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A STUDY OF CONNECTIONS
IN A FINSLER SPACE

Hiroshi Yasupa

Introduction. The theories of connections on Finsler spaces have been stud-
ied by many authors from their own standpoints. As well-known connections,
there are, above all, the Berwald connection, the Cartan and the Rund etc.. Ge-
ometrical properties with respect to these connections are usually discussed.
These connections commonly reduce to the Riemannian ones when Finsler spaces
become the Riemannian spaces. And with respect to these connections, the de-
flexion tensors commonly vanish. Here we have a question if it is necessary to
consider connections with deflexion tensors in Finsler geometry.

The princrpal purpose of the present paper is to find such connections that
the following conditions are satisfied.

(1) They reduce to the Riemannian connections when Finsler spaces be-
come the Riemannian spaces.

(2) Their deflexion tensors do not vanish.

(3) They are closely similar to the above connections, that is, they satisfy
as many axioms as the well-known connections, except (2), satisfy.

(4) They are expressible in as simple forms as possible.

For this, we shall firstly consider connections on Finsler spaces from the most
general standpoint. This is done in § 1. Secondly we shall consider them from
a view-point of axiomatic theory. This is done in§2. In §3, we shall lastly
consider our problem.

The terminologies and notations refer to the papers [8] — [10] unless other-
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wise stated.

§ 1. Matsumoto connections and Kawaguchi connections. Let M be an
n-dimentional Finsler space with a fundamental function L (z, 3. Then we can
define various connections on M. Now we shall consider one of the most general

connections on M. The connection may be represented by
2 1)

(1:1} FZ(szm I Cth) [5],
where I}, I, and éj‘k are positively homogeneous of degree 0, 1 and —1 in
v! respectively, and are called the A-connection, non-linear connection and -
connection of I respectively.

In the following, we shall simply say that a quantity f(z, y) on Mis (r)p-ho-
mogeneous if it is positively homogeneous of degree rin y*.

The hv-torsion tensor Py, with respect to I is defined by

(1.2) Piki :Fiku _]"th‘

where the symbol || denotes the partial differentiation by y’. Therefore if we put

i, =—P%,;, then the h-connection is expressible in

(1.3) Ihe=I"y, + Qs

where (0!, is a {(o)p-homogeneous lensor.
If we denote the non-linear connection of Cartan (or Berwald) by G%;,  then

the non-linear connection I'%; is expressible in

(1.4) =Gt T,

for a (1)p-homogenaous tensor 7%, Applying (1.4) to (1.3), we have
(1.5) =Gt T+ Qs

where Gf(=G',,; ) is the h-connection of Berwald and T)f,= T, , .
Let three tensors T, Q,% and G‘k be given as follows:
1) T%, isa(1)p-homogeneous (1,1)-tensor.

1.6
8 2) Q,% is a(Oyp-homogeneous (1,2)-tensor.

1) Numbers in brackets refer to the references at the end of the paper.
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3) C,'x 1s a(— I)p-homogeneous (1,2)-tensor.

Then a connection I” on M is uniquely determined by (1.1), (1.4), (1.5) and
(1.6). We shall call the above connection I" a Matsumoto camzectim%] on a Finsler
space M and denote it by MI". M. Matsumoto investigated various connections
on M, introduced the most general ones and established a theory of connections
on M[5].

Contracting (1.3) by ¥', we have

(L.7) D =y I y—TI'' =04,

where D*, is called the deflexion tensor and O/, = v O}4,.

From (1.7) we can state

Lemma 1 . 1 . Foran MI', the deflexion tensor vanishes if and only if the
tensor ;%) is indicatric in the index j, namely Q = 0.

Note 1. 1. Well-known connections, for example the Berwald connec-
tion BI" and the Cartan connection CI", have no deflexion tensor, namely al-
ways Q). =0.

From (1.4) it follows that the h-covariant derivative L,, is given by
(1.8) Ly=d,L=0L/08x*T% L, ;,=—T° /L.

We shall say that an MT" is metrical if L.,, =0. In this case, because of (1.8) we
can state

Lemma 1. 2. AnMI ismetrical if and only if the tensor T, indicatric in
the upper index i, namely T°, =0.

