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A THEORY OF SUBSPACES
IN A FINSLER SPACE

Hiroshi Yasupa

Introduction. In Riemannian geometry, as is well known, the theory of sub-
spaces has been develoved through the Riemannian connection and the induced
Riemannian one. Because the Riemannian connection is the best for investigat-
ing this geometry and the induced Riemannian connection coincides with the in-
trinsic one,

In Finsler geometry, the circumstances stated above are entirely different.
On Finsler spaces, various connections are defined and the properties of them are
discussed (for example, [l}.) (3], [5], [9] [10], [11], [13], [15], [17], [18]. [19], [23],
[26], [30], [31] and [32] etc.). It seems, to this auther, that no one can, for the
present, say which connection is best for the investigation of Finsler geometry.

Next, the theories of subspaces (including hypersurfaces) have been studied
by many authors from their own stand-points (for example, [2], (4], [6], 7], [8],
(12], [14], [16], [20], [21], [22], [24], [25]. [26], [27], [29], [30], [33], [34] and [35]
etc.). Except special cases ([6], [20] and [21]), any induced connections treated
by every author do not, in general, coincide with the intrinsic connections. May-
be this fact will be inevitable.

Asis well known, a Finsler space M is a metrical space endowed with Finsler
metric. In the present paper, we consider three kinds of connections on M. The
first is a Matsumoto connection, which is a quite general connection with no met-
rical property. The second is a TMD(or TMIX0))-connection, which is a less

general connection with some geometrical properties. The third is a TM(or TM

1) Numbers in hrackets refer to the references at the end of the paper.



A theory of subspaces in a Finsler Space —

(0))-connection, which is a slight generalization of the typical connections (for ex-
ample, the Cartan connection or the Berwald).

The principal purpose of the present paper is to construct a theory of sub-
spaces of M through the above connections. In § 1, a Matsumoto connection is
defined and the Lo hthids o e imposed on it are listed. The remaining
two kinds of connections are characterized by several axioms and many their spe-
cial connections are considered. In §2, a subspace of M is considered and vari-
ous quantities and relations are discussed. In § 3 and § 4, we introduce the in-
duced Matsumoto connection and study the various properties of it.  And [urther
we derive the generalized Gauss and Codazzi equations. Two sections § 5 and
§ 6 are devoted to the investigations of the induced TM(or TM(0))-connection and
of the induced TMD(or TMIX0))-connection. In the last section § 7, the various
special subspace are investigated. For example, totally geodesic subspaces and
totally ned-free subspaces etc.

The terminologies and notations refer to papers [30] — [35] unless otherwise
stated,

§ 1. Preliminaries. Let M, be"an n-dimensional Finsler space with a fun-
damental function I.(z, ¥), and endowed with a Matsumoto connection MI'=(I',,

I, C')(31], [32)). Then we have three tensors T%, Q/ and C/, on M, such that
(a) T'.isa (1)p-homogeneou§)(1, 1)-tensor.

(1. 1) (b) Q/,is a(0)p-homogeneous (1, 2)-tensor.
(c) C/.isa(—1)p-homogeneous (1, 2)-tensor.

And further the non-linear connection and the A-connection are given as follows :

(1.2) M=a +7T,

where G, is the non-linear connection of Cartan (or Berwald),

(1.3) =Tt Ofy= G+ T+ @

where I',, =o', /oy, T/, = T",,and G'(=G",,) is the h-connection of Berwald.

Note 1.1. Given three tensors satisfying (1, 1), a Matsumoto connection

2) “(r)p-homogeneous” means “positively homogeneous of degree rin y' .
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MI"is uniquely determined. The MI"is one of the most general connections on

M

N
The fundamental tensor and the C-tensor are as follows :

(a) 8 =%Lw, ,
(1.4)

(b) Con=2g,u » C/i= g”lcuuc )
where g is the reciprocal tensor of g, .

A Matsumoto connection M1 has no other geometrical property than a con-
nection on M,. Therefore we need to consider the various axioms to be imposed
on MIT  We shall list them extensively.

(F1) MIis metrical, ie., L, =0.

(F2

)

) The deflexion tensor D, vanishes, ie., D', =y I", —I", =0.
(F3) MI'is v-metrical and v-symmetric, ie., C/, = C/,.
(F3), MTris v-natural, i.e,, C', = 0.

)

(I°3), MI'is v-semi-symmetric, thatis, the z-torsion tensor is

(1.5) S;‘k (= C‘Jrk - Cki.f) =88, — 6% ¢

g

where ¢, 1s a (—1)p-homogeneous vector.

(F4) With respect to MI, the absolute differential Dy, of y, (=g, y’) is given
by Dy =g, Dy’ (or equivalently y' Dg, = 0).

(F5) Paths with respect to MI"are always geodesics of M, .

(F6) MI'is h-metrical, ie., g, = 0.

(F7) MIis h-symmetric, that is, the A-torsion tensor 7/ (=17, —TI7,) van-
ishes.

(FF8) The Av-torsion tensor P*,, (= —Q/,) of MI'vanishes.

(F9) MI'is h-semi-symmetric, thatis, the A-torsion tensor is

(1.6) 7! =8Ys5, —8' s

4k 4 =k ki
where s, 1s a (0)p-homogeneous vector.
(F10) The non-linear connection of MI'is given by G’, (or equivalently T,
=0).
Note 1.2. Most of the connections used hitherto may be characterized by

choosing suitable axioms in (F1) — (F10).

— 3 —
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A Matsumoto connection MI'is called a TM(resp. TM(0))-connection if it is
characterized by five axioms (F1), (F2), (F3) (resp. (F3),), (F4) and (F5). It is
known ([30], [31]) that a TM(resp. TM(0))-connection is uniquely determined if we

have three tensors satisfying (1. 1) and
(1.7) T =T, =0, Qf=04=0, T, =ClreprCL=0),

where the index 0 indicates contraction of a tensor, for emxaple T, by 3 (or y%).
Typical connections on M,, thatis, the Berwald connection BI" the Hashi-

guchi HI the Rund RI"and the Cartan CI'are all special TM(or TM(0))-connec-

tions, and the tensors determing them are as follows :
(@) T,=0, 0}, =0, C}. =0 for Al

(b) T, =0, 0/, =0, Tl =C, forHI
(1. 8)
(© T',=0, Q,\=—P', T/ =0 forRI

(d) Tfk =0, QJlk :_Pjrk, éjlk :C_'l.k for CI

where F, is the hv-torsion tensor with respect to CI” ‘

An h-metrical TM-connection is called an R TM-connection. It is known [30]
that this connection is characterized by four axioms (F2), (FS}; (F5) and (F6),
and that it is uniquely determined if three tensors 7% , T/, and Z,, are given as

follows :

(a) T' satisfies(1.7). (b) C/,=C/

gk
(1.5} .
(c) Z,.1sa(0)p-homogeneous (0, 3)-tensor such that

Ziw+Z,

=
ik i =0, émk:kaﬁO-

0.

In this case, the A-connection is expressible in
(]- ]-O) ]ﬁJlk:F*jikiQ’irTrk _{_%g‘f Zer—k_’[;"i"ki’]:'_w)s

where I, is the A-connection of CI"and T,,, =g, T", .
The Cartan connection CI the IS-connection ISI"and an AMR-connection

AMRIare all RTM-connections, and two tensors T, and Z,,, are given as follows :



 NERAEEE — .
(a) ForCr', T',=0 and Z, =0.

(b) ForISI", Z,, =0 and T° isdefined by
(1.11)

Tux'f'TJ'm +2(C Trp:”LRjk) =0.

ur
(c) For AMRI, T',=f(z,y) Lh',and Z,,, =L (f,h,—f.h,) ,

where f{x, v) is a (0)p-homogeneous scalar and #', =8*, —1'1[,.

In this case, the h-connections of ISI"and AMI are expressible in
(1.12)  IY=Gl+ T,
(1.13) r'.=rx +f,h,—1'h,—LC/}, ).

Note 1.3. The hv-curvature tensor ﬁj‘kh with respect to ISI"always vanish-
esand hence Q,', (=—y’ P',,) =0.

Note 1.4. A Wagner connection is characterized by four axioms (F2), (FF3),
(F6) and (F9) [12]. Therefore an AMRI is a special Wagner connection safisfy-
ing (F5). In particular if the scalar flz, %) is defined by f=LC", /(n—1)(C' =
C/,g’*), then this AMRIis called the Barthel-Matsumoto connection ([18], [32]).

An h-symmetric TM(resp. TM(0))-connection is called an STM(resp. STM(0))-
connection and denoted by STMITresp. STMI, ). It is known [30] that if we have
a tensor Q| satisfying (b) in (1. 1) then an STMI (or STMT,) is uniquely deter-

mined and I'*,, T}, are expressible in
(1.14) Frk:Gik_*_Tl.k:%Q:ns
(1. 15) L=GL+ RO+ 00+ + O annd

An AMB{or AMB(0))-connection AMBITor AMBI, ) and an AMClor AMC
(0))-connection AMCI (or AMCT,) are special STM(or STM(0))-connections, and

tensors determing them are as follows :
(1.16) Q) =2fl, k', —Lf,, h',  for AMBI(or AMBI}),
(1.17) Q). SR 8~ Lfi W =By for AMCI'(or AMCI) .

In this case, the non-linear connections are commonly given by
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(1.18) =% 4+7T ., T" =fLR,,
and the A-connections are respectively expressible in
(1.19) =G + R, +1 ., —1"h, ),
(1.20) =% +f, b+, 0 —=1"h,).

