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ON TM-CONNECTIONS
OF A FINSLER SPACE AND THE INDUCED
THM-CONNECTIONS ON ITS HYPERSURFACES

Hiroshi YASUDA

1)
Introduction. In the previous paper [7], we introduced 7M-connections on

an n-dimentional Finsler space from the standpoint of tangent Minkowski spaces.
Successively we developed the theory of these connections in papers (18], [9],
[10]). However, we have not yet the axiomatic theory of them. The first pur-
pose of the present paper is to construct such a theory.

The theory of subspaces of a Finsler space has been investigated by many au-
thors. Most of the induced connections treated by them are axiomatically differ-
ent from the original connections. This makes not only the theory of subspaces
more complicated but also its geometrical survey unclear. Such circumstances
are geometrically undesirable. The second purpose of this paper is to get over
the above circumstances to some extent. For this purpose we construct a theory
of hypersurfaces by the use of TM-connections. One of the most important re-
sults is that the induced 7'M-connection is a T'M-connection (in general not in-
trinsic) on a hypersurface. The terminologies and notations refer to the papers
([7) ~[10]) unless otherwise stated.

§1. TM-connections. Let M, be an n-dimentional Finsler space with a
fundamental function L(x,y) and be endowed with a TM-connection TMI = (..

I'",. C'. ). This connection is defined as follows :

Firstly the v-connection is given by

(] l) C‘I'k :g.“‘ CJ’M 1 CJiur :%ag:"ﬁ /a.",”,

1) Numbersin brackets refer to the references at the end of the paper.
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where g, =140° L’ /9y'@y". Secondly the non-linear connection is given by

(1. 2) Y, =l =6 +7

ik 3

where G, is the non-linear connection of Cartan (or Berwald) and

(a) T", is a positively homogeneous tensor of degree 1 in y* such that o e

L3

Thirdly the A-connection is given by

(1.3) r/, =ar', ray’ +0/ =G/, +T/.+0/..,

J

where G/, is the h-connection of Berwald, 7'}, =3 7T', /3y’ and
(b) @/, is a positively homogeneous tensor of degree 0 in y* such that y, Q). =
¥0Q/. =0.

The absolute differentials of vectars y'and X' (a,5) on M, are difined as follows:

(1. 4) Dy' =dy' +I', dz"*

DX =dz* +(I}, +C/}, " Y X' de* +C/ X dy*

(1. 5)
=X' dx* +X'|,Dy" , where

(1. 5), X' =8X' 3z —I" dX' oy’ +I', X",

(1. 5), XY, =X oyt 201 %9

Now we shall consider axioms characterizing this TMI". First we can state

Theorem 1.1. A T'M-connection I'is characterized by the following six arioms
(TM1) — (TM6):

(TM1) TheI' is metrical ie.L, =9L,/8z" —I'' 3L /3y’ = 0.

(TM2)  The deflection tensor D', vanishes, namely y'I"!, —T'', = 0.

(TM3) TheI" is v-metrical, ie.. g |, =3g, /9y -C/,g,—C/.g,.=0.

(TM4)  The v-torsion tensor vanishes, namely C /|, —C ', = 0.

(TMS3)  The absolute differential of y, (=g, ¥' ) is given by Dy, =g, Dy' .

(TM6)  Paths with respect to the I" are always geodesics of M .

Proof. Il a connection I" is a TM-connection, then it follows from (1. 1) ~
(1. 3) that the I" satislies all the axioms (TM1) ~ (TM6). Conversely sup-
pose that a connection I'= (I'), , I, , C/, Yon M, satisfies (TM1)~(TM6).
Then we first have ﬁ.iik =), (in (1. 1)) because of (TM3) and (TM4). Since

this I" has the hzv-torsion tensor P,‘, , atensor Q /', is uniquely determined as fol-
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lows:
(1 6) Fii» :a'r' [.w /a.\"j +Ql‘k ]
provided that Q,, (=—7),) is a positively homogeneous tensor of degree

0 in y'. Then contracting (1. 6) by v’ and making use of (TM2). we
have ¥’ Q,, =0. From (TM1) we obtain (I'', — G', )y, =0. Therefore

there exists a unique tensor 7T, such that T y, =0 and

I

(1. 7) r'=G'. +7T', .

Contracting (1. 7) by v", we have I, y*=2G"'+T'_y" In this case
we have ', v* =2G " because of (TM6). Therefore we obtain T' yv*—0.
Further if we differentiate (1. 7) by v’ and substitute the result in (1. 6).

then we have

(1.8) I, =6 oy T, Hl 5

¥k

Since Dv, =v' Dg,, +g,. Dy’ the axiom (TM5) is equivalent to (T
M5)": The absolute differential of g . is indicatric, ie. v/ Dg , =0.
On the other hand. it follows from (TM3) that Dg , =g,  dr* There-

fore il we apply this result to {(TM5H)’. then we obtain
{ag“ /a'rk _Fh»‘- ag‘- /a.vh =8 p;‘rk — & ]_'le\ }.“’j

:.\!rGirx +g,‘, Gr- _.\frrirk _g-”_F"

3

=0.

L}

Applying (1. 7) and (1. 8) to (1.9) and noticing v, 7T, = —g, T",.

we have y, O/, =0. Thus the connