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CONNECTIONS ON SUBSPACES
IN A FINSLER SPACE

Hiroshi YASUDA

Introduction. In the previous paper ([3], [4])1,]“’8 have developed the theories
of subspaces in a Finsler space M through three kinds of connections (M, T-
MDr and TMT') and their induced connections (IMI", ITMDI", ITMT). For
investigating subspaces, two connections are usually considered. One is the in-
duced connection and the other is the intrinsic one (if it can be defined).In ge-
neral, the properties of the former become worse than  those of the original
connection on A, On the other hand, the theory constructed through the latter
is more complicated. Therefore we have introduced some intermediate connec-
tions (called semi-induced connections) in [3] and [5]. 7

The principal purpose of the present paper is to study the above connections.

The terminologies and notations refer to papers [2] ~ [5].

§ 1. Preliminaries. Let M), be an n-dimensional Finsler space with a funda-
mental function L(x, ), and be endowed with a Matsumoto connection Mr =
(I')v, Ty, Cb), where C}y is a (— 1) p-homogeneous )tensor_ The non-linear connec-

tion I" and the h-connection I}, are given by

(1- 1) I-”k = G'k Eo T&: I = Fli.n: o+ Q::k = Gj,k + T:ik + Q.'ifh

where the symbol |7 indicates the partial differentiation by ¥, G% and G/ (=
G'w,) are the non-linear connection and the A-connection of Berwald , 77, and Q).

are (7)p- and (0) p-homogeneous tensors respectively and Ty = Ty,. Now we

1) Numbers in brackets refer to the references at the end of the paper.
2) “(») p-homogeneous” means “positively homogeneous of degree » in y™.
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2 — CONNECTIONS ON SUBSPACES IN A FINSLER SPACE —

consider an m-dimensional subspace M, of M, which is represented by the

equation
(1.2) x'=xw) (i=1,-0- L H a=d, e W),

where we suppose that variables z form a coordinate system of A, and the
matrix with components 5, (= dx’ . du) is of rank m.
Let us denote the components of a vector » tangent to a curve in M, by
3)

¥ in terms of w-system. Then we have

(1.3) ¥ = BLy, ¥ = 8y 0y = B..

Further the induced fundamental function L (z¢, ) and the metric tensor g,

(e, ) on M, are given by
(1.4) L = Liz{se). BisE), g = guBiy: = aB3BY,

where g, 1s the metric lensor on M,.
Now we shall choose #-m unit normal vectors N, (a=m—+1,-+++ - . ) at

each point («*) of M, as follows:
(1.5 g NLAD, = 8. BLNE =0, N%: = gV,

Put Bf = g.,5B.g7, where g" is the reciprocal tensor of g,,. Then (Bf, N%)

is the inverse matrix of (B%, N%). In this case, we have the following relations:
(1 6) Bf” y = Cbﬂy [un Nif:ll i = Zci)jy Bl;':‘ - A 'r“/ j\ﬂn‘: A‘?Vbrll y — /\ 5)7 j\ff,.’
(1 7) A.(h;— + /:L!(,:-’/ = BCixcy — 2(:‘(:.‘);': /\g}‘ = ki\f[ﬁ'li\f:hllrl

where Cf, = CAHN,B? B*,, Cf, = CiHNNyB*, and Chgi= Cu ( =4 gu).
The induced Matsumoto connection M = (I's,, I'%,, Cn‘:-",) on M, is defined

as follows :

(l. 8) “y = B.‘u (Bn'ly -‘E‘ FIJ&BA’}’ )1 a‘l}}‘ == Cf\‘:""kB!P B;’i"}’s
(1.9) re, = Br (B, + TWBi) + ChHY,,
where

3) If no confusion occurs, then we shall use y° in stead of the usual notation »*
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(1.10) B, =aB,/3u", B/, =B/, a;";, = E;I-kB,"Bka NY,
{111} e =Na(BL & B,