Note 1 . 2. Ifwe consider tangent spaces at every points of M as Minko-
wski spaces, then indicatrics at every points correspond mutually to themselves
under the metrical MI", thatis, the lengths of tangent vectors are invariant under
any parallel displacement with respect to this connection [8].

Contracting (1.5) by y' y* we have
(1.9) Iy y*=2G"+ s s s

Because of (1.9) we can state

2) This connection is called a Finsler one in [5], but it seems to us that our nomenclature
is preferable.
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Lemma 1. 3 . Faths with respect toan MI" are always geodesics of M if and
only if the following equation holds:

(110) Tlo +Qo£o {=D‘n):0-

The fundamental tensor g;; is given by g,; =% L%,,, and the v-torsion tensor

and hv-torsion tensor with respect to CI™ are as follows:

. P h
Cur ' =X8uix Pux i=Cuyrind".,

where the semi-colon ; indicates the A-convariant differentiation of Cartan.

The h-convariant and v-convariant derivatives of g, are respectively given

by
(1.11) i =— AT + Ty + Quix + an +2(Cose T + Pisz }} »
(1.12) Biilx = 2C; 41 — Ejux _ark )

where Ty = gir Ti'x s Qux = 8ir Q) and CTm: =By azrx .

We shall say that an M7" is h-metrical or z-metrical according to whether
e =001 g;,=0. Then from (1.11) and (1.12) we can state

Lemma 1 . 4 . An MI" is h-metrical or v-metrical if and only if the follow-
ing equation (1.13) or (1.14) holds respectively:

(1.13) Ty + Tar + Qun + Qoas +2Cyr T + Pya )=0,
(1.14) 2Cyx = Cyx + Cran .

Ifweput T;, =g, T, then from (1.5) we have
(1.15) T e =Toe =Ty 30 =T%y — Ti .

I[fan MI" is metrical, then from (1.5) and Lemma 1.2 we obtain
(1.16) Ly (=Thox)=—Thx.

Conversely if the equation (1.16) holds, then.from (1.5) we have 7T°,,; =0.
Contracting this result by v/, we have 2 T% =0. Consequently we can state

Proposition 1 . 1 . The following three facts are mutually equivalent:
(1) An MI' is metrical. (2) T9% =0,
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(3) An equation (1.16) holds.

Contracting (1.13) by ¥ and using (1.15) we have

(1- 17) Tﬂku! +Qo}k +QJuk =0.

In this case, we obtain 7% =0 if the following equation holds:

(1-18) onr: “JFQJnk:O-

Note 1. 3. An MI isnot, in general, metrical even if it is A-metrical.
If the MI" is A-metrical and satisfies (1.18), then it is metrical.

The absolute differential Dg,; of g,; is given by

(1.19) Dgyy =g dx* +gyle Dyv®, Dy*=dy* +1T'% dx* .
Contracting (1.14) by v* | we have

(1.20) Cats + Crox =0

It follows from (1.13), (1.14), (1.16) and (1.19) that we have always y‘ Dg,; =
0 if and only if equations (1.17) and (1.20) hold.

Since y; =g;,; ¥', arelation y* Dg,; =0 is equivalent to Dy, =g, Dy’. There-
fore we can state

Lemma 1 . 5.  With respect to an MI', the absolute differential Dy; of y; is
given by

(1. 21) Dy; =gy Dy* (or equivalently y' Dg,; =0)

if and only if equations (1.17) and (1.20) hold.

Note 1 . 4 . A. Kawaguchi imposed an assumption (1.21) on the connec-
tion in consideration in his theory of non-linear connections [4]. This assumption
also enables us to define the angle between vectors y* and X* .

We shall say that an MI" is v-symmetric if the v-connection is symmetric,
namely C;', = C%;. Then from this defintion and (1.14) we can state

Lemma 1. 6 . An MI" is both v-metrical and v-symmetric if and only if
Gl =0 (=87 G ).