A Matsumoto connection MI'is called a TMD(resp. TMIX0))-connection if it
is characterized by four axioms (F1), (F3)(resp. (F3),), (F4) and (F5), and de-
noted by TMDI(resp. TMDI,). It is known ([31], [32]) that a TMDI (resp. TMD
I,) is uniquely determined if three tensor 7%, , Q/, and Ej‘k are given as fol-

lows: They satisfy (1. 1) and
(1.21) Te=T' =0, Dy +0,5=0, Ct,=C}. (resp. C}.=0),

whete D*, =0 J and O =D =gsD%.

A TMDI(resp. TMDI,) is called an STD(rsep. STIX0))-connection if it fur-
ther satisfies (F6) and (F7), and denoted by STDI(resp. STDI,). It is known
[31] that an STDI(resp. STDI}) is characterized by four axioms (F1), (F3)(resp.
(F3),), (F6) and (F7), and the A-connection is expressible in

(1.22) Tix ZF*I!k F W I/VJ‘»- =C T~ Civd 5= CA"TT: ,

where 77 =g“ T7 . In this case, the above connection is uniquely determined
if we have a tensor 7"/, satisfying T*,= T % =0 with (a) in (1. 1).

An STDI (resp. STDI) is called an AMID(resp. AMIX0))-connection and de-
noted by AMDI (resp. AMDI), if a tensor T, is defined by T, = fLA",. The

non-linear connection and the A-connection are given by
(1:23) =G LR, T, = —fLCL.

An STDI(resp. STDI) is called a CI{resp. RD)-connection and denoted by
CDITresp. RDI'), if atensor 7", is defined by

(1. 24) T, =fBC'C, (C'=C},g™ C,=g,,C").

In this case, the non-linear connection and the A-connection are as follows
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(1.25) I'=G'\+fBC'C,,
(1.26) I'=r* + fpc,,CcrC" —~Lijs PG~ B EhE, .
A TMDI(resp. TMDI,) is called a GQIDresp. GOIX0))-connection and de-

noted by GODI'(resp. GODI,), if it satisfies (F10) instead of (FF1).
Given a tensor Q /', satisfying (b) in (1. 1) and

(127) Djk(:chk)+QJfJN=0'

a GQDI(resp. GQDI,) is uniquely determined, and the non-linear connection

and the i-connection are given by
(1.28) I”)::G‘k’ Elx:P*fk+W;im Hffix:Q;lx +"Djtk'

A GQDI'(resp. GODI,) is called an MIXresp. MIX0))-connection and denoted
by MDI'(resp. MDI,), if it further satisfies (F6) and (F9). Ifweputs,=—flz, y)-

I;in (1. 6), then the i-connection is expressed in

(1. 29) 17 :F*J‘k ‘I'H’iix! M’;i :-f(EJ d\lkngg“).

3

Note 1.5. An MDI'(or MDI},)is a special Miron connection.

A GODI'(resp. GQDI,) is called a E’D(resp. BD)-connection and denoted by
I?Df'(resp. EDF), if it further satisfies (F7).

A ﬁDI"(resp. BDIM)is a HIXresp. BD)-connection and denoted by HDI(resp.
BDI'), if the tensor W/, in (1. 28) is given by

(1. 30) W=fL(,C*C,+1,C'C,=1'C,C, )+ P,

Note 1.6. An HDI'(resp. BDI') is closely similar to HI'(resp. BI").

An HDI(resp. BDI") is called an AMBID(resp. AMBIX0))-connection and an
AMCD(resp. AMCIX0))-connection respectively if the tensor W/, is given by (1.
31) and (1. 32) below.,

(131) I'%‘x:fﬂ_lhlk _}_leb‘.",[‘/zm)'
f1.32) W =S, b+ 1 kY —1'h, )— P

Note 1.6. The above connections are closely similar to the corresponding
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connections without the letter D. For example, an AMCD-connection is closely
similar to an AMC-connection.
§2. Subspaces of M,. Let M, be an m-dimensional subspace of M, re-

presented parametrically by the equation
3
(2.1) glegtw®) =192 . ms w=1,2, o0,

where we suppose that the variables « ® form a coordinates system of M _ .

We put
(2.2) B!, =92x'/9u"

and assume that the matrix (B*,) is of rank m.
If we denote the components of a vector X * tangent to M _ by X * in terms of

the #"-system, then they are related by
(2.3) X‘=B* X°

We consider a curve C: «°=u"(#) contained in M. Then the Cis also a
curve in M, represented by 2 =2‘(#"(#)) and the following relation holds be-
cause of (2. 2):

1)
(2. 4) ¥ =dz'/di=B' (du"/dt)=B"',y"
The induced metric function 7(«", y") on M, from L(x", y')Yon M, is given by

(2.5) L(u*,3°)=L{z'(u" ) B, 5°).

The fundamental tensor g, («°, y ") (=252 L /23" 3y") on M _ is expressi-
ble in

(2.6) B, 5") =g, (z',y')B', B,
The covariant vector y, corresponding to ¥ is expressible in
(2.7) % =gay"=LL/ 3y =y, B,

differentiation of which by y, yields

3) Here and in the following, Latin indices i 7 % ....run from 1 1o n. while Greek
indices a, 3, v, ....from 1 to m.
4) I no confusion occurs, then we shall use y” instead of the usual notation »*.
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(2. 8) &, =B" B',, B":=20y,/ 9y, [26].
Then the reciprocal tensor g™ of g, is given by
(Z.9) gy, )=¢" (5, )B" B",.
[n this case, the following relations hold :

Bui :gn.ﬂ gu Bja , Bjn gas :gtj Bai .
(2.10)
B, =g.,B"g", g,B,=¢..B",.
With respect to a vector y* in (2. 4). we choose n—m normals N' (a=m+1,

..... n) satisfying the relations

5) 6
(2.11) g NN =6, N =g, N'° N°B* —0.

a
Then we have

(2.12) B°N!=0, B',B°, =48, —N*,,

i

i

7)
S NIN'=NiIN:"

T b=m+

(2.13) Nt
From (2. 4), (2. 7)and (2. 11) ~ (2. 13) it follows that

(2.14) Niy'=Niy=0, Ny =Ny =0.

@

Hereafter we shall use the following notations :

B t=BI Bl Bl B =BIBY ... B;, Bl =B! BB’ etc.

iJ & i El aivy

Then we have
(2.-15) 8 =8By +N,, g"=g"B,,+N",

where N, =g N*and NY=g”N* .
The C-tensor C,,, on M, is defined by C,,, = %g.,, ., (=3 3g,,/9y"). In
this case, from (2. 6) and (2. 10) we have

(2.16) Con=CinBum, Cy=£"C,,=C/,BlL}.

5) Here snd in the following, Latin indices a, &, ¢ ....runfrom m-+1 to n.
6) We use this notation instead of N, : =g, N for the later summation convention.
7) U no confusion occurs, then we shall use the summation convention also for indices

a b oc .....
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Differentiating g°° g,, = 8°, by ¥" and contracting the result by g**, from (2. 9),
(2.10), (2.12) and (2. 16) we abtain

(2.17) g =—2"Cl,=—2g"C} . Bi];=¢g" B}
We define six quantities as follows :

Crm‘r: =CukN:zBi:! Cabr: ZCH,‘N;NJ;B:, Cabc: :CufozNiN:s

(2.18)
Cay:=Ci N By, Cli=C/\\N N!B}, CJ,:=CN.N}N".

Then we can easily prove
Lemma 2.1. The six quantities in (2. 18) are all symmetric in the lower indices.

Further the following relations hold :

C g :gba Cﬂﬂ? 2 CﬂbT == CGIJT ' C(Ihc = Cﬂb(.' y

(2.19)
CaurBaJ :Ca.rr _Caw "Viv C:}’B: :C.zj}—_c - N'-:“

ay

where C oy, =C N i Brand C..=C2 Nt Br,

ar

If we differentiate B®, in (2. 10) by y” and make use of (2. 10), (2. 17) and (2.
19), then we obtain

(2. 20) B°,,=2C;

Tb
m-‘\ L4

Differentiating the second in (2. 12) by ", from (2. 13) and (2. 20) we have

(2.21) N

bl

NI+ NN ,==20 NIB:,
If we contract (2. 21) by N ¢, then we obtain

=N?

iy

(2.22) NS

Jhr

18 N @ . araare
=A,N;, AL, :==NiN}

AT &
o N,

Since N§ =g, N%, from (2. 22) we have

(2.23) N

ally :A‘;Y ‘?\’r.::gu;gcaf'r'
Applying (2. 23) to the second in (2. 22), from Lemma 2.1 we get
(2. 24), Aoy +AL=005 =26 2,

If we apply (2. 24) to (2. 23) and take account of (2. 19), then we obtain
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(2, 25) N,

aly

s i
=—-2C, B, —ALN:.
For the later use, we define two tensors on M, as follows :

(2. 26) v,

baay C + chma- Cbﬂr + Cca.s Afnﬂ

(2.27) Bt =1 e e AT

Then we can state

Lemma 2.2. The tensor v,,,, is symmetric in all Greek indices, while the tensor
H oy 18 sSYymmetric in 3 and 7.

Proof. From (2. 18), (2. 24), (2. 25) and (2. 26) it follows that

itk Th__ piik Th__ i h

anf Ci}k"hA b *Bmw CHH::A‘ b"Bas CumrNb
= L= [

= Ce.:mw _Boa Cuh N o1r — Yoaay -

which shows that the tensor v,,,, is symmetric in @, Band . Because the tensor
C x1s also symmetric in #, jand A

Next, by virtue of (2. 17), (2. 26) and (2. 27) we get
(2- 28} vb‘ﬂ? g‘o == Q(C':rﬂ deﬂ + CBQG Cbg'f) :#bnﬁ]"

which indicates that the tensor ', is symmetric in 4 and y. Q.E.D.

