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in a Finsler Space ™
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Introduction. In Riemannian geometry, the following two thearems are well
known:

Theorem A. If an n-dimensional Riemannian space M, is of constant curva-
ture R and an m-dimensional subspace M, of M, is totally geodesic then M,,
is also of constant curvature R.

Theorem B. If A, is of constant curvature R and M,, is totally umbilical
then M, is also of constant curvature.

The principal purpose of the present paper is to study how the above theorems
are generalized to Finsler geometry.

The terminclogies and notations refer to the papers [5]~|7] ll?miess olherwise

stated.

§ 1. Preliminaries. Let M, be an n-dimensional Finsler space with a funda-
mental function L(x' ¥") and be endowed with a Matsumoto connection (usually
. ) . _ . . e o y
called a Finsler connection [2]) MI" = (I",. ", C,’,) This is a quite general

connection with no metrical property and is defined as follows ([5], [6], [7]): The

#)  The present paper with this title was addressed in Colloquium on differential
geometry 1989 at Eger in Hungary.

1) Numbers in blackets refer to the references at the end of the paper.
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v-connection C /4 is any (—1) [)-homogeneousm tensor and %, I,y are given by
(]. ].} My = Gf.; == T‘..;. F.:IJ‘ - P:"-u, + Q,-"A = G;'.;f =+ T;-'.!« + Q}’Ik.

where the symbol |7 indicates the partial differentiation by v/, G'y and G,
(= G'4;) are the non-linear connection and A-connection of Berwald, 77, and
&y are (1) p-and (0)p-homogeneous tensors respectively and T, = T4,

Let M,, be an m-dimensional subspace of M, defined by
(1.2) B = =, 2 E L # e = 3 BB , M),

provided that variables #* form a coordinate system of M,, and the matrix with
components B, (= adx'/au") is of rank m.

If we denote the components of a vector v’ tangent to a curve in M

m

by e 3

in terms of #°—system, then we have

(L3 o= Bhyt, yul=ay/ay) =B

U

T : N
By means of the metric tensor g,, ( = 5 L7y,,;), we choose n—m normal vectors

Ni(a=m+1,....,n) at each point («°) of M,, as follows:
(1.4) guNiNi = 8., BN =0, N':= g;N .

The induced fundamental function L (a7, v*) and metric tensor g,,(u", v°) on
sy ;

M, are given by
(1.5) L= Lx'(u), B',¥"), &y = 8uB, Bii: = B,B,

Let g’* and g°” be the reciprocal tensors of g,, and g,,. We put

] ; . ; T . = 5
C.'H'\' = _rj gnw_w C;:J\‘ = C:.«kg”'; li—{i'jl = .f,.’.-,- B ;fg”’. f"\::;f = —I ':Tl’\-'.fbl ¥

In this case, we have the following relations :

B:ﬁ hy = Cﬁﬁ)‘f T;‘, ' J\':'IIY = —'2 C—"h”;‘ 1’[.}’,# - /]\..‘;7 1‘\".::"
(1.6)

N = 0%, A%+ ad = B0, =2ES,.

where Cf, = C/4 BB, Ny and C,°, = C,/\ N} Nf B*,.

2) “(») p-homogeneous” means “positively homogeneous of degree # in v

3) If no confusion occurs then we use v in stead of the usual notation ¢°.
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The induced Matsumoto connection IMI" = (r',°,, I'",, Ei,”,) on M, 1s defined

as follows [5]:

Ly = Be(By'y + I'ivBiE) + Could?
(1.7)
e, = By (B, + I'sB%), Cs*, = C/vBiBi*

where B,', = 8B',/du?, B.» = B,,»", ’@’ﬁ'ﬂ, = ’(:‘J,'#_.B,“B{,,f\f"‘,: and
(1.8) H.= NI B.), + I''.B",).

The normal curvature vector in a direction N, is given by (1. 8), while the

second fundamental tensor in the same direction is given by
g ) i By B ~ .
(1.9) Hy!, =N (By's + TiuBit ) + Cit HS, Coto= C,' BNt N,
The h-curvature tensor R,.,, with respect to /MI" is given by

feoé.‘f?’ = R"l'i.‘h Bfii ‘I):::;:i + jj';nl {!JJM'J.‘ {Bb.’,‘ IL[‘;I - Bhy} f:’ ) "\Iﬂi[
(1. 10)
+ Sjua NF NP HE He } + [H. (g0, B s NE + 84 Ho') — 817 1,

where R, Piien, Siien ave the k-, hv-, v- curvature tensors with respect to M
respectively and the symbol [y means the interchange of indices 8 and 7 in
the foregoing terms.
Contracting (1. 10) by v*v* we have
Rotoy = Roion Biy + Soiwn B'a N} Ni HE H
{1. 11} . 7 7
+ By N (PoionH; — Punn B HY )+ H.% (854, B aNE + 8. HSE,)
== ]_l{,»”, (g,-}_u_\'ﬁB'l‘;,- i’\"'i’ + 5\.,’- !hlr,_‘,—h..).

§ 2. Totally geodesic subspaces. We shall firstly consider Theorem A. An
n-dimensional Riemannian space of constant curvature R is generalized to the
following two cases:

1) M, is of constant curvature K& with respect to MI' i.e.,
@1 Riwy'y'=RL% h;, (R: constant),

where /£, is the angular metric tensor.
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2) M, is h-isotropic with R with respect to MI" 1.e,
(2.2) Rijw= R(gixgix — in&ir).

Note 2.1. In the cace 2), R is not always constant. Contracting (2. 2) by
y'y*, we have R, = RL h;,. Therefore M, is always of scalar curvature K.

A subspace M,, is said to be totally auto-parallel with respect to M if each
path in M,, with respect to JMI" is always a path m Af, with respect to MI".

And it is known [5] that M,, is totally auto-parallel if and only if the following
holds :

(2 3) HS =@ (@=L oo oo oy B
And further it follows from (2.3) that
@24 Hf =8 (i1=05%d8)
Contracting (2.4) by 1#, we have
(2.5) Lo, (=P = @0 = DE, = P INE B),

where D', (=TI — 'y = @.'«) 1s the deflexion tensor on M,,.

Now we shall impose an assumption on {M[T
(2.6) D=0 (=l ey "),

which is called the D-condition.

Note 2. 2. If an M satisfies any one of the following axioms then the
induced connection /M satisfies the D-condition :

(F2) M is dft-free (D = 0).

(F2), Mr is dft-angular (D', = f(x, y) LA'),
where f(x, y) is a (2) p-homogencous scalar and k', = g f1;..

First we can state

Theorem 2.1. Suppose that a Finsler space M, is of constant curvature R with
respect to M and a subspace M,, of M, s lotally auto-parallel wilth respect io
IMI . Then if IMI satisfies the D-condition, then M
R with respect to IMT.

Proof. Applyving (2. 1), (2. 3), (2.5) and (2.6) to (1.11), we obtain R.:;, =
RL?h,,, where h,, = h, Bi;. Q.E.D.

o 15 of constant citrvature
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An M is called a geo-path connection if any path in A, with respect to
MT is always a geodesic in M,,. In this case, the induced connection IMI" is
also a geo-path connection on M,, [5]. Consequently we can state

Theorem 2. 2. Suppose that M, is endowed with a geo-path connection MI
and the induced connection IMI satisfies the D-condition. Then if M, is of
constant curvature R with respect to MI' and M,, is totally geodesic, then M, is
of constant curvature R with vespect to IMT.

Note 2. 3. The range of validity of the above theorem is extensive.

(I} All the TM (or 7M (0))-connections, which are characterized by the
following axioms (F1), (F2), (F3), (F4) and (F5) (or (F5),) :

(F1) Mr is metrical (L. = 0). (F2) Mr is dft-free.

(F3) M1 1s a geo-path connection.

(F4) Mr satisfies y'Dg;, = 0, where Dg,; is the absolute differential of g,,.

(F5) Mr is v-metrical and v-symmetric (Ciy = i

(F5), MI is v-natural (C, = 0).

The Cartan connection CIm=(7"%,, G+, C/’¢) and the Hashiguchi connection
Hr =(G;,, Gy, C;y) are the special TV -connections, while the Rund connection
R = ("%, G, 0) and the Berwald connection Bf" ={(G,'s, G';, ) are the
special 7'M {o)-connections.

(II) All the TMD(or TMD(o))-connections satisfying the axiom(F2),, where
an TMDor TMD(o))-connection is characterized by the four axioms (I'1), (IF3),

(F4) and (F5) (or (F5),). We shall give their examples.
(1) AMDr{or AMDr,): r'v= Gy— Lk, I''v=I*%.+ /LC/ ..

The connections (1) further satisfy the following desirable axioms:
(F6) MTI is h-symmetric ("= ')
(F7) M is h-metrical (g;;, = 0).

(2) MDror MDr,): riy=G I'tes= D%+ U6« — Vg

where [, = L,; and I' = y/L.
(3) AMBDI (or A:M'BDP”)f P @ s Gl P et Ly — Blin),

4) AMCDr (or AMCDI): I''y=G', I''v=T 5w+ R+ LR — Fhyy).
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Further the connections (3) and (4) satisly (FF6), while the connections (2)
satisfy (F7) and the following axiom (F8):
(F8) M is h-semi-symmetric (I";'s — I')', = 6,5 — 8'xs,, being s;= —f1,).

Note 2. 4. If M, is totally geodesic then the induced connection /AT
becomes the intrinsic connection on M, (if it can be defined).

Next we shall consider the case 2). From Note 2.1 we can state

Theorem 2.3. Swuppose that M, s endowed with a geo-path connection MI
and the induced connection IMI" satisfy the D-codition. Then if M, is h-isotropic

with R with respect to M and M

2l

is fotally geodesic then M,, is of scalar
curvature R with respect fo IMI.

For the special cases, it is known [4] that if M, (# = 3) is h-isotropic with R
with respect to M7 then the flollowing facls hold

(1) When MIr = Br, R is constant.

(2) When MIr = RI', R is constant together with H;'., = K, /1.,
where H,,, and K,',, are the /h-curvature tensors with respect to BI" and RI".

(3) When MI = Hr', R= 0 or M, is a Riemannian space of constant
curvature .

(4) When MI" = Cr’, R 1s constant together with S;., = 0,
where S,’;, 1s the h-curvature tensor with respect to Cr .

For Br and Hr we have @,', = 0, while for RI" and CIr we get @, =
— P, where P, is the hv-torsion tensor with respect to CI'. Consequently
from (1.10), (1.11) and (2. 1) ~ (2. 5) we can state

Corollary 2.3.1. [F M, (1 =3) is h-isotropic with R with respect fo M ((1)BrI,
@IRD, BYHI and (D)CT) and M, is totally geodesic then the following fucts
hold :

(1) M, is h-isotvopic with the constani R with respect to IBI.

(2) M, is of constant curvature R with respect to IRI.

B) M, s hflai(R.;,, = 0) with respect to IHI' or M,, is a Riemannian space
of constant cuvvature R.

(4) M, is of conslant curvalure R wilh respect to ICT.

Note 2. 5. The induced connections in Corollary 2.3.1 are all the intrinsic
“connections on M,,. It seems to us that the case (1) is the most natural gene-

ralization of Theorem A.
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§ 3. Totally ned-free (or nec-constant) subspaces. We shall secondly consider
Theorem B. We shall call a TMrI and a TMDr (resp. a TMI .and a TMDrI )
a T-connection (resp. a 7'(o)-connection) generically and denote it by 77T (resp.
Tr,). In the following, we assume that M, is endowed with a 7T (or Tr,)

and M, is endowed with the induced connection /7T (or ITF,). We put
b b

B.1)  Hey=NBS, + GLBit) H =y HS, = NHB., + G, BY,),

3.2  H =H'y = Ni(B.,+2G), B.o= By, 2G' = Giey',

Since the axiom (F3) means 77,(=7"v")= 0, from (1. 1), (1. 8) and (3. 2)we have
(3.3) M = HE y7) = B,

Let f(u®, y°) be a scalar on M,,. Then we shall say that f is direct-free if it
is independent of v*i. e, f, = 0.

We shall call a point (#°) of M,, an wncd-free (resp. nc-constant) point if the
following relation holds at the point («°) for direct-free scalars f*(resp. constants

7o)
(3.4) [),;‘ =I%f(a=m+1,...., 7).

We shall say that M,, is tolally ncd-free (resp. nc-constant) if every point of
M, is an ncd-free (resp. nc-constant) point.

Note 3.1. An ncd-free (resp. nc-constant) point corresponds to an umbilical
point (resp. a proper umbilical point) in Riemannian geometry.

Now we take a curve C: «'=u(s)(s: arc-length) in M, . If du" = y*(ds/L)

then because of (3.3) we obtain
b "
Hi(ue, ducjds) dut/ds = H (1®, du°) /L~ (ue, du®)
= He (e, y) /L2 (e, v),

which implies together with (3.4) that the square of normal curvature N(z°, y°)
in y°-direction is given by N° = §,, /7 /".
Note 3. 2. If the induced connection [T (or ITI",) satisfies the D-condition

then we have
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Hedw'/ds = Hpy dutdu’/geduf du? = H” AL

Making use of (1.6) and (3. 1)~ (3. 4) we can deduce the following two equi-

valent equations :

(3.5) B = foy, =L L2050 30 = &80
(3 6) [[rl ¥ —f Eay (/\:[;\ -+ Ahy a) jj J:’m()\ﬂyuﬁ == AJ;)L.ET)

Thus we can state

Proposition 3.1. Let M, be endowed with a TI' (ov TTI ). Then M,, is
lotallv ncd-free (resp. nc-constant) i and onlv if any one of the following facls
holds for direct-free scalars i (resp. constanis f*):

(1) Each wormal curvature veclor with vespect lo IBI is expressed in (3.5).

(2) Each second fundamental tensor with respect fo IBI is expressed in (3. 6).

For the sake of brevity, we impose another assumption on /77 (or ITT,)
3.7 T = TWlNFB )= 0, D= 0; Q= @ m= 0

which is called the 7D@-condition.

Note 3.3. For a 77 (or TI',) such that 7", = 0 or 7, = fLh'y, D'v= 0
o L= TU‘@’A and @,'x= 0 or @, = 0, the induced connection 1771 (or ITT,)
satisfies the 7D@-condition. See Lemma 3.1 in [6].

On making use of Proposition 3.1 and the TDQ-condition (in fact (1.1) and
(3.4)~(3.7)), we can obtain [6]

L (Royss + Rosid =2 Rutei + Baroi) By B% + LEN s + 2B

(3.8) - - -
$,; = Uy + Vs,

Ups = LY LAfhs S — Canenn PP — ST AL A1)

(3.9 B
— (Cony¥s + Conroy,) £}, being fo = 8a0f”,

Vi = E’g{-f“’(Qrﬁﬁ + Q:%,) F+ (goap — Poje) NL(BE + Biy) —
(3.10) % e

f;’_mayh — ‘D-i:tu‘v) A‘Vﬂ{fﬂ(B'y}‘a + jj’,‘,'l'},J ) _)'] (]3 y/\fq + ]3 )\fy)fb}-

We put
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Ti"":' = &un ’]‘l'-‘k‘ (Jul = &is (L)-"i" ?‘:! = &gis 71‘}- T‘!FPIT - TichlfV‘.;rB; :‘
(3.11) Toe = Ty N}, Ty = TWBY%By, DFe= D'\ BB,
Ce e — C.re.'.v = C‘I_JA'B;.:J)'-"\"‘{H ID)-'A'é‘ = [J'IW 'n:-‘Bj;r}‘;" fDH-‘S = g*“pi\.k'
By the use of (3.11) we obtain
g_.‘.u- Skai ’!*Jﬂi - ’]T:M - Qilk - Q;:-‘e - 2((4‘,}7 TJ-‘: + PUA)-
(3.12)
‘E,’,,“._V‘l = Y‘:,‘ =1 Y\;: a5 QH" - Q_:l'u-
The contracted hz-curvature tensors P,., and P,.,, are given by
Py = g_‘.-( — Qe+ D) + ic_.—::,Diy.-],
(3.13)
Piion = g..‘.:( = Qn"u + D‘.:nh — D) + [C,—'s/:D",-],

where the terms in blackets vanish for 7T ,.

Because of 7, = D", = 0, we get
(3 11) C:r:! 7“‘6 = C": ya 7“5¢ C.‘yuD‘JJ = C; y-‘:D:'.‘:

where Cio = C,uB . NF, TV, = T, B*, and D', = D/, B,
Applying (3. 11) ~ (3. 14) to (3. 10), we obtain

V—,(f = — L_t-){ Tuy;} + ?—‘aﬁy + 2((/‘711: Yﬂ[ﬁ + C‘ﬁas le + 21D7a6)

‘+@WB%+ggBHMﬁMNﬂP+{%L%TMMa+T@KJ
(3.15) -

— (Touve + Tm._‘l";«)},fﬁ + g (D e — D) ‘J\‘ri{,f-a{fj"r:,\-’y 4+ B 3s)

= ?{‘LZ(B",AE.{J + B";‘- Pxﬁ;.)_f‘h} ‘i" [_ = ]::((/‘r,;c Dlﬁ 'l" C‘;,.g D{y)f‘l

+ {C: ;u.'J"r? + Czau,‘l:r - %L:(C‘s 7h/1;:6 + C“:ﬁ.‘:)\ﬁ'r)}DEF.',""]:

where all the terms in blackets vanish for /77,
Now we assume that the tensor ¢,, formd with (3.9) and (3. 15) may be

expressed in
(3.16) B, = 2L2uh,,.

When (2. 1) 1s valid, from (3. 8) and (3. 16) we have
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B1D) L (Rupes + Rusey) = LAR+ N? + 1) hyo.

Hence we can state

Theorem 3. 2. Suppose that M, is endowed with a TI' (or TT,) and the
induced connection ITI (or ITI,) satisfies the TDGQ-condition and that the lensor
B, is expressible in the form (3.16) for a scalar p (vesp. a constant p). Then if
M, is of scalar curvature R (resp. of constant cwrvature R) with respect to TT'
(or TI',) and M,, is tolally ncd-free (vesp. nc-constant) with N then M, is of
scalar curvature (R 4+ Ne 4 w) (resp. constant curvature (R + NP4 ) with
respect to ITI (or ITI ).

Note 3.4. The above theorem is comparatively complicated because it
contains a number of indefinite parts. In (3. 16), the scalar 4 may be zero. In
this case, the tensor &,, has to vamsh.

Now we require a new assumption
2.8 puNNM; = guNiNG, e, Afs = Ady

which will be called the commutative normalily condition (simply CN-condition).
In this case, from (1.6), (3.9) and (3.18) we get

(3.19) Uy = L{LA(5C0ny Co's = Cassiy) = (Cany s + Carsy )}/,
where T, = Cinlf N B, = G, = L5,

In the following, we shall consider only a special case where 7%, = D', =

In this case, (3. 15) reduces to
(3.20) Vs = = 455 B .
Applying (3.9) and (3.20) to (3. 16), we obtain
B.21)  2uhe + 4Prusf* + L2(Casaty + Casrds + Cassdy — 5Cec, G f112 = 0.

Further we require another assumption which will be called the special norma-

lity condition (simply SN-condition)
(3. 22) Cony [ =0,

which means g,,Ni N/,, = 0, being N' = N f*

Under the SN-condition, (3. 21) reduces to
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(3:.23) U hy + 2P = 0.

Thus we can state

Corollary 3.2.1. Suppose ihat M, is endowed with a TMI (or TMI,) whose
non-linear connection is given by I'', = G*, and the induced connection ITMI
(or ITMT ) saiisfies (Qy*s = 0. Then if M, is of scalar curvature R (vesp. of
constant curvature R) with respect io TMI (or TMI',)) and M,, is totally ncd-free
(resp. nc-constant) with N then M,, is of scalar curvature (R+ N°+ u) (resp. of
constant curvature (R+ N7+ 1)) with respect to ITMI (or ITMTI,) under the
Jollowing facts -

(1) For a scalar u (resp. a constant u), the velation (3.21) holds under the
CN-condition.

(2) For a scalar u (resp. a constant 1), the relaiion (3.23) holds under both
the CN- and SN-conditions.

Note 3.5. The range of validity of the above corollary is comparatively
broad. Examples are as follows :

(1) All the typical connections Br, Rr, Hr and Cr.

(IT) All connections with the following form:
I = (F,‘:.!“ Gl-;,, C,';‘-(Ul' 0] ), [-';'i( = G,:A + C\?;‘ik,
Qv =2+ flx, v k'L,

where Z,', is any (o0)p-homogeneous tensor satisfying Z,', = Z,', = Z,", = 0.
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