AnMI =(I')*,, 'y, G, )has no metrical property. However we can eas-
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ily construct a connection I"=(I",%, , I'*, . C;*, ) which has all metrical proper-

ties. Firstly we take
(1.22) IS =G% +Th., T=Rz )k, T%,

where 4, (=d%, — ' [, )is the angular metric tensor and f(z, y) is a (0)p-homo-

geneous scalar. Secondly il we take

(1.23) s =0 +¥2* 2uils»

then (1. 23) is, because of (1.12), expressible in
(1.24) G =G4 +%(C4% —Chy),

where C%, , =g~ C,,,. Lastly we put

(1. 25) Pty = 6% + T 0 s Tl =Ty
and take

1.26) =T +48" gox

where the symbol | means the A-covariant differentiation with respect to I” ¢, and

Tt . From (1.11), (1.22), (1.25) and (1.26) we have
(1.27) T =T +3(T — Th )+ %(0,5% — Q4 )—CGL T,

where T4, =g Ty, Q4 =g Oy, and I'*;t is the h-connection of Cartan.

In this case, we can easily prove that the connection I"'=(I",!, , I'" i, , G, )
obtained thus is metrical, A-metrical and w-metrical,

We shall call the above connection I a Kawaguchi connection of an MI" and
denote it by K(MI™).

Note 1 . 5. Metrizations (1.23) and (1.26) are due to A. Kawaguchi [3].
BI" 1s metrical but neither A-metrical nor v-metrical. The Rund connection RI" is
both metrical and A-metrical but not v-metrical. The Hashiguchi connection HI”
is both metrical and v-metrical but not A-metrical. In this case, any of K(BI'), K
(RIM)and K(HI") becomes CI™.

§2. TM-connections. FIirst we shall give important axioms concerning

connections in Finsler geometry. Let I'=(I",', , I'*, . C,,) be the connection
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in consideration. Then axioms are as follows:

(F1) I is metrical, ie. L ,=0.
(F2)  The deflexion tensor 0¥, of I" vanishes.

(F3) I is v-metrical and v-symmetric.
(F3), The v-connection of I" vanishes, ie. G, =0.

(F3), The z»-connection of I is semi-symmetric, thatis
(2.1) G —GY =84 4 —d% ¢t ,

where ¢, isa(— I)p-homogeneous vector.

(F4)  With respect to I", the absolute differential Dy, of v, (=g,; y') is given
by Dy, =g,; Dy’ (or equivalently y*Dg,; =0).

(F'5)  Paths with respect to I are always geodesics of M.

(F6) I is h-metrical.

(F7) I is h-symmetric, thatis, the A-torsion tensor 7,%, (=15%, —TI}5) van-
ishes.

(F8)  The hwv-torsion tensor P, (= — Q,% ) of I vanishes.

(F9)  The A-connection of I is semi-symmetric, that is,
(2.2) b = 0% 8 =id 5, .

where s, 1sa(0)p-homogeneous vector.

A Matsumoto connection M1 is called a T'M(resp. TM(0) )-connection if it is
characterized by five axioms (FF1), (F2), (F3) (resp. (FF3),), (F4)and (F5). From
Lemmas 1.1~1.3, Lemmas 1.5 and 1.6 we can state

Theorem 2 . 1. A TM (resp. TM(0))-connection is uniquely determined if
three tensors TV, , Q¢ and G, are given as follows:

1) T%, isa(1)p-homogeneous(1,1)-tensor such that T =T, = 0.

2) Q4% isa(Op-homogeneous (1,2)-tensor such that Q,° = Q. = 0.

3) G' =Gy (resp. 0)

Immediately we have

Corollary 2. 1. 1. Typical four connections CI', HI', RI" and BI" are spe-
cial TM (or TM(O) )-connections, and thetr characterizing axioms and three tensors are

as follows :
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Connections Axioms Tensors (T, Q, )
cr (F2), (F3), (F6), (F7) Té =0, 0% =—Bh , T =0
RI (F2), (F3),, (F6), (F7) T4 =004 ==F%,G% =0
Hr (F1), (F2), (F3), (F7),(F8) |T'% =0, Q/% =0, G =G,
BI (F1), (F2), (F3),, (F7),(F8) |T% =00,/ =0C =0

[t is known that M is a Riemannian space M if and only if the torsion tensor

Cy;x vanishes. In this case, the foundamental function L(z, y)is given by L(z, y)
1

=(gi; () ¥* ¥ )? and the Riemannian connection is, from the standpoint of Fins-

ler geometry, represented by
(2.3) RNI'=({,'x}, ¥ s}, 0),

where {;*,} are the Christoffel symbols formed with g,; (2).

