_{jk}^i - P_{jk}^i, v_k = 0$.

We shall call a $TMD\Gamma$ (or $TMD\Gamma_o$) a $GQDA\Gamma$ (or $GQDA\Gamma_o$) if its non-linear and h-connections Γ^i_k and Γ^j_k are defined by

$$(3.20) \quad \Gamma^{i}_{k} = G^{i}_{k}, \Gamma^{i}_{jk} = G^{i}_{jk} + Q^{i}_{jk}, Q^{i}_{ok} = D^{i}_{k} = fLh^{i}_{k}, Q^{o}_{jk} = -g_{js}D^{i}_{k}.$$

Then it follows from (3. 20) that

$$(3. 21) T^{i}_{k} = 0, g_{s\gamma}B^{h}_{b}D^{s}_{h\parallel k}N^{k}_{b}f^{b} = Lf_{\parallel k}N^{k}_{b}f^{b}.$$

From (3. 7), (3. 20) and (3. 21) we obtain

$$(3. 22) V_{\gamma\delta} = -2\bar{L}^2 \left(\bar{L}f_{\parallel k}N_b^k h_{\gamma\delta} + \bar{L}fC_{\gamma b\delta} + 2P_{\gamma b\delta}\right) f^b \qquad \text{(for } GQDA\Gamma\text{)}.$$

$$V_{\gamma\delta} = -2\bar{L}^2 \left(Lf_{\parallel k}N_b^k h_{\gamma\delta} + 2P_{\gamma b\delta}\right) f^b \qquad \text{(for } GQDA\Gamma_o\text{)}.$$

From (3. 22), we get in the same way as before

$$(3. 23) \quad 2(\bar{L}f_{\parallel k}N_{b}^{k}f^{b} + \mu)h_{\gamma\delta} + 2(f\bar{L}C_{\gamma\delta\delta} + 2P_{\gamma\delta\delta})f^{b} + \Omega_{\gamma\delta} = 0 \quad (\text{for } GQDA\Gamma),$$

$$(3. 23) \quad 2(\bar{L}f_{\parallel k}N_{b}^{k}f^{b} + \mu)h_{\gamma\delta} + 4P_{\gamma\delta\delta}f^{b} + \Omega_{\gamma\delta} = 0 \quad (\text{for } GQDA\Gamma_{o}),$$

$$(\bar{L}f_{\parallel k}N_{b}^{k}f^{b} + \mu)h_{\gamma\delta} + 2(f\bar{L}C_{\gamma\delta\delta} + 2P_{\gamma\delta\delta})f^{b} = 0 \quad (\text{for } GQDA\Gamma),$$

$$(3. 24) \quad (\bar{L}f_{\parallel k}N_{b}^{k}f^{b} + \mu)h_{\gamma\delta} + 2P_{\gamma\delta\delta}f^{b} = 0 \quad (\text{for } GQDA\Gamma_{o}).$$

Hence from (3. 23), (3. 24) and Theorem A, we can state

Theorem 3. 3. Suppose that M_n is endowed with a GQDA Γ (or GQDA Γ _o) and the induced connection IGQDA Γ (or IGQDA Γ _o) satisfies the Q-condition. Then if M_n is of scalar curvature R (resp. of constant curvature R) with respect to GQDA Γ (or GQDA Γ _o) and M_m is totally ncd-free (resp. nc-constant) with N then M_m is of scalar curvature $(R + N^2 + \mu)$ (resp. of constant curvature $(R + N^2 + \mu)$) with respect to IGQDA Γ (or IGQDA Γ _o) under the following facts:

(1) For a scalar μ (resp. a constant μ), the relation (3. 23) holds under CN-condition.

- (2) For a scalar μ (resp. a constant μ), the relation (3. 24) holds under both the CN- and SN-conditions.
 - **Note 3. 3.** In the above Theorem, the tensor $Q_j^i{}_k$ may be written in $Q_i^i{}_k = f(l_i h^i{}_k l^i h_{ik}) + h^i{}_i v_k + W_i^i{}_k$,

where v_k is a (1) p-homogeneous vector and $W_j^i{}_k$ is a (0) p-homogeneous tensor satisfying $W_a{}^i{}_k = W_j{}^i{}_a = W_j{}^o{}_k = 0$. Examples are as follows:

- (1) $MD\Gamma$ (or $MD\Gamma_0$): $Q_{jk}^i = f(l_j h_k^i l^i h_{jk}) P_{jk}^i (v_k = 0, W_{jk}^i = -P_{jk}^i)$
- (2) $AMBD\Gamma$ (or $AMBD\Gamma_o$): $Q_{jk}^i = f(l_j h_k^i l^i h_{jk} + l_k h_j^i)$ ($v_k = l_k$, $W_{jk}^i = 0$)
- (3) $AMCD\Gamma$ (or $AMCD\Gamma_o$): $Q_{jk}^i = f(l_j h_k^i l^i h_{jk} + l_k h_j^i) P_{jk}^i$ $(v_k = l_k, W_{ik}^i = -P_{ik}^i).$

REFERENCES

- M. Matsumoto: The induced and intrinsic Finsler connections of hypersurfaces and Finslerien projective geometry, J. Math. Kyoto Univ., 25 (1985), 107-144.
- [2] M. Matsumoto: Foundations of Finsler geometry and special Finsler spaces, (1986), *Kaiseisha press*, *Japan*.
- [3] H. Yasuda: On TM-connections of a Finsler space and the induced connections of its hypersurfaces, Proc. Rom. Jap. Col. Finsler Geo., Braçov (1984), 183-232.
- [4] H. Yasuda and M. Yoshida: On special hypersurfaces of a Finsler spaces, Tensor, N.S., 42 (1985), 283-298.
- [5] H. Yasuda: A theory of subspaces in a Finsler space, Ann, Rep. Asahikawa Med. Coll., 7 (1987), 1-43.
- [6] H. Yasuda: Special subspaces in a Finsler space, Ann, Rep. Asahikawa Med. Coll., 9 (1988), 1-14.
- [7] H. Yasuda: Connections on subspaces in a Finsler space, Ann. Rep. Asahikawa Med. Coll., 10 (1989), 1-12.
- [8] H. Yasuda and T. Yamada: A study of special subspaces in a Finsler space, Ann. Rep. Asahikawa Med. Coll., 11 (1990), 1-12.

(Mathematics, Asahikawa Medical College) (Mathematics, Banaras Hindu University, Varanansi (U.P.), India)