From (2. 28) we obtain
(2 29) pbﬂﬂ}’: :ga: #h‘ﬂ'f = vbaﬂ? - 2(C C!ldfj _: Cuﬂﬂ@ Cb"'f) =

Yag

§3. Induced Matsumoto connections. On M, the absolute differential of

a vector y' with respect to an MI'is given by

(3.1) Dyt =dy' +I'', (x’, 3" )dx",

while the absolute differential of a vector X' (27, y* ) is given by
DX'=dX‘+ (@' +C)\I" )X dx*+C}, X*dy"

(8. 2) =X',dz"+ X", Dy,

X‘\k:rj\le"]::iXJ’ X ‘Ik:X‘lt+aJikXJ‘
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where 6, X' =0X'/8z*—I'", X', ,and X*,, = 8X'/9y".
Let vectors y'and X' be tangent to M,,, thatis, they satisfy (2. 4) and (2. 3) re-
spectively, Then the expressions (3. 1) and (3. 2) are written in
Dy'=(B, +I" B" )Jdu +B' dy",

(3.3)
B,, =8B /94", B;,=B),»",

DX‘ = Biﬂ dXﬁ —l— (Bt’;? + ﬂ‘k B:: "*_ ai‘h Fhﬂ: B‘;:’
(3.4) B [
+C)\Bo,B,) X du"+C} B X" dy.
Now we define Dy"and DX “ as follows :
(3.5) Dy*=B%,Dy', DX*=B" DX*,

Then on M, we can define a connection I'=(I",, I'",, C )by means of (3.

5). Interms of this connection, Dy"and DX °are expressible in
(3.6) Dy =dy*+ I du’
DE® =dX G I )X + CE X% 4

(3. 1) =X°,dv+X° Dy,

nr +CHBTX;'!

e =8 X Imxt X, =%"

where 6, X" =98X°/9u" — I, X",,and X°,, =3X°/ 3y,
If we substitute (3. 3) and (3. 4) into (3. 5) and compare the results with (3.6)
and (3. 7), then we have

(3.8) g =F' p™
(3.9) I, =BYBo +T\, B ). Bs=y"BL,
(8.10)  II=B'@®,+T.Bi)-C. I +BC,I"B"+B)B",.

If we apply (3. 8) and (3. 9) to (3. 10) and use (2. 12) and (2. 13), then we ob-

tain

(3.11) I,=B%(B/),+I'Bi)+C.H?,



— BNER AR — I

where we put
(3.12)  G,=CLBiN;,
(3.13) H', =N (B, +I" B* ).

I, Cr)on M, defined by (3. 8), (3.9)
and (3. 11) the induced Matsumoto connection, and denote it by IMI"

We shall call a connection I'=(I""

ar?

We put

(3.14) Ce =B NN Es

FN R
(3.15) HY ,=N;(B),+T/ B%)+C - H®.
Then if we contract (3. 11) by B*, and use (3. 15), then we have
(3.16) B),+I\Bu+C/ B N'H'=B' I'" +N'H".

In view of (3. 16) we can define the A-relative covariant derivative of B, with

respect to IMI™as follows :
(317) HGzTZB‘nlr:aBla/aur+Fjerjﬁ_F:u'Bln'

(3.18) IE=TtL B 4 CLN "

v

It then follows from (3. 16) ~ (3. 18) that H,, =N*H/} .
Let X ;7 be an object defined on M, such that it is a tensor in M, of type (1, 1)
and, at the same time, a tensor in M, of type (1, 1). Then the relative A and v-

covariant derivatives of X’ are defined as follows :

(3.19) e

Jalry :d?X;: +X::P:'T_—X:;:P.ik +Xj.:]—'ﬂ‘n7 —X“"Fﬂ

g Jg ar:?

where &, and I}, are defined in (3. 7) and (3. 18) respectively.

(3. 20) Xl =X

Ka N i ok o e ia s
inly JBl‘r+X,l’acit7_XkaCJT_‘_XJﬂCﬁT_kXJSCBY'

where C/, =C/, B’,.
From (2.12), (2.13), (3.16), (3. 17) and (3. 20) we obtain

(3.21)  B',,=H),=N.LH}, B,l,=N:C5,
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where C.,=N°C/, BY. Because of (2.12), (2. 13), (3.9) and (3. 13) we have
(3.22)‘ B, —B,r',=-r'B" , + N.H;,
which implies
(3 23) 8,=B" 8/0x" +(BL, —B'.,I" )8,/ 3" =B, 6, +H'N' 3/ 9y,
where 6,=9,/9z' —I'", 8,7 dy" .

Then it easily follows from (3. 19), (3. 20) and (2. 23) that
(3. 24) By =ZunBy+2ul . NoH ., Byl =241, B%.

Further from (2. 14) and (3. 23) we have

(3. 25) L=B%E .

T ¥

From (3. 25) we can state
Lemma 3.1. [fan MI'is metrical, then the IMI” is also metrical.
From (2. 11), (3. 20), (3. 21) and (3. 24) we obtain

(3. 26) B =Bun Bl T2l BUN B,

aar

(3. 27) Zule =8, 1, BL.

Because of (3. 26) and (3. 27) we can state

Lemma 3.2. If an MI"is v-metrical, then the IMI is also v-metrical. If an
MI'is both h-metrical and v-metrical, then the IMT is h-metrical.

The deflexion tensor 5", with respect to IMIis, because of (3. 9) and (3. 10),
given by

(3. 28) D* =1 —I" =D'B*+C.H",

where D', is the deflexion tensor with respect to MIMand C 7, =y" C* .

oy

a
Y

We shall say that the IMI"isdft-natural if the deflexion tensor is given by D
=D' B7,. Then from (3. 28) we can state

Lemma 3.3. The IMI'is dft-natural if and only if the following equation holds :

(3. 29) Co,H:=0.

— 14—
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Note 3.1. We shall say that an MI'is dft-free if it satisfies (F2). In this
case, the IMI'is also dft-free if and only if it is dft-natural.
From (3. 26) and (3. 27) we have

(3. 30) Dg,, =g, B dy +g,|, B (N*H d' + B Dy’ ).

We shall say that an MI"is Dy-reciprocal if it satisfies (F4). Then it is easily

seen that an MI'is Dy-reciprocal if and only if
(3.31) -ngulthO’ y(gulxzo'

Because of (3. 30) and (3. 31) we can state

Lemma 3.4. Ifan MI'is Dy-reciprocal, then the IMIis also Dy-reciprocal.

Let 3, and y* be the christoffel symbols of the second kind formed with s
and g, respectively. Then they are related by

(3.32) %a=By Byt 4, Bu )2 C o (BEBE +BEBE B BE )
Contracting (3. 32) by ¥"y*, we have
(3.33) 2G " =v,,5"y" =B, (Bs,+2G").
On the other hand, contraction of (3. 9) by 3", because of (3. 33), vields
(3. 34) ey =2G"+ T4, B,

An MTI'is called a geo-path connection if it satisfies (F5). Then it follows
from (1. 2) that an MI'is a geo-path connection if and only if 7', =0. Therefore
from (3. 34) we can state

Lemma 3.5. [fan MI'is a geo-path connection on M., then the IMI is also a
geo-path connection on M.

We put

(3. 36) T, =T'.B" Q=0} B

isr

b

(3.37) I),=B°(B,\+G/ By), I",=B", (B, +G'. B* ),

(3. 38) Hi=N!B!+G'.B") H'=N"(BL+2G").

Differentiating (3. 33) by y" and using (2. 20) and (3. 37), we have
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(3.39) G.=G*,,=I" +C B

Subtracting (3. 9) from (3. 38) and using (3. 36), we get

(3. 40) T ="~ G =T" —C* B*.

Differentiating (3. 9) by y”and using (2. 20), we have
(3.41) e =BBr A Bty 26, B,

Since I'',,, =T"', —Q],, from (3.11), (3. 36) and (3. 41) we obtain
(3. 42) Q) =r;—TI%,=0+(C,,—2C;)H:.

Consequently we can state

Theorem 3.1. The IMI"is a Matsumoto connection on M, determined by three
tensors T°,, Q" and C 7, in (3.40), (3.42) and(3. 8).

The original connection M/"is a Matsumoto connection determined by three
tensors T*,, Q) and C/,. The tensors induced on M, from the above tensors on
M, are T, Q2 and CS,. Therefore the intrinsic Mf*g)n M, is defined as the Ma-
tsumoto connection on M, determined by 7, Q7 and C;,. Ifwedenote thiscon-

nection by F=(7"" IE'"T, C ), then from (3. 40) ~(3. 42) we obtain

BY?*

(3.48), I =r<+c:i:,
3.43, Peo=Tc4pon B, —1(Gs —300 JH,

Consequently, because of (3. 43), and (3. 43), we can state
Theorem 3.2. The IMIis the intrinsic MI"on M,, if and only if the following

equation hold :

(3. 43), CiH =0, (CL-2C)H =0.
From (2. 11) we have

(3. 44) g,BLN.=0.

Differentiating (3. 44) h-covariantly by «"and using (2. 10), (2. 11) and (3. 21),

we obtain

%) This connection cannot be defined in the usual sense, So we define it as above.
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(3.45) g..B N, +6,H, +g,.B' . Ni=0,

aly

If we contract (3. 45) by g™ and successibly contract the result by B’ , then

)

we have

(3.46)  N',,=(NIN.,)N!—g"(g,,B' N\ +8,H.)B"

alr

Similarly, by differentiating (3. 44) v-covariantly by y", we obtain

(3.47) Ni,=(N:N.,)N'—g*(g,|,B' . N*+6,Cr)B".

bl
Contracting (3. 5) by B’,, from (2. 12) we have
(3.48) Dy’ =B’,Dy*+N,(N;Dy'), DX'=B' DX+ N!(N,DX").