Note 2 . 1. A Riemannian space M may be considered as a special Fins-
ler space. There however exists some Finsler space such that it never reduces to
an \;I [5].

Now we consider the following axiom :

(F0) The fundamental tensor g;; is independent of y* | ie. C;, =0.

Then we can state

Theorem 2. 2. An MI" isthe RNI' if and only if five axioms (FQ), (F2),
(F3),, (F6) and(F7) are satisfied.

It is easily seen that if M becomes an M, then any of typical connections in
Corollary 2. 1. 1 reduces to RNT".

Note 2. 2. Withrespectto RNI", axioms (F1)and (F6) are mutually e-
quivalent.

A TM (or TM (0) )-connection is called a TMA (or TMA (0))-connection if
the 7%, is given by

(2.4) T =f(z 3 L(x,3) k',
where f(z. ¥)is a (O)p-homogeneous scalar. Differentiating (2.4) by 3/, we have
(2.9) L'y =Lfiy R + (R — 0 by — 18 hyy).

We knovy already four typical TMA (or TMA (0))-connections, thatis, AMN
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I, AMBI', AMCI" and AMRI (or respective (0)-connections) [9]. For these con-
nections, the tensors Q,%, are respectively given as follows :
1) —dLfiy #y 2) 2fL. by — Ly &,

(2.6)
3) Bfly by —Lf; by — % 4) —Lfy Rty + 1 hi—fLCY) i

Therefore the respective h-connections are expressed as follows :
VI =G + L e — 4 by — 18 k),
2) Ty =Gy + £l B + L by — 1 8y ,),
DTt =T + il B+ L kY — 1Y Iyy),
4y Tyt =%y + £l By — by, —LGY).

It is easily seen that an AMRI (the forth connection) is metrical, A-metrical
and z-metrical. Further we can state

Thorem 2. 3. LetI" beany connection of seven connections (AMNI", AMN
I'(0), AMBI', AMBI'(0), AMCI', AMCI'(0), AMRI'(0)). Then a Kawaguchi
connection K (I") becomes an AMRI.

Proof. Since any TMA-connection is metrical, itis enough to consider the

same non-linear connection. From (2.5) we have

(2.8) T =Thr=—LUfu k' 8" fir hin )4 2F(L, B — 18 By ).
In every case of (2.6), we have

(2.9) Qifs —Q% ks =—LUfus W' =g fir by ).

Therefore it follows from (1.27), (2.8) and (2.9) that the A-connection of K(IM)
coincides with 4) in (2.7). For the v-connection, from (1.24) we obtain City=
Ci'x in every case, Q.E.D.

Foran AMRI', we can state

Theorem2 . 4. An MI" isan AMRI (resp. AMRI (0) ) if and only if the five
azioms (F2), (F3) (resp. (F3),), (F5), (F6) and (F9) are satisfied.

Proof. Ifan MI" is an AMRI (resp. AMRI" (0)), then we can first verify that
the four axioms (F2), (F3) (resp. (F3),), (F5) and (F6) are satisfied. Next if we
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put s, =—f1l,, then from 4) in (2.7) we obtain
oty = f RS — L RS Y=Y 5, — sy,

which shows that the last axiom (F'9) is satisfied.
Conversely suppose that four axioms (F2), (I'3) (resp. (IF3),), (IF6) and (FF9)

are first satisfied. Then from Theorem 2.2 in [10] and Lemma 1.6 we have
(2.10) Cits = C'x (resp. 0),
(2.11) Th =sty, — 0 s, — L2 Ci,s™,

A =T v s® —5 @ + G50 0 Gy pe —Cllr gy Ja7
(2.12)
+ L (C)f G + G G —CFy Gy ) s
Next let the remaining axioms (FF5) be satisfied. Contracting (2.12) by ' y*
we have I'}i, v/ y* =2G* + 12 s* —s, v". Therefore from (1.9) and Lemma 1. 3

we obtain L? s* —s, y* =0, from which it follows that
(2.13) gh=—ofl} s =—Fh,
where f=—s, /L. Applving (2.13}t0 (2.11) and (2.12), we obtain
(2. 14) T =fLAY, T =—G% + fLAY,
ity =% +f(; 6'x —1"gsx —LC)'%)

(2:15)
=I®, +f(; B =1 by —LCy ).

Thus it follows from (2.10), (2.14) and (2.15) that this connection 1s an AMR
I (resp. AMRI(0)). 0B I

Note 2. 3. An MI" iscalled a Wagner connection if it is characterized by
four axioms (F2), (F3), (F6) and (FF9) [2]. Therelore an AMRI" is a special
Wagner connection satisfying another axioms (F5).

Now we consider the following axiom :

(F9), The A-connection of I' is semi-symmetric in the BMI™-sense, that is,

(2.16) T =04 sk — 05, so=—LCY S(n—1),

=
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where C¢ =Gt gi* .

We shall call an MI" the Barthel-Matsumoto connection if it is characterized
by five axioms (F2), (F3), (F5), (F6) and (F9),, and denote it by BMI". Then
it follows from (2.16) and Theorem 2.4 that BMI" is a special AMRI" with a sca-
lar f{z, ¥) defined by

(2.17) Az, »)=LC An—1).

Note 2. 4. The BMI" has been introduced by M. Matsumoto [6]. He in-
vestigated the Barthel connection [1] and revised it to the present BMI". A mini-
mal hypersurface of M can be defined under this connection.

We shall say that a scalar fla, y) on M is RN-vanishing if it vanishes when M
becomes an ﬂfzf. The scalar fz, y) defined by (2.17) is evidently R N-vanishing.

We shall say that an MI" is RN-reducible if it reduces to RNI" when M be-
comes an ﬂfr[.

Note 2. 5. Ifanyscalar flz, y)in TMA-connections is R N-vanishing, then
any TMA-connection defined by (2.7) is RN-reducible. The BNI" is such a good
example.

§3 . TMD -connections and Miron connections. In this section, we shall
be conserned with connections whose deflexion tensors do not vanish.

We shall call an MI" a TMD (resp. TMIX0) )-connection if it is characterized
by four axioms (F1), (F3)(resp. (F3),), (F4) and (F5), and denote it TMDI (resp.
TMDI'(0)). From Lemmas 1.2, 1.3, 1.5 and 1.6 we can state

Theorem 3. 1. A TMDI (resp. TMDI'(0))is uniquely determined if three
tensors T, , Q. and C;ty are given as follows : -

1} &t =G Tresp. O).

2) T and Q)% area(1)p-homogeneous(1,1)-tensor and a (0)p-homogeneous (1,

2)-tensor respectively and they satisfy
(3.1) T% =0, Tic 'JF'DEa:O- QJnx'*‘DJk:O-

where Qs x =Dj o =85+ D7y .
We shall find some TMDI" (or TMDI'(0) ) satislying desirable axioms (F6)
and (IF7). First we can state

Lemma 3. 1. Ifan MI" satisfies axioms(F6) and (F7), then its h-connection
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is expressible in
(3. 2) lek =I'%% +Cp, T _ijr Th—Lge 15,

where T =gt T'7, . In this case, the MI" satisfies also (F5).
Proof. From (1.5)and (F7) we first have

(3.3) Th+Qin=TL + Qi Tun+Qux=Thss + Qs -

Next we have (1.13) because of (F6) and Lemma 1.4. If we exchange indices
iand £in (1.13), then we obtain

(3.4) Tess +Thne + Qi T Qsni +2AChyr TT 4+ Pryy)=0.
Substracting (3.4) from (1.13) and use (3.3), we have
Trie—Tyas ¥ Qron— Qs +2Cyy T —Cyyr T)=0,
which implies
(3.5) T+ Qs +2C0r T =Ty ps +Quipe +2C15, T7,.

Therefore it follows from (3.5) that a tensor (Tj ;. + Q15 + 2C; 4 Ty )is sym-
metric in indices i and k& Applying this fact to (1.13), we have

(3.6) Tisk +Qun+ 2Pk + Tine + Qias +2C4. T, =0.
On the other hand, because of symmetry of (3.3) and (3.5) we obtain
(3.7 Tini +Qoei = Tins +Quns =Toine +Quin +2C50 T —2C4, T7
Applying (3.7) to (3.6) and dividing the result by 2, we have
Ton + Qi =Cor Ty —Cyyp T —Cipr Ty — Py,
which implies
(3.8) T+ Q=G T =G T — Gy TG — P

If we substitute (3.8) into (1.5), then we obtain (3.2). Further if we contract

(3.8) by ¥’ y*  then we have T, + Q4o =0. Therefore this MI' satisfies (F5) be-
cause of Lemma 1.3. Q. E.D,
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Note 3. 1. Axioms(F3)(or(F3),)and (F6) always imply (F4). Axioms
(F6) and (F7) do not, in general, imply (F1) without (F2).

We shall call an MI™ a standard TMD (resp. TMD (0) )-connection or simply
an STD (resp. STD(0) )-connection if it is characterized by four axioms (F1), (F3)
(resp. (F3),)), (F6) and (F7), and denote it by STDI" (resp. STDI'(0)). This con-
nection satisfies slso (F4) and (F5) because of Lemma 3.1 and Note 3.1.

Contracting (3.8) by ¥/, we have

(3.9) B == s O T
contraction of which by y* yields D', = — T, . Therefore from (3.9) we obtain
(3.10) TV, =Ct. DT, =D, T%=—D¢.

Consequently from Lemma 3.1 and (3.10) we can state

Theorem 3. 2. AnSTDI (resp. STDI'(0)) is uniquely determined if two ten-
sors T, (or D%, ) and C,*, are given as follows :

1) C)tx =C)*, (resp. 0).

2) Ty (or D*y) is a(1)p-homogeneous (1.1)-tensor satisfying T°, = 0(or D°%= 0).

Note 3. 2. When the deflexion tensor D?, firstgiven, the non-linear con-
nection /7%, is given by

Plk:Gtk —"-CkirDTu*D!ks

and then A-connection is obtained by substitution of (3.10) into (3.2).

We shall call an STDI (resp. STDI"(0) ) an AMD (resp. AMD (0) )-connection
if the tensor T is given by (2.4) (i.e. T?, = fLh*,), and denoteitby AMDI (resp.
AMDI' (). Inthis case, we have

(311) It =G%+ fLk',, D', =—fLA%,,
(3.12) I =I% —fLOE,.
From (1.5), (2.5) and (3.12) we have
(3:13) Qifx=AhY e+ U ks =1, ki )— LSy 2 — Pt —fLC), .

Note 3. 3. [Ifascalar f{z, y)is RN-vanishing, then an AMDI" (or AMDI
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(0) ) is RN-reducible. In this case, the AMDI" (or AMDI'(0) ) is closely similar
to CI" (or RI').
We shall call an STDI (resp. STDI'(0) ) a C,D(resp. R,D)-connection if the

tensor T is given by
(3.14) T'x =flz, YLC" yy,
and denote it by C, DI (resp. R, DI"). As before we obtain
(3.15) 'y =G +fLC y, DY =—fL(C* 3 +L* C{. C7),
(3. 16) T =T %' +fL(C) 4+ CT 3  —C/ L7 —=C CT ).

Differentiating (3.14) by v/, we have
(3.17) L% =fu LC 3 + flL Cl o + LCY; 3 +LC gy).

As before we have

O =G CTy +C CTy +Cipr CTy  —Cly 3 —CF gys)
(3.18)
—(Lfos + 15 )C% 5 — B,

Note 3. 4. A C,DI'(or R,DI")is RN-reducible independently of f(z, ¥).
In this case, it may be considered that the C,DI'(or R, DI") is closely similar to
CI'(or RI™).

We shall call an STDI (resp. STDI () ) a C, D (resp. R,D)-connection if the

tensor 7%, isgiven by

(3.19) T4 = flz L2 C Cy,

and denote it by C,DI"(resp. R,DI"). Then we ohtain

(3. 20) I =G L GV E, Diay=—f12 0 G,

(3.21) Pty =F 8 FLACype OF G =G%CT Cp—= T C" G,
(3.22) Lite=(Ld fyy +8LA L YO  Cpk FLA Y,y Cu b CV 0 iy )i

(3.23) Ot =fL(Csx, CTC*—C4, CTC, —C. CTCy —C4,C.—C'CL,0)
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—(L*fy +8L*}, )C'C,— By,

Note 3. 5. A C,DI'(or R, DI')is also RN-reducible independently of f(z,
). Also in this case, the C,DI'(or R, DI} is closely similar to CI"(or RI).

Now we consider the following axiom:

(F10) The non-linear connection I'Y, is given by I"*, =G*,.

An MI'is called a Miron connection (2] if it is characterized by four axioms
(F'3),, (F6), (F9)and (F10). With respect to this connection, the deflexion ten-

sor, the h-connection and the »-connection are as follows -

(3. 24) I, =G%, Dy=s,0% —s'y,,
(3. 25) Iy =I'%Y + 5 &% — s'gy,
(3. 26) ajik=cjlk+fj &% —# gins

If a Miron connection further satisfies another axiom (F5), then expressions

(3.24) and (3.25) are written in

(3.27) 'y =G'%, D' =f(z, y)Lh*,

(3.28) Iy =%+ fll; 6% —1'g;,).
From (3.27) and (3.28) we have

(3.29) Q' =Al 0% —1'gys)—Fy.

We shall call a Miron connection an MD (#)-connection-if the A-connection is
given by (3.28), and denote it by MDI"(#). We shall, in particular, call an MDI"
() an MD (resp. MD (0) )-connection if the v-connection is given by Cit, = C,*,(re-
sp. Ci*x =0), and denote it by MDI (resp. MDI'(0)). Therefore an MDI(resp. M
DI'(0))is characterized by five axioms (F3) (resp. (F3),), (F5), (F6), (F9) and
(F10).

Note 3. 6. Ifascalar f(x, y)is RN-vanishing, then an MDI" (or MDI"(0))
is RN-reducible and closely similar to an AMRI" (or AMRI" (0) ).

We shall call an MI" a HD (resp. BD)-connection if it is characterized by five
axioms (F'3), (resp.(F3),), (F4), (F5), (F7) and (F10), and denote it by EDI"(resp.
BDI'). From (3.1), (F7) and (F10) we have
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(330) thk:thJ: Q(ﬂi():O: Q.a'ak +Qoik:0-

Therefore a HDI" (or BDI™) is uniquely determined if we have a tensot Q,%,
satisfying (3.30). Such tensors are infinitely found. We shall choose three sim-

pler ones. These are as follows :
(3.31) O =fla, LA C*Cp+ly + 1, CCy —=14€, T }
(3.32) Qi =, NU; Aty +1 Yy —1hsy).
(3.33) Qe =z, WUy A +1chYy —1 Ry )— By
In case of (3.31), we have
(3. 34) =6, DY =1 CF O,
(3. 35) i =G L CC+ L, CUC) =10 C; C).

We shall call a HDI (resp. BDI') a HD (resp. BD)-connection if the h-connec-
tion is given by (3.35), and denote it by HDI" (resp. BDI").

Note 3. 7. A HDI'(or BDI™)is RN-reducible independently of f{z, v). In
this case, we would like to say that the HDI" (or BDI") is closely similar to #I" (or
BIN),

In case of (3.32) and (3.33), we commonly obtain
(3. 36) I, =Gy DYy =fLA%,

and the h-connections are respectively given by 2) and 3) in (2.7).

We shall call a HDI" (resp. BDI') an AMBD (resp. AMBIX0) )-connection or
an AMCD (resp. AMCIX0) )-connection according to whether the h-connection is
given by 2)in (2.7) or by 3) in (2.7), and denote it by AMBDI (resp. AMBDI(0))
or by AMCDI (resp. AMCDI™(0)).

Note 3. 8. Ifascalar f{z v)is RN-vanishing, then any of the above con-
nections in RN-reducible. In this case, an AMBDI (resp. AMCDI") is closely
similar to an AMBI (resp. AMCI") and so is the corresponding (()-connection.
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