The normal curvature vector in a normal direction N, is given by (1. 11),

while the second fundamental tensor in the same direction is given by
(1.12)  Hf, = N(B/, + I Bt ) + CiHY,, Cfy = ChBls N4 N,

Let R,;, be the J-curvature tensor with respect to IMI", which is calculated
in the paper [3] by means of the generalized Gauss equation. If we contract this

tensor by y*y*, we have

['L)nﬁm = Ruiai!B ;‘}; 7+ Smie]: Bla‘ -f‘Vka j\-’mb [{au }]b)« + Blé‘ Nhrz (Ijuiulx Hd;f = R:!khB;‘y }-]“n)
(1.13)

-+ Hfi,(gm, B"} N+ das Hrab-,) - Jq..ﬂy (gm.,; J"? B"-a Nrk.«: + Gu [{aba),
Whel'e Ru’nh — Rp‘m_l""yk, Smku’z = S;:i-;’:_j"". Rﬂwh = JDHM _',Vj,‘!".kr [{bn = Hby j;y‘ [-Lnu = ;A‘ur })S},)"
H, = Hfyy*, Hi,= Hf, 3" and R, Siwn B are the k-, v-, hv-curvature tensors

with respect to MI" respectively.

§ 2. Semi-induced Matsumoto connections. We take a suitable (0)p-homo-

geneous tensor £, on M, and put
(2.1) Te, =Ts, + Ef,, M = (T, e, Tr),

where 17, I'", and ’(:, are the /-, non-linear and v-connections of IMI" respec-
tively.

We shall call the above connection IMI" a semi-induced Matsumoto connection.
We denote the /-covariant differentiations with respect to Mr and IvMr by
the symbols . andl respectively. As for the v-covariant differentions with respect
to the above two connections, they are the same and denoted by the symbol
|. For the vectors related by (1.3) and X‘= B’ X", the following relations
hold :

2.2) Dy* = B Dy', DX* = Br DX,
(2.3) DX*=X*.,du" + X* |, Dy’ = DX* + E&, X" dw’,

where
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(2 4) D)"l = d_}’é =+ F'ﬁdxk, DXI = X:lj,-dxk -+ X‘lkDJ’k,
(2.5) Dy = dy* + I'*,du’, DX = X°,du" + X° |, Dy".

Let X!z be an object defined on M, such that it is a tensor on M, of type
(1,1) and, at the same time, a tensor on M, of type (1,1). Then with respect
to TMT , the relative h-covariant derivative of the above object is defined as
follows :

Xis.,=6,Xi§ +X D& —-Xigr}, + X375 — XiTs,
(2.6)
= Xisi, + Xi3E — X1 Efy,
where &, and I', are the same as in IMI" and X%, is the relative /-covariant
one with respect to IMI".
The h-curvature tenss: Em( = gcnﬁ:,‘,d) of TMrI is given by

(2 7) FR;ayS =] \Huyé + E,:iaz Tr‘(f + [ga: Eﬂ“ﬂﬁ + E;}[) Ezad" = 7 | 3 ]:-

where E,.. =g.,Es., t+» =TI — I's, and the symbol y |5 means the inter-
change of indices y and & in the foregoing terms.
Contracting (2.7) by »*y", we have
Ex—a& = i T Er:.' Too + B (Eu,uls - E\ﬂ‘f’yﬂ\b‘ - Ex'iryylﬁ - Er:lﬁiryr
(2.8)
== Eﬁga,"’s!yjﬂ) + Er b — B B,
where the index o means the contraction by the vector y, for example Runw =
R&crd‘y;}}', and Eu( = E,g.,; j:'i etc.
From (1.1) and (1. 8), we have

2.9) y,, = DF, + CAHLHY, ¥,y =D+ C&LH,

where D?, = D4%B% and D'(= @/vy’) is the deflexion tensor of MI".
Applying (2.6) to B’ and using (1. 12), we obtain

(2 lD} Bl:ﬂ?;r = Biﬁlr s Blc E:?‘r = jVifJ]—-’r.‘fhr W Bit Eﬁ::"

In view of (2.10), the tensor 5, may be considered as the second fundamen-
tal tensor in a direction N with respect to TMmr.