[f we contract the first in (3. 3) by N7 and use (3. 13), then we obtain N{ Dy’
=Hdu". Therefore from the first in (3. 48) we have

(3. 49) Dy =B, Dy ~N'(Hdu").

Contracting (3. 4) by N7 and making use of (3. 14), (3. 15) and (3. 23), we ob-
tain N DX '=H(H, du + E:T Dy"). Hence because of the second in (3. 48),

8Y

DX 'is expressible in
(3. 50) DX'=B' DX +N:!X*(H" du' +CS Dy ).

The vector H; will be called the normal curvature vector in a normal direc-
tion N! . while the tensors H and E:Y will be called the second fundamental h-
and v-tensors in the same direction N'respectively.

FFor the later use, we shall give

Lemma 3.6. The following facts are mutually equivalent :

(1) The non-linear connection I"°, of IMIis the intrinsic one.

@) CoLi=0. (3) 2ChH +us HY=0.

) ChH,=C; 1.

Proof. It is easily seen from (3. 43), that (1) and (2) are mutually equivalent.
If we differentiate (2) by y", then from (2. 22), (2. 26) and (3. 38) we have (3).
Conversely, if we contract (3) by y°, then we obtain (2). From (3) and Lemma 2.
2 1t follows that (4) holds. Conversely, if we contract (4) by ¥ then we get (2)
and hence (3). 0O.E.D.
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§4. Various tensors on M, and the generalized Gauss-Codazzi equa-
tions. With respect to the IMI'=(I""

8T

5= FC'-:,), we can define the torsion ten-

sors, the curvature tensors and the mixed tensors.

Firstly, the A-torsion tensor 7', the he-torsion tensor P°, and v-torsion ten-

sor S are defined by

(4.1) B=t =T, P =,

1y _Pra.u ) S:r = Cnar . Cvan‘

The curvature tensor R °,, with respect to the induced non-linear connection I" s
defined by

(42) Ranrzarrna—anrnr'

which is called also the A( #)-torsion tensor.
Now we consider a scalar X(z*, y') on M,, which is also a scalar X(z* (37);B=,

y")on M, . Then for the X, the following Ricei’s identities hold :

(a) Xla\'r_‘}(frla =_“)(Inr Euv_XlaEnw!
(4.3) ) Xyplo=X[ou=—X,, 05— X, F"..

(€ Xl,|,—X,|,=-X],55.

Because of (3. 23) we have X|, =B', X|,and X,,=B", X,, + N. H® X|.. There-
fore it follows from (3. 18)~(3. 21), (3. 23) and the Ricci’s identities on M, that
both sides of (4. 3) are expressible in linear homogeneous expressions of X,, and

X|,. By comparing the coefficients of them we obtain

B, R+ N H.¥, =R\, BE+P", (B, H:~B', H:)N*
(a), )
+NINHHS,, —(Hy N+ HIN —B |y ),
(@) B.7,=7,Bn+Ci\BLH;~B,H)N!—N'(H —H,),
(4.4)
B, P, +N.H:C;=P| By+S, N H By —N"| H—(H: | —HL)N', |

(b) - N
B‘: C.:Y = ClrkB -;: i C.:T J\’I:: ¥

(g B =8 Br—(€)-CLIN",
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where R, =6, I, —8,I"" P =T, -r),,CL=C} —C/,, and the symbol
|y means the interchange of indices 8 and ¥ in the foregoing terms.

Note 4.1. ﬁ‘” is the curvature tensor on M, with respect to I'"*_ (or h()-tor-

sion tensor), while P*_and S.are the hz- and v-torsion tensors on M, respectively.
Secondly, the A-curvature tensor X%, the hw-curvature tensor Pe, and the

v-curvature tensor S °

s8Ya

are defined by
(a) E:m = (dﬂ 'r':r it F:v Ptaa =% Jd\) ER Ennc Et‘m '

(4.5) ) P2 =L, ~Bs +Br P,

ave arle aaly
(C) §:w = E;ﬂu + 6";7 Etatf -7 |d\

Lastly, the mixed A-curvature tensor R ', the mixed hv-curvature tensor

F/,,and the mixed v-curvature tensor S, are defined by

(@) R}, =[8,I},+T5 I —B |y]+CLR",,

Jar

(4 6) {bJ ;D:t = Fjiﬂl ¥ EJIV\B J'_ 5;: th- 2

(C) S’in:n = —C’jia!'r + HC_J"B E:T _ﬂ |’y >

where I"},and C, are defined by (3. 18) and (3. 20).

Then for a mixed tensor X! | the following Ricci’s identities hold :

(@) Xo.,—Bly=X,R), —X'R; —X. 7'~ X!k,

alaly

(4 ?) (b) X, |7"'1YH-,“,:X2 ﬁ.i‘m'_Xi F:BY'—X;H —C_;:Y*X;lcfﬁlv=

(C) Xila}'riig | Y:‘:’(i‘—gj‘m_"\’: Srotar _Xils:g-:v‘
Applying (a) ~(c) in (4. 7) to B*, and using (3. 21), we obtain

(a) BLIBET_ﬁly:BJu ﬁjiar*BlefR.:w _}]nb: ?ﬂt'rNi _alaﬂcﬁsavNi’
(4 8) (b) B:lalr _B:. Irln :Bjn;rs.:ﬂy -_‘B‘eﬁr:m _H:z ?:';r]"r: *—‘C—‘abe jﬁn.a'rNi-

(C) Bi |ery_ﬁ iy:BJa:ST:l‘uy_BirSutn—a:c :S::rNi

If we contract (a)~(c) in (4. 8) by B and use (3. 21), (3. 46), (3.47), then we
get
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(@) R =F 0, B+ [H o @ BLN 508" =8 |11

aar Jsy

(4.9) (b) P =B nBute {H,

a 8r J ar ﬂ'p?(gflJTB‘r! ‘;\T:+d‘hnacrif)
—Ch(gma BN+ 6, HS )Y,
() S =84, Bl +I[CL(g,,B.N:+8,.CL)g"—A|7].

Similarly, by contracting (4. 8) by N{ we obhtain

(a) R, B N=H.F ' +CER +[HS ,+N, NH:—8|y],

=

P, B\ N;=H;C,+CoP, +Ni |, N:H,

i

(4.10) (b) ) ™
+ Hf:ﬂ I r Bl Ar{;ﬂa "Vf C:r - Cacrd 1
(¢) S BIN{=CiS5+[N,|,N:CL+CL |, —8 |7].

The equations (4. 9) and (4. 10) are the generalized Gauss and Codazzi equa-

tions respectively.

If we calculate (4. 6) and use (4. 4), then we have
(a) R, =R, Bn+P, (B H,—BYH!)N+5, NN'H H:,

(4.11) (b} B =P B+ B,

(c) SJtm' = SJ‘.kh B;: ;
where fff“ =[a I+, I —k|k +5J'r Erm , ']5}‘“‘ =l — 'C’;‘h,k + E‘J‘t ﬁlh

Qi ol el ial]
and S:‘ K Cerln o CJ‘ik Crrc - k' h.

Note 4.2. R/, P/, and S/, are the h-curvature tensor, the he-curvature
tensor and the v-curvature tensor respectively on A, .

Applying (4. 11) to (4. 9), we obtain

je_‘nd’ﬂl’:gdtﬁ:ﬂ‘)‘:fR‘JikhBiL::+B;;{ﬁJlkl) (B*dH:_Bk-erﬁ)Aﬂ;
(a)
+SJJA'AN:'{V:H:I{$ }+[Hﬂ: (gjk*?B{)‘]\T: + J!:CHGCT)_ ﬁ ‘},] )
(4.12) B=p, B =F BEe LB BN
(b)

+ H:n (gml YBJ;TA;: + d\bc Fc_;a";)iaab‘r (ngFnB{t ‘,.V': + 6&:‘[:{:5)'

AP ==
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:gO'CSt :g B-“kh +[Fc~ail(gfkl?Bjﬂ'N:+d‘bC EJCY)_ﬁ|y]?

asy Jixn adsy

(c) S

asay

where E;m. =g, R/, ﬁ,m :gU;ﬁr and S,

Jkh Jikh

e

:gtrS

Jkh "

§5. Induced TM-connections. The induced Matsumoto connection IMI
is called the induced TM(resp. TM(O)-connection and denoted by ITMI (resp.
ITMT), if the original connection MI'is a TM(resp. TM(0))-connection. Then
from (1. 7), (3. 8) and (3. 36) we have

(5.1) Cr=Cr(resp.CL,=0), CZ,=C. B*=0,
(5.2) TS=T%=0, D2=0; =0.

Because of (3. 40), (3.42) and (5. 1) we obtain
(5. 3) T, =T —CiH,, 0n=08—CrLH (resp. Q% — 2C2 H" ),
which, by virtue of (5. 2), implies
(5.4) T6=T%=0, 05%=0s=0.

From Lemmas 3. 1, 3.3, 3.4, 3.5 and (5. 1) it follows that the ITMI (resp.
ITMI',) satisfies axioms (F1), (F2), (F3)(resp. (F3),), (F4) and (F5). Therefore,
taking accout of (5. 4). we can state

Theorem 5.1. The ITMI (resp. ITMI,)is a TM(resp. TM(0))-connection on
M, determined by the tensors ?"7 ; GJ"T and C 2, in (5. 3) and (5. 1).

We put
(5. 5), 1%, =0 BB

Then from (1. 7), (3.13), (3. 38) and (5. 5), we have
(5.5), H'=H'+T", H,=H".

Thereforeitfollows from (5. 1) and (5. 5), that the equations in (3. 43), reduce to

(5. 6) €l H.=0.

Consequently from Theorem 3. 2 we can state
Theorem 5.2. The ITMI (or ITMI,) is the intrinsic connection on M, if and
only if an equation (5. 6) holds.
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From (3. 9), (3.11) and (5. 1) we obtain

(5.7), Pot =B [BA 4T B, Fhefie s oo e
(57)2 y‘]‘l':'r:y‘]-':rZFOTZB:(BJY+PixB*7)'

If we denote the h-torsion tensors of ITMI", and ITMT by z.°, and 77, respec-

tively, then from (5. 7), we have

o

(5' 8) Tﬂa'r = TB“Y = TJ‘PA‘ B:’:J: ) ’i:ﬂu'l' = %.:;‘ + (Cnab H:’ = c':b [:[:) :

Differentiating T'"?in (5. 3) by »°, from (2. 20), (2. 21), (2. 27) and Lemma 2.
2 we obtain

(5.9) T =T%,=T,+2CA T, —(2C H +p’° H’),
where 7', =T, B{,,. Similarly from (3. 37) and (3. 39) we have
(6.10) G =G, =I7+2C; B +(2C7 B2 +ps, HY),
where G, 1s the intrinsic A-connection of Berwald.
In this case, itis easily verified from (5. 3), (5. 9) and (5. 10) that
Gﬂa'f + a’_;.t’a')’ + E:‘T = ]-'ﬂaT {resp' Iﬂ_‘ﬂn'r) i
We shall denote the induced connections on M, from BIT HIT RT and CI'by
IBI, IHI IRI'and ICIT Then from (1. 8), (3. 36) and (5. 3) we have
(5.11) T* =—C"H foranyof IBI' IHI' IRand ICT"
(a) 07 =—2C~H:, C* =0 for IBT

@) Os=—cCri, Co=C* forIHT

ar

(5.12) _ o
(C) Q:r:iP:Y_QC:oH:' C:.,ZO for IRT,

(d) 8f=—Pr,—CrLH, C°=C" forICT

a i ajk
where P, =P/ B

iar

Differentiating (5. 11) by 1", we have
(5.13) Te =902 H*—y H,

From (5. 10) we get
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(5.14) Fr=GL—BCLH +C° He)—pe H°

We shall denote the A-connections of IHI" IRI™and ICI'by ]L";'T , 1", and IC":,
respectively. Then it follows from (5. 12) and (5. 13) that
(5.15) P =G —(CL B+ 202 B pn B,
(5.16) I =G —(P5+2C5 H)+ 205 B +po, B%),

(.17 L =Gr—(Pa+CAH + 20 Bt v pn, ).

ar

Thus taking account of Theorem 5. 1 and Theorem 5. 2, we can state

Corollary 5.1.1. The induced typical connections IBI, IHI IRT and ICT are
TM(or TM(0))-connections on M, determined by tensors FY'"” Q,",arzd Crin(5. 1 1) and
(5.12), and their h-connections are expressible in (5. 14) —(5. 17), while the their non-
linear connections are commonly equal to I" ",. The above four induced connections are
the intrinsic connections on M, respectively if and only if the same-equation C.. 1 G =
0 holds,

We shall call the ITMI the induced RTM-connection if the original TMIis
an RTM-connection, and denote it by [RTMI”

Since an RTMIis an h-metrical TM-connection, it follows from Lemma 3. 2
and Theorem 5. 1 that the IR TMIsatisfies axioms (F2), (F3), (F5)and (F6), that
1s, itisan RTMI"on M,. If we put

Qv =82 Qs+ Loy =0pp—0
asy — B ae ar? eay ~ aay Bay *

then from (5. 3) we have

(5.18) Zaay = Z:nB“k Z i :Qu« _Qh‘k'

asy !

where O, =g, Q/,. Since Q,, =0,, =0, it follows from (5. 18) that Z . +

@AY

Zm =0 and Z"’f—o‘,,:zm =0. Therefore, taking account of (1. 10), we obtain
(5.19) I =I*%—CrT+%8"(Z o+ T — T )

where I'*" is the intrinsic A-connection of Cartan and f (e P
Thus we can state
Theorem 5.3. Theinduced connection IR TMIis an R TM-connection on M, de-

termind by tensors T“;, —Zuw(in (5.3), (5.18)) and C 2, and the h-connection is ex-
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pressible in (5. 19).
In case of ICTI, it follows from (1) in (1. 11), (2. 29), (5. 9) and (5. 18) that

(5. 20) o= =00l =0 O, O IS,

(5.21) T =—C'H: Z.  =0.
Applying (5. 20) and (5. 21) to (5. 19) and using Lemma 2. 2, we obtain

B =% e U e W G Y, P mpl,
(5.22) ,

Uﬂa'f == (Cﬂad C;’T + C':ﬁ Cbaﬂ ) Cﬂa'f Cbnﬂ)If‘:?’

If we denote the hwv-torsion tensor with respect to the intrinsic Cartan connec-

tion by P*' | then from (5. 17) and (5. 22) we have

2 *:?‘: G:\- e *:'r
(5.23) , " f ,

=P\ +C H,+C H,+C, . H*"+ U +pu’ H,.

Applying (5. 23) to (5. 16), we obtain
(5' 24) 4 IT'HET ZF*IJGY + Uﬂa'f + Cﬂ'l'b Ib ba_ Cﬂuﬂ ﬁ"; i C'fnbfb]: N

Thus we can state
Corollary 5.3.1. The ICI is an RTM-connection on M, determined by tensors
?“,, FZ—m(in (5.21)) and C ', and the h-connection is also expressible in (5. 22).  The
ho-torsion tensor P*] with respect to the intrinsic Cartan connection is given by (5. 23).
The h-connection of IRI" is also expressible in (5. 24),
Note 5.1. The A-connections (5. 14) and (5. 15) are also expressible in terms
of I"*’ by means of (5. 23).
From (5. 22) and Lemma 3. 6 we can state
Corollary 5.3.2. For ICT", I'",=G",and Icw,f',, =I"*" il and only if any one
of facts (1) ~(4) in Lemma 3. 6 holds.
Note 5.2. Since the he-torsion with respect to CI'is given by P/

Jok?

the hz-
torsion tensor with respect to the intrinsic Cartan connection should be given by
P* =P7 . Inthis case, we have C, f]'; =0 from (5. 23).

For the induced [S-connectiog,J it follows from (b)in (1. 11), (5. 3), (5.9) and

8) The IMI" is called the induced IS-connection if the MI™ is the IS-connection.
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(5. 18) that
(5.28)  T4=T%-CAH Z, =0 C:=C/f

ar?t

Lt T

aay i

Y + Q(Cuad Td.‘, + Cusb Tb? + P

asy

): 0 ?
(5. 26) N h .,
Tﬂd“)’ = Y:’lf'l’ -I— chﬂh Th? - 2CYU‘b H: _#bd‘ﬂY Haﬂ '

If we denote the A-connection of the above by }L';,. then from (2. 29), (5. 19),
. 25) and (5. 26) we obtain

—
[S0]

(5.27) P =T L P2 O T 46, B~ B 0

Consequently we can state

Corollary 5.3.3. The induced IS-connection is an R TM-connection on M, de-
termined by tensors ?", , —Ziw and F(f:? in (5. 25) together with (5. 26), and the h-con-
nection is expressible in (5. 27).

Note 5.3. Inview of (5.22), (5.27)is changeable to
(5' 28) ]L'ﬂn'f :]E'ﬂn'f + TSGT + .ﬂaT + cﬂub T: -
9
For the induced AMR-conneclion,) from (c)in (1. 11), (5. 3), (5.9) and (5. 18)
we obtain

T, =Tk ~C  H, €= =02,

ay

(5. 29) 3
Zan:E(}_‘lnha'r _flchm‘)'

where fis the scalar induced on M, from fon M, and 4%, =87, —1°[_,

¥ ¥

Ty = b b, —d b, 04 EF, h,,
(5. 30) ,, n
+ gc'nm H: _Fwﬂr I{:

Applying (5. 29) and (5. 30) to (5. 19) and using (5. 22) we have

(5. 31) B = I e Pl W=k D6 §,

Hence we can state
Corollary 5.3.4. Theinduced AMR -connection isan R TM-connection on M,, de-

termined by tensors T",(, Zm and E:, in (5. 29), and the h-connection is expressible

9) The IMI" is called the induced AMR -connection if the MI™ is an AMRI"
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in (5. 31).
We shall call the ITMI" (resp. ITMTI",) the induced STM(resp. STM(0))-con-
nection and denote it by ISTMI (resp. ISTMTI,), if the original TMI (resp. TM

Iy )is h-symmetric. In this case, from (5. 8) we have

(5.32) L=, Tl =Cig eiag"

8r

which implies that the tensor 7, vanishes if and only if the following holds :
(5.33) CLH =C:H®

Contracting (5. 33) by ¥", we obtain C,’, I—?'; =0. Therefore it follows from
(5. 33) and (4) in Lemma 3. 6 that the equation (5. 33) holds if and only if the fol-

lowing equations hold :
(5. 34) o Hi=0, CE T =02 T,

Consequently we can state
Lemma 5.1. The connection ISTMI'is an STMI on M, if and only if (5. 34)
holds.

The A-connection in (1. 15) is expressible in
(5 35) FJ‘& = G.f‘g + Tj‘x (:% Qiou )_i- QJ‘;— ’

where O/, =2(Q/ +0 ')+ 4( fore — Qiors ). Then we can state
Lemma 5.2. The tensor O, coincides with Q}, if and only if

(5 36) _:,(_ :_,=%(Q;g“_Q:ﬂ”).

We shall call an STMI(resp. STMI',) an S, TM(resp. S, TM(0))-connection
and denote it by S, TMI (resp. S, TMTI', ), if it is determined by a tensor Q/, satis-
fying (5. 36). In this case, the induced connection on M, from the above will be
denoted by IS, TMI(resp. IS, TMI,).