In [3], we have considered a totally auto-parallel subspace with respect to

_.4_
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IMT. Also with respect to TM}", we can consider the same subspace, In
which each path in M, with respect to TMr is always a path in M, with re-
spect to MI".In this case, Theorem 7.1 in [3] holds also with respect to Tvr.
An MT 1s called a geo-path connection 1t any path with respect to the MI”
is always a geodesic in M, If M, is endowed with a geo-path connection MT,
then it is seen that TMI" is also a geo-path connection on M, and any totally
auto-parallel subspace becomes a totally geodesic subspace. In this case, Theo-

rem 7.2 in [3] of course holds.

§ 3. Semi-induced STD-connection. Let M, be endowed with an STDI (or
STDr,), which are defined as follows [3]:

(3.1) Fiv= G4+ T4, Ch= Chlor Cl= 0),
(3.2) Fh= P4t Wi, Wi=CuT —CLT,— CLT

where 7TV is a (/)p-homogeneous tensor satisfving 7% = 7%, = 0, I'*/, is the h-
connection of Cartan and 77 = 7T7.g".

These connections have the following properties :

(1) metrical (L, = O) (2)  h-metrical (g = O)

(3) geo-path connection (4)  h-symmetric (I'/. = ')
(3.3)

(5) w-metrical (gqle = 0) (for STDI)

BY gule = gy = 2Ci (for STDI,)

We put

an = T'A.-B?ﬁ. Cfb = Ck'.,; }bBi?( = C.'fy), 2G'= G'}y",
(3. 4) |
-[_}hu = j\'rbi(Bn:U =17 ZG'}- ?ar - Tc." - C;'c!'JHh!J; C.‘f? = Cilr‘rBiDB';ii .
In this cace, the induced connections ISTDI =(ry,, I'*,, Cs,) and ISTDI,

— (s, I'",, 0) are given by

re =G + ?"T (in common),
(3.5)

o

0
I'e, = f‘ﬁﬂr + CHHY,.. T8, = BB, + B

where Ge, 1s the intrinsic non-linear connection of Cartan on M,.

Since T]\:”., - T% =0, by means of this tensor ?“, we can define an STDI

_5_
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(or STDr,) on M,, which is called the semi-induced STD(or STD(0))-connec-
tion and denoted by ISTDI (or ISTDr,). In this case, we have

}“‘-‘.’;7 =I*, + c.'f;rz FT” — G5 FT(: - C:-'R: ?rﬂ
3.6) ) [3)
- ]-I;T 4 Eaa? — Fd"r I E;T'

where

(3' 7) Eﬁa? = Cvﬂn" Hrhff o c;mﬂ Hhﬂa 11—%;7 = Et')'":f =+ Cﬁah Hhr,

Erd
T =T4%g%, H* = H°. g and I'*7, is the intrinsic /A-connection of Cartan
on M,

For ISTDI and ISTDI,, from (2.9), (3.1)~(3.5) and (3.7) we have
¥, = =T, v,y = 0 (in common),

8acly = 0 (for LS‘E’DF), Esely = .QC,;(/.]']”, (fO]' ISTDF!J).
(3.8)

o

Ef,=LEs =0 Ef=0 Ef = Ef=E: = CHLED,
tdh =—ChHY oy =T —Th=0
Applying (3. 8) to (2. 8), we obtain
(3.9 Rusar = Biair— (Conny B + Gl P37 + Zalor Boa),
where

Za = Gl Ty — Cuan G’ H%, Uor ISTDIM),
(3.10)

o

L =20l Ty v GGl dty Hor ISTHD,):

Since CUA_-” = C,‘ﬂ_-p,Bﬂ} -+ C;,:ﬂ-|;,‘!\/r"",=.]']b;, and B:;'il)‘ = ",\rhh}r—lr,-,-f’y, because of (3 1)

and (3.2) we have
(3.11) Cossty ¥' = Posp + CuaeHs + CoucHso + GicHS + ConelNB, 37,

where C,,.gg,(- = C;;.M.‘.B:.':} ANAIA N ﬂr. cmw: = cxj,'«B:'fs H P.m-n = P.ABL; ]\'”A,-'cll’ld P."’.p.-(= Pt
£Y) 1s the Jwe-torsion tensor ol Cartan.

It is known [3] that the k-covariant derivative NY,, is given by

(3.12) Ny, = (N5N'w,) N'c — g% (g, B N% + 84 Hy,) B..
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Since gy, = Ofor 2C, N, H,), from (3.12) we have
(3.13) Cnskf\]k{.n ¥y = CnarAF;A'UM})’} = 8. G55 HE — (205 e E,),

provided the term in parentheses is valid only for ISTDI",.

Now we shall consider a totally J/-auto-parallel subspace M, of M,, in which
each /-path of M, with respect to TMT is always an A-path with respect to
Mr. By the use of the methods in [3], from (2.2) and (2.3) we can deduce

Dy' = B;/Dy + NY(H, du?),
(3.14)
DX'= B (DX — Ef, X?du’) + N(HP X* X7 + Ch. X2 Dy ).
In view of (3. 14), we can state.
Proposition 3.1. M, is totally h-auto-parallel with respect to TMI if and

only if the following equalions hold :

(3.15) EfYy+EH =0 HY, =0 HY) +Hify =0 (b=m+ 1 , 7).
Suppose MI" = STD[ (or STDr,). Then from (3.1) and (3.2) we have

(3.16) Qv = Ife — Py = Wi — Bis — T}

If H* = 0, then it follows from (3.7) and Theorem 7.2 in [3] that Ej,(or
Ef) =0, HY, = Q4 (= Q4N"Bj}) and T},(= TAN.Bii) = 0. Therefore
from (3.15) and (3. 16) we obtain

(3.17) Wi (= WiN4BLYE) = B, (= PLNLBY),

Conversely, H*, = 0 and (3. 17) imply (3. 15).  Consequently we have

Theorem 3. 2. M, is totally h-auto-parailel with respect lo TSTD]" (or ?BTDF,,)
if and only if M, is lotally gedesic (H",= 0) and the equation (3. 17) holds.

Note 3.1. The above theorem is valid also for ISTDr(or ISTDF,).

Next we shall consider a totally #-parallel subspace M,, of M,, in which each
normal vector N is parallel along any curve in A4, with respect to Tr. The

absolute differential 51’\."';, of Ny with respect to TMI is given by
(3.18)  DNY = Ny, du’ + Ny, Dy’

From (2.6) we have N',., = N',y,. Therefore because of (3. 18), the absclute

Y
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differential DNY, with respect to IMI 1s identified with ﬂﬁN’b. The theories of
such subspaces with respect to M and TMr are just the same. The theory
with respect to /MTI" has been investigated in [4].

§ 4, Semi-induced AMD-connection. An STDr (or STDr,) is called an
AMDTI (or AMDI,) if the tensor 7% in (2.1) is given by

4. 1) Ty = flx, ¥) Lix, )%,

where f(x, y) is a (o) p-homogeneous scalar and 4% is the angular metric tensor.
For AMDTI (or AMDYT,), from (3.1), (3.2) and (4.1) we first have

(4.2) I''y=GYW + fLkY, Tjy=T%% — LG
4.3  Qh=—fLi—Pi— T Di=—fLih, Q. =/Lhk

where &', = ')y — 'y and T = (FLEDy,.
Further we have
Lemma 4. 1. The contracted hv-curvature tensors Py (= y' Plu) are given as

Jollows
(4. 4) Biw = Py (for AMDr), Plu = Piy + fLCY  (for AMDL,).
Proof. For AMDI, from (4.2) and (4. 3) we have
Piw = (Tin — Claw — G5 Qi) ¥
=Py —(LCHny + G = Py,

For AMDr,, in the similar way we obtain

Pl = I'fmsd’ = Py — (FLC}ud = Py + LG Q.E.D.
We put
(4.5) T, = T.N".B",, D' = D\N%.B",
(4. 6) ", = Ni(B), + Gi\B"), Hp, = N'.(B{, + G/ aBit).

For the induced connection IAMDI (or IAMDI,), from (1.5), (1.6), (1.11),
(4. 1), (4.3), (4.5) and (4. 6) we have
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(4 7) Th:’ - Di‘)’ = J’h" = Ov Tﬁb? = 0; Hhr = i;{b)-.
Further from (1.12), (4. 1)~(4.3), (4.6) and (4. 7) we obtain

TE:’ = -‘r-‘[:’har ? Qﬁ‘hr = = Pfiyr o j‘ic;‘,r ' Hri’r - JL‘}br‘
(4.8) , ) ) ,,
H?“JU = [_[ Fr‘i “'k [ CF;J" !{‘."]‘ f{,-’h)‘ = Hf‘ly 2 if‘.':f ‘!ﬁ [ C.’n’;l(' I{“r ]u

¥

where 1? = flx'(u), B, y"), h°, = h'.B# B, and the terms in blackets vanish
for TAMDr ..

For the semi-induced connection TAMDI" (or TAMDI,), from (3. 5)~(3.7),
(4.2) and (4.7) we have

I's, =y + E;’;, =y, + E.fur'

b

(4 9) F‘guy =i 12';,'“;,- + C;hth, ﬁﬁay — Brn(B;}rr + F*_E;‘kB.::i-t’ ) - .]Eicfurl
Ep, = Collty — Coul™, Eg, = Es, + Col",.

By virtue of Theotem 3.2 and (4. 8) we can state

Proposition 4. 1. Let JI' be any one of the four connections IAMDI, IAMDI,,
TAMDI and TAMDI,. Then M, is totally h-auto-parallel with respect to JI' if
and only if M, s lolally geodesic and the following equation holds -

(4. 10) Pt + fLC?, = 0.

Let M, be endowed with an AMDI (or AMDI,)and a subspace M, of M, be
totally ned-free(or ne-constant). Then there exist n-m direct-free scalars f*(u”, v*)
(f%, = 0) (or constants f*) such that

I3

(4.11) HY, = L2 (b=m+1,0ver )

In this case, the square of the normal curvature N(z*, y*) in y*-direction at each

point (#*) is given by N° = §,./*F.

The condition (4. 11) implies the following two equivalent ones:
o b L 7200 4 5 g
(4 12) H', Ify;, - EL /er' Yyt :gﬁ:*:'“;!
] &
(4 13) H,;J:, = f"‘g;;r = fh(); "F:,q _V; + }\ ?.7}:3) = ;1’7 szb(/lgy e J“L:-g /‘t‘h,)

Applying (4.4), (4.7), (4. 8) and (4. 11)~(4. 13) to (1.13), we have
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(4 14) ;I_' (Raraé‘ + Ruﬂny) — gj(]?uiuﬂ + Ruhni) B;g + ZJ:‘JN;,!?,;@ + %(Uﬁ -+ Vya)

2
where
Uy = L L7 (S A8, Al = Connr f°f? — 5 35,2817
(4.15) ‘ ’
== (Cm}’a on aM.)"i'}fafb} ’
(4 16) .'I-/;..a = = 41—13()‘;]:'(:75:: + Pyﬁ‘e)fa - [2i3_fcrﬁ'ﬂfﬂ]l

where the term in blackets vanishes for TAMDI,.

We impose the following assumption :

(4.17) ZE,‘ AL =0, AeP =10

If we pul N' = Nif*, then the above assumption means
4.18)  g:Ni,N' = 0, gaNil'y, = 0.
From (1.6) and (4. 17) we have

(4.19) Cigfo =0

We shall call an assunption (4. 17) the mixed normality condition (or simply
mn-condition) with scalars f*.

In this case, it is easily seen that the tensor U, in (4.15) vanishes. Conse-
quently we can state.

Proposition 4. 2. Suppose that M, is endowed with an AMDI" (or AMDI,)
and a subspace M, of M, is ltotally ncd-free (or nc-constant) with N* = T ik
and that the normals satisfy the mn-codition (4.17) with f* and the tensor V,; in
(4. 16) vanishes. Then if M, is of scalar curvature R (resp. constant curvalure R)
with respect to AMDI (or AMDI,), then M, is also of scalar curvature (R+ N?)
(resp. constant curvature (R + N°) with respect to IAMDI (or IAMDI,).

Next we can state

Lemma 4. 2. If the normals satisfy the wmn-condition (4.17) with direc-free

scalars [', then the following velalion holds:
(4.20) Cusicl® = Ceid Ol + CoadC) 1* — [{ Gt Cfv+ Coruere) °],

where the terms in blackets vanish for IAMDI,.
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Proof. Differentiating (4. 19) partially by y*, we have
(4.21) (Coca S D1e = (Copma B's NN, + CuuN'ys NV, + CuN', N'ys ) BY ¢ = 0.

Applying (1.6) to (4.21) and using (4. 17), (4.19) and the symmetric relation
C:jk[}h - Cfa.'n‘];, for [AMDFU we first obtain

(4. 22) CuniBat NoNLft = 2(C.cc Cis + Coun G f2.
Since B'B¢, =§', — N,N", by the use of (4.19) we have

Ct(m’ C‘?::fh = Clﬁb Cnr:‘(é\’r - l\'ﬁn'Ndr)f;J
(4. 23)
= Can G f* — CanCoef* = Cn G .

For TAMDP, from (4.19), (4.22) and (4.23) we obtain

(4. 24) CusiliB o MNP =000+ Cals)

Thus from (4. 22) and (4. 24) we have (4. 20). Q.E. D.
From (3.9)~(3.11), (3. 13), (4. 8), (4. 11), (4. 12), (4. 17), (4.19) and (4. 20) we
can deduce

L (B + Raw) = 5 (Raiw + Ran)— LH(Pss— 2FLCYF

B~

(4. 25) ) ~ o
+ -BLJ C,_',,'. Cﬁ:;-flf’l',f:‘ “I‘ C“{rﬂ.’ PJ{J -!N‘vjly_y)} - [L:j_fc‘;rih.f'h]:

where the term in blackets vanishes for TAMDI,.
Applying (4. 14)~(4. 16) to (4. 25), we obtain

(R + Rugo) = L (Ro + Rui) BY + L*N?h,,

Dol

(4.26)

— L 3(Pusf* + L2 CousCs'of* ) + CracNNY, y7 ).
Now we consider the following differential equation :
@.27)  3(Pousf* + L2Cs Cief’S) + CraeNGNi, 37 = O.

Then in view of (4.26) we can state
Theorem 4. 3. Suppose that M, is endowed with an AMDI (or AMDI,) and
a subspace M, of M, is lotally ncd-free (resp. nc-constant) with N* = 8./ f¢, and

that the normals arve chosen in such ways thai they satisfv the equation (4.27)
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and the mn-condition (4.17) with 1. Then if M, is of scalar curvature R (resp.
constant curvature R) with respect to AMDI (or AMDI,), then M, is also of
scalar curvature (R+ N7?) (resp. constant curvature (R+ N?) with respect to

TAMDT (or TAMDI,).

1] M
2] I
[ H
[4] H
5] H.
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