Note 5.4. The connections CI', HI", AMBI" and AMCI are S, TM-connec-
tions, while the connections RI", BI', AMBI, and AMCT, are S, TM(0)-connections.

Hweput Q), =0/, B N, then from (2. 20) we have

(5. 37) Qi B =0, =20 0.

Let the IS, TMI"be h-symmetric. Then it follows from (1. 14), (5. 5):, (5. 14);
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(5.35), (5.37), Lemma 3. 6 and Lemma 5.1 that the h-connection is expressible in

P:rzfnar +(%Qiou +-Qilk)B:i:+C:bH:
(5. 38)
=Gaa1+1/2Q7:|n+Q:7!

where 0, =Q,,— Cf (H! +20.,)=0/, —CL Ho and D2, = 0,
From (5. 34), (5. 36) and (5. 37) we obtain

(5.39) Q;,._QTD,,=}§(QZOIY_' :ou..)-
Then, from (3. 30) and (5. 39) we get
(5. 40) 0y =05 =2 (Qoory — Qoora) =% (T — Olens ).

Consequently, in view of (5. 40) we can state

Theorem 5.4. If the induced connection IS, TMI” is h-symmetric, then it is an
S.TMT on M, determined by a tensor Q°, in (5. 38).

For the induced AMBI (or AMC]"I)O,) from (1. 18), (2. 11) and (5. 5), we have
T7,=0. Therefore from (1. 16), (1. 17), (5. 38), Lemma 3. 6 and Lemma 5. 1 it
follows that
(6.41) Q& =27k, ~LF, b, -CoH,

B , for IAMBI
(5.42) F =G+ fLA+ 1, b~ 1"h,)—C. B,

(5. 43) Do =81 F, = LR M~ Bhpe.
for IAMCI
(5. 44) Ly =T% + FL b+, h — 1, ).

Hence we can state

Corollary 5.4.1. If the induced AMB(resp. AMC)-connection is h-symmetric,
then it is an S,TMI" on M, determined by a tensor Q;:y tn (5. 41 )(resp. (5. 43)), and the
h-connection is given by (5. 42) (resp. (5. 44)),

From the first in (5. 32) it is seen that the ISTMT, is h-symmetric. In partic-
ular, for the IS, TMTI", we put

(545) éaHTZQnGT_QCng ];r:f-c:a-Q?bU'

10) The IMI" is called the induced AMB(resp. AMC)-connection if the MI™ is an AMBI (re-
sp. AMCT),
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Then the h-connection is expressible in
I =T + B 0 Bt By
(5. 46) B B

= G:v -I_%Q:ﬂlﬂ + Q:'r-

Further it is proved that the following relation holds :
5.48) 05 =05 =% (Tionr— Dns).
Consequently we can state
Theorem 5.5. Theinduced connection IS, TMI", isan S, TMI",on M determined
bya tensor O in (5. 45). i)
For the induced AMBI, (or AMCT,), we have also T°, =0. Therefore, as

before we obtain

(5. 49) 0 =2FL &, —LT, k" —=2C L H:,

for IAMBI,
(5. 50) rE = b TR LR TR,
(5.51) 0 =of1 k" —LF, k', —P,~2C. K,

for IAMCT,
(5. 52) e = i h LA —1h,,).

Hence we can state

Corollary 5.5.1. The induced AMB (0) (resp. AMC (0))-connection is an S,T-
MT, on M, determined by a tensor Q-,g°, in (5. 49) (resp. (5. 51)), and the h-connection
is given by (5. 50) (resp. (5. 52)).

§ 6. Induced TMD-connections. The induced connection IMI" is called
the induced TMD(resp. TMD(0))-connection and denoted by ITMDI (resp. ITMD-
I,), if the original connection MI"is a TMD(resp. TMD(0))-connection. Then

from (1. 21) and (3. 36) we have
(6.1) C=Cr(resp.CL=0), D°,=D',B =0/ B,
(6.2) Ti:Toozo‘ Dav+anv:O’

where Q,,, =0Q2.and D, =g, D", .

11) The IMI is called the induced AMB(0) (resp. AMC(0))-connection if the MI" is an AM-
BI (resp. AMCI).
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As before we ohtain
(6 3) ?ﬂvaarmcrnaf?:! E:vzg:v—c:bH: (F'E.SP. Q:,—QC:&H:).

Applying (6. 1) to (3. 28), we have 5°,=D"7. Therefore it follows from (6. 2)
and (6. 3) that

{64) ng?aﬂ:O‘ EHT+§50Y:O'

Consequently by virtue of (6. 4) we can state
Theorem 6.1. The ITMDI (resp. ITMDI,) is a TMDI(resp. TMDI,) on
o in(6.3) and (6. 1).

ay

M, determined by tensors T*,, O and C

In the above case, the relations (5. 5), and (5. 5), are still valid. Therefore
we can state

Theorem 6.2. The ITMDI(or ITMDI,) is the intrinsic connection on M, if
and only if an equation C;, H =0 holds.

The connection IMI'is called the induced STD(resp. STD(0))-connection and
denoted by ISTDI(resp. ISTDI, ), if the original connection MI™is an STDI (resp.
STDI,). Thenitfollows from (1. 22) that the A-connection I":,(resplg':,) is given by

e =t ot T W, o< cwe

Ay a8y

(6.5)
H;na‘r - (ijr T"‘ - C;r Trk - Ck‘r TYI )Baﬂ‘

far

In this case, the non-linear connection is commonly given by I™? = G4 T,
The tensor T“ysatisﬁes T =T" =0 because of (6. 4). Therefore by means of
this tensor, an STDI"(or STDI,)on M, is uniquely determined. If we denote

the A-connection of this connection by I"” | then according to (1. 22) we have

(6. 6) A R S LA

where T =g™ ™
We shall call the above connection I'= (?:,. I, C(resp. (0))on M, the sem-
i-induced STD(resp. STD(0))-connection and denote it by fSTDF(resp. fSTDP‘, ).

For the later use, we shall give the following relations :

(6' 7) (Cjk?Tr£ )B:!j: =CBYE T‘"+Cdﬁ’b T"a‘
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(6 7) (c_’t'f TTR )B:‘;: = Cﬂqf Tc'f + Cﬂab Tb'f ?

(6.8) C,=C,—-3C,,. T=C" -2C;

bbb

where T*=¢g" T°,, C,=C,,,g"and C,=C, B*.
If we apply (5. 22) and (6. 3) to (6. 6) and make use of (6. 5) and (6. 7), than we
obtain

Faur ZF:r i Cvab HZ i Can H*
(6.9)
:ﬁnav+cnab EI:_{_C::: I[:-C Hb“'

Brh

where H* =H!g".

For the sake of brevity, we shall say that the IMI" is simply intrinsic if it is
the intrinsic MI"on M,,. Further we shall say that the fSTD]"{resp. ISTDr)is in-
trinsic if it is the intrinsic STDI (resp. STDI, ) on M,,.

Since the intrinsic STDI (or STDI, ) is an STDI (or STDI,) on M, determin-
ed by the tensor 7", the h-connection I" ", of this connection is, because of (1. 22),

given by

(6 10) f:v = P*;;,"f- WT‘( B Wﬂi = C.w: T C:: Tcy = C:c T*

Therefore it follows from (6. 6), (6. 10) and the first in (6. 3) that I, =G", +
T° and I'f, =T'°, if and only if [P H:=0. From (6. 9) and the second in (6. 3)
we have

(6 11) anrzfaay_]—mylnzg:)‘_*-C:hI{:_c:tha‘

which implies that @, = Q. if and only if C, H’=0.
Since the latter C,, H; =0 implies the former C ", I;(';: 0, we can state
Lemma 6.1. The fSTDI’( or fSTDI"D) is intrinsic if and only if an equation
C,) H, =0 holds.
It follows from (6. 9) that I",", = I'" if and only if
(6.12) o B =0 H:.
and that I, :]Q',,", ifandonlyif C, ,H,=C,, H.—C,, H! whichisequivalent to
(6.13) el H.=0.

sh
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Hence, from Lemma 6. 1 and (6. 12) we can state

Theorem 6.3. The ISTDI coincides with the ISTDI" if and only if the ISTDI”
is h-symmetric, while the ISTDI" o coincides with the ISTDI, if and only if the Jsrn.
I, is intrinsic.  Any one of the connections ISTDI, ISTDI,, ISTDI and ISTDI o 15
intrisic if and only if the same condition (6. 13) holds.

The induced connection ISTDI(resp. ISTDI,) is called the induced AMD
(resp. AMD(0))-connection and denoted by [AMDI (resp. IAMDI,), if the origi-
nal connection STDI (resp. STDI,) is an AMDI (resp. AMDI',) on M,. Similar-
ly the semi-induced AMD(resp. AMD(0))-connection fAMDI'(resp. EAMDFO) can
be defined. In this case, it follows from (1.23), (6. 5), (6. 9), (6. 10) and (6. 13)
that

(6.14) T =FfLk,, T =0,

b

(6. 15) r=r.+fCn, H =1,

r T

©.16)  In=rFr-FLcy, re=r4—FLcy, Io=r+,—FLC:,

6.17  Tn=Fi-FLc:+com+cibt—c, b,

Hence we can state

Corollary 6.3.1. With respect to the connections INMDIT, IAMDI,, IAMDI®
and fAMDPO, the following facts hold -

(a) The non-linear connection is commonly given by (6. 15).

(b) The h-connections are given by (6. 16) and (6. 17), provided that the third in

(6. 16) is the intrinsic h-connection.

(c) Each connection is intrinsic if and only if C [, i =0

The induced connection ISTDI (resp. ISTDT, ) is called the induced CD(resp.
RD)-connection and denoted by ICDI'(resp. IRDI), if the original connection S-
TDI(resp. STDI,) is a CD(resp. RDIN on M,. Similarly the semi-induced CD
(resp. RD)-connection fCDP(resp. jRDf‘} can be defined. From (1. 24) and (1.

25) we have
(6.18) T =_}T_3C"CY‘ T”,,szCT“C? =0t ),

(6.19) r=r+7ocec,, H:=B+Fl'C'C,.
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By virtue of (6. 10) and (6. 18), the intrinsic A-connection of the four connec-

tions is commonly given by

(6. 20) e =r++w:, K wWs=FfC,.C—-CLC,—C:C,I)C".

sy

From (6. 5) and (6. 9) we obtain

oy me, pe=pra W4 FEC,, C"—CL4E, )6",

ar? T

(6.21) N
W= A PO O B3 6, G50, )T,

(6. 22) Ti8 e P LTS 08 372 000 b

Hence we can state
Corollary 6.3.2. With respect to the connections ICDI", IRDI, fcor and IR-
DI, the following facts hold :
(a) The non-linear connection is commonly given by (6. 19).
(b) The h-connections are given by (6. 21) and (2. 22), while the intrinsic h-con-
nection ts given by (6. 20).
(c) Each connection is intrinsic if and only if CL,H:=—fL*C% C*C,.

Now we consider a tensor 7°, on M, defined by
6.23) T =F*C°C,.

Then from (6. 8) we have T°=T",=0. Therefore an STDI (resp. STDI,)
on M, is uniquely determined by this tensor 7°,. This connection is defined as

{ollows :

(6. 24)
PR L THC

ar ar ! 6:’_0:567_6‘::611)65'

Are

We shall call the above connection the naturally intrinsic CD(resp. RD)-con-

nection. From (6. 8) and Corollary 3.3.2 we can state
Corollary 6.3.3. The ICDI (resp. IRDI) is the naturally intrinsic CD(resp.
RD)-connection if and only if the following equations hold -

(6. 25) crLH'=—fF’CrC*C,, ¢"C,,=0.
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The above fact is also valid for the [CDI(resp. IRDI").

The induced connection ITMDI (resp. ITMDI,) is called the GOD(resp. GO-
D(0))-connection and denoted by IGQDI (resp. IGQDTI,), if the original connec-
tion TMDI'(resp. TMDI,)is a GQODI'(resp. GODI,). In this case, we have T =
0 and H = If[:: Therefore from (6. 1) and (6. 3) we have

;j;f-; = = C:a }b]: ] édur = C:V (resf). a:f = O)‘
(6. 26)

Qr=08—CLEY (resp. 02,=0Q7,—2C2 I*).
From (1. 28) we obtain

r=1=6%4T,, W5=05+P5,
(6.27) o r ¢
b =Ty ¥ Wi T=d W+ W
Hence we can state
Theorem 6.4. The IGODI (resp. IGQDI,) is a TMDI( resp. TMDI,) on M,
determined by tensors Ti, nQ; and E; in (6. 26), and the non-linear connection and
the h-connection are given by (6. 27). Each connection is intrinsic ifand only if C 7, -
i =0.
The IGQDI (resp. IGQDT,) is called the induced MD(resp. MD(0))-connec-
tion and denoted by IMDI(resp. IMDI",), if the original connection GQDI(resp.
GQDI,) is an MDI'(resp. MDI",). From (1. 29) and (6. 27) we have

6.28)  fr=rc+F0,00—1,,) I*=F 1o B,

Hence we can state

Corollary 6.4.1. With respect to the connections IMDI, and IMDI, the follow-
ing facts hold .

(a) The h-connections are given by (6. 28).

(b) The IMDI” is h-metrical.

The IGODI (resp. IGQDI") is called the induced HD(resp. BD)-connection
and denoted by IE’DP(resp. IBDI'), if the original connection GQDI (resp. GQD-
I')isa ffo'(resp. BDI ). Then we can state

Corollary 6.4.2. With respect to the connections IHDI” and IBDI", the Jollow-
ing facts hold :
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(a) The IHDI" is h-symmetric if and onlyif C, Iffr, =0,

(b) The IBDI is h-symmetric,

The IHDI(resp. IBDI') is called the induced HD(resp. BD)-connection and
denoted by IHDI(resp. IBDI"), if the original connection EDI’(resp. BDIM)is a
HDI'(resp. BDI"). Then, because of (1. 30) and (6. 27) we can state

Corollary 6.4.3. For the connections IHDI" and IBDI", the h-connections are
given by

(6.29) In=lt40:, fo=I=4107

wherefd S =F LWL CF0 LU0~ 0. 6.5

The [HDI(resp. IBDI") is called the induced AMBD(resp. AMBD(0))-con-
nection and denoted by JAMBDI (resp. IAMBDI,), if the original connection is
an AMBDI (resp. AMBDI,). The above definition and notation will be applied
to also an AMCDI (resp. AMCDI,).

From (1. 31), (1. 32) and (6. 27) we can state

Corollary 6.4 .4. For the connections IAMBDI (resp. IAMBDI,) and IAMC-
DI(resp. IAMCDI,), the h-connections are respectively given by
6.30)  I=I7+0Q) fr=I%+0p,
6.3)  I=rn+0r, =1+ 0.,

where Q. = (1, 0% +1,k"—1"h ).

§ 7. Special subspaces. In this section we shall be concerned with vari-
ous special subspaces. Let us first consider a curve C: ¢" = u"(s)(s:arc-length)
in M,. Since z* =a'(«"(s)) along C, the unit tangent vector is given by dx* /ds
=1'=B',(du"/ds)=B',l°. Then from (3. 49) we have

(7.1) Dl'/ds=B', (@' /ds)+ N' (H du’ /ds).

Since DI',/ds=0and DI’/ ds=0 are equations of paths with respect to MI”
and IMI" respectively, it follows from (7. 1) that each path in M, is a path in M, if
andonly if H:=0(a=m+1, ...., n).

We shall say that M, is a totally auto-parallele subspace (or simply totally aw
to-parallel) with respect to IMI"if each path in M, with respect to IMI" is also a
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path in M, with respect to MI".

Then we can state

Teorem 7.1. With respect to the induced connection IMT', the following facts
are mutually equivalent :

(1) A subspace M, of M, is totally auto-parallel.

(2) The normal curvature vector H® in each normal direction N i vanishes identi-

cally.
(3) The pair (I, I7,) has the (H)- property, namely

(7.2) By, =B, +I'B,=0 ([21) [34]).

(4) The two tensors fbf_,"T(I NiB,+G; B and T (=N* T/ B2 are relat-
ed by

(7.3) B 4T =0,

Proof. Itis clear that two facts (1) and (2) are mutually equivalent, If H) =
0, then from (3. 22) we have (7. 2). Conversely if we apply (7. 2) to (3. 13), then
we obtain #7=0. Next, if we differentiate (3.13) by ¥, then from (1. 3), (2. 22),
(3.12), (3. 14) and (3. 15) we have

(7.4) Hyy=(Ay,—C )H+H;,—Q}, (QF,=NQLB2).
On the other hand, the tensor H, is expressible in
(7 5) H:r:}?uﬂv + T:v_}-Q:?_i—E:aH:'

If 3 =0, then it follows from (7. 4) and (7. 5) that the condition (7. 3) is sat-

isfied. Conversely, contraction of (7. 3) by »* veilds
Y+ Ti=Hi=g Q.E.D.

Note 7.1. Intheabove Theorem, the second fact H% =0 implies H' . =0,
because of (7. 4). However the latter does, in general, notimply the former.

Next we can state

Theorem 7.2. LetM, beendowed with a geo-path connection M. Then the in-
duced connection IMI" is also a geo-path connection on M,. With respect to this IMT,

the following facts are mutually equivalent :
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The subspace M, of M, is totally geodesic.
H:=0(a=m+1,.... , ).

)
)
3) Thepair (I, I') has the (H)- property.
) [

Ho=T,=0(a=m+1,...., n).

5) The second fundamental tensor H, in each direction N is given by
(7.6) Hi =107

provided det (6%, + Fé,,‘:, 130,

Proof. Taking account of Lemma 3. 5, we can prove in the same way as be-
fore that the facts (1), (2) and (3) are mutually equivalent. Since the MI'is a geo-
path connection, we have T, =0 and hence T° =0. Therefore =0 implies
I;T‘}, =0, differentiation of which by y" yields I;T: =0. Further, hy differentiating
this by ¥* we have I;’:,,:O. Hence from (7. 3) we get 77, =0. After all we have
(4). Conversely, contraction of (4) by y” yields Iif: =T" =0 and hence H: =0.
Lastly if (2) holds, then from (7. 5) and (4) we have (7. 6). Conversely, suppose
that (7. 6) holds. Then from (7. 5) we obtain

(7.7) HY4T% % =y,

contraction of which by y"v" yields I‘b[‘l‘, + ED“b I;Tf, =0. Since det (8°, + PC?;,J )30,
this equation implies H%=0, Hence as before we have bei =0. Therefore, con-
traction of (7. 7) by y" yields T,,¥" =0. On the other hand, if we differentiate T
vy*=0 by y’ then we have T/, y*+ T, =0, which implies T",y"+ T% =0. There-

fore we get T, =0. Consequently we obtain H =Ibf: + 7%, =0. Q.E.D.

K

From Theorem 3. 2 and Theorem 7. 2 we can state

Corollary 7.2.1. Let M, be endowed with a geo-path connection MI".  Then
any one of the five facts (1) ~(5) in Theorem 7. 2 is a sufficient condition for the in-
duced connection IMI to be intrinsic.

Proof. The second fact //, =0 implies ﬁ'; =0. Therefore the condition (3.
43), holds. Hence the IMI"is intrinsic. 0.E.D.

Note 7.2. Connections TMI", TMI',, TMDI" and TMDI, are all geo-path
connections. Therefore, for the induced connections on M,, from the above con-
nections, Theorem 7. 2 and Corollary 7. 2. 1 are valid. In these cases, we have
always det ( d°, + Ef,,“b )=det(d%)=1.
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Next we shall consider a curve C: «* =u"(s) in M, endowed with a vector
fields y°(s). Since 2' =2* (u"(s)) along C, we have y' =B’ y°(s) and dz'/ ds=
B',du’/ds. Then it {ollows from (3. 49) and (3. 50) that

Dy/ds=B' (Dy'/ds)+ N\ (H:du'/ds),
(7. 8) D(dx'/ds)=B', \D(du’/ds),/ds} + N { HZ (du’/ds) (du’/ds)
+C o (du’/ds) (Dy/ ds)} .

The curve Cis called an h-path in M, with respect to IMI if it satisfies Dy>/
ds=0 and D(du’/ds) /ds=0, while the C is called an h-path in M, with respect to
MI"if it satisfies Dy /ds=0 and D(dx'/ds) /ds=0. We shall say that M, isa to-
tally h-auto-parallel subspace (or simply totally h-auto-parallel) with respect to IMI if
each h-path in M, with respect to IMI" isalwaysan h-pathin M, with respect to MI"
From (7. 8) we can state

Lemma 7.1. M, istotally h-auto-paraliel with respect to IMI" if and only if the

Jfollowing equations hold
H=0, (H, +H,)=0(a=m+1,...., n).

From Theorem 7.1, Lemma 7.1 and Note 7.1 we can state

Theorem 7.3. With respect to the induced connection IMI", M, is totally h-auto-
parallel if and only if M, is totally auto-parallel and the tensors Q ° (a=m-+1, . ...,
n) are skew-symmetric in 3 and Y.

By virtue of Theorem 7. 2 and Theorem 7. 3 we can state

Corollary 7.3.1. Let M, be endowed with a geo-path connection MI".  Then
with respect to IMI", M, is totally h-auto-parallel if and only if M, is totally geodesic
and the tensors Q' (a=m-+1,...., n)are skew-symmetric in 3 and .

Note 7.3. Let M, be endowed with an MI"satisfying Q. =0or Q,, + Q)
=0. Then with respect to IMI", the following facts are the same : (a) M, is total-
ly h-auto-parallel. (b) M, is totally auto-parallel.

Further if the M7 is a geo-path connection, then the facts (a), (b) and the fol-
lowing fact (c) are the same : (c) M, is totally geodesic. As the practical examples
of the latter, we have BI', HI" and IS etc.
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We put
Ry XX

(7.9) o o £, Ealu—Ey gy y XX

where R, is the A-curvature tensor with respect to MI".  Then we shall call R(z,
¥, X) the sectional curvature defined by y' and X' with respect to MI". Further we
shall say that M, is of scalar curvature R or of constant curvature R with respect to
MT" according to whether the sectional curvature is independent of X* or it is con-
stant.

Similarly we shall apply the above definitions to M, with respect to IMI". 1f

a

we contract (a) in (4. 12) by y*y”, then we have

anm:k’othx+'§on.~.B(‘1N:N:H; H:
(7.10) + BN (P Ho— B BEH. )+ H (g, BN+ 68 HE )
_H;r(gfrlnyﬂBld—l- d‘uaH:D.)-

It follows from (7. 9) and the definition that M, is of scalar (resp. constant) cur-

vature R with respect to MI"if and only if the following holds :
(7 1.1) 13 (fi’-om +E0ho,):L2 féhm (resp. R: constant ) .

Suppose that 7 =0. Then from Note 7. 1 we have H,, =Q,, =D N:B*
=D",. Therefore we shall say that M, is totally auto-parallel with vanishing D
with respect to IMI" if the second fact H; =0 (a=m+1, ...., n)implies D* =0,

In this case, if (7. 11) holds then from (7. 10) we obtain

(701, Y% (R ooy + Ropo, )=L*Rh,,.

In view of (7. 11), we can state

Teorem 7.4. IfM, isof scalar(resp. constant) curvature R with respect to MI”
and M, is totally auto-parallel with vanishing D with respect to IMI", then M, is also
of scalar ( resp. constant) curvature R with respect to IMT.

Further we can state

Corollary 7.4.1. LetI" be any one of the following connections :

TMI", AMDI', MDI', AMBDI", AMCDI,
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and the five corresponding connections with I,. Then if M, is of scalar (resp. constant)
curvature R with respect to I" and M, is totally geodesic, then M,, is also of scalar ( resp.
constant) curvature R with respect to the induced connection I

Proof. A TM (or TMI,) is dft-free, namely D, =0. For the remaining
connections, we have D', = fLk* (or — fLh* ). Therefore, in any case we have
D", =0. The above connections are all geo-path connections. Q.E.D.

It is known [28] that the Weyl tensor W ‘.» vanishes if and only if M, is of sca-
lar curvature with respect to BI".  We shall say that M, is W-flat if the Weyl tensor
vanishes.

BI' is a special TMT, and hence a geo-path connection. Therefore by vir-
tue of Corollary 7. 2. 1 and Corollary 7. 4. 1 we can state

Corollary 7.4.2. If M, isW-flat and M,, is totally geodesic, then M, is also W-
flat.

We shall say that M, is D-flat if the Douglas tensor D/, vanishes. Then we
can state

Lemma 7.2. IfM, is D-flat and M,, (n>>m>2) is totally geodesic, then M, is
also D-flat.

Proof. From D-flatness on M,, the hv-curvature tensor G [\, with respect to

BI'is expressible in
(7.12) Gr=0"'G o, +6'G,, + ¢, G, +8'.G, Vn+1),

where G, =G/,,and G,, =G

JKi*

Since M, is totally geodesic, the induced connection IBI"is intrinsic. There-

fore the A-connection is given by
(7.13) G,,=B%(B,) +G,B).
If we differentiate (7. 13) by ¥” and take account of ];T:, =0, then we have

=GJue=2C/H,,+G,\, B =G/, B

Jdkh igre Jkh iars

(7.14) E
Substituting (7. 12) into (7. 14), we obtain
(7.15) Grw=0"G,n,+8°G,, +6°G,, +6" G,V (n+1),

where G,, =G, By. The tensor G, is (—1)p-homogeneous in ¥*. Taking ac-
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count of this fact and contracting (7. 15)in @ and &, we have
(7.16) G, =Gl =(m+1)G, /(n+1).
Applying (7. 16) to (7. 15), we obtain
Gre=0"Gri+03G, + 835, +8.G ) (m+1),

which shows that M, is also W-flal, Q.E D,

It is said that M, is projectively flat if M, is both W-flat and D-flat. Then,
from Corollary 7. 4. 2 and Lemma 7. 2 we can state

Theorem 7.5. If M, is projectively flat and M, (n>m >2) is totally geodesic,
then M, is also projectively flat.

Let us now return to (7. 1). Wesshall call DI'/ds, B* (Dl /ds)and N ‘( H du’
/ds) the absolute curvature vector, the relative curvature vector and the normal
vector, of the curve C, respectively.

If du®=v"(ds”L), then the following relation holds :

Mo(u®, du®) _ Hi(u', y*)

(717, H(u®, du’/ds)duyds = T, ')~ T 5

In particular if H,, =, then (7. 17), is also expressible in

H' (u°, du®)du’du’ _ Hy(u", y°)

(7.17), H i ds = o e e ™ = Tou o

In view of (7. 17), and (7. 17), we put
(7.18) Ne(u®, »Y=H3u", y° )L (4%, 3" ).

In this case, the square of the normal curvature N{«°, ¥*) in v*-direction at a

point («") of M, is given by
(7.19) N*(u®, y")=6,N°N".

Therefore N*is the N ,-component of N. This is the reason why H * is call-
ed the normal curvature vector in a direction N..
In the following, we assume that M, is endowed with a geo-path connection.

Then we have
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(7. 20) T =0, Hy=H.=N*(B/},+2G").
If we put
(7.21)  QL=1H,.
then from (2. 22) and (7. 2) we have
(7.22) @ =Hn (AL B+ A )+ A+ A1),

We shall call 27, the second canonical Sundamental tensor in a direction N,
Next we shall say that a scalar C( «°, y*)on M, is direct-free if it is independent
of ¥, namely C,, =0.

We shall call a point (1) of M, an ned-free point or an nc-constant point ac-
cording to whether the normal curvature N(u®, ") at the point («°) is direct-free
or constant. Further we shall say that M, is totally ned-free(resp. ne-constant) if
every point of M, is an ncd-free (resp. nc-constant) point.

Note 7.4. An ncd-free (resp. nc-constant) point corresponds to an umbilical
(resp. a proper umbilical) point in Riemannian geometry.

Let M, be totally ncd-free (resp. nc-constant). Then for direct-free scalars C*

(resp. constant C*), we can put
(7. 23) He=L¥C" (a=m41 ..., %)

Differentiating (7. 23) two times by ¥ and y* and making use of (7. 21), we have
(7..24) 2,=C',, (a=m+1 ...., n).

Conversely let (7. 24) be satisfied. Then, contracting (7. 24) by ¥" " and us-
ing (7. 21), we have (7. 23). Therefore from (7. 18) and (7. 19) we obtain N?=
d,,C*°C". Consequently we can state

Theorem 7.6. A subspace M, of M, is totally ned-free(resp. nc-constant) if and
only if the second canonical fundamental tensors Q wl@=m-+1 ..., n) are expressi-
ble in (7. 24) for direct-free scalars ( resp. constants) C°,

Note 7.5. I each scalar C° vanishes in the ahove Theroem, then we have

];’::O. Therefore M, is totally geodesic if 7° =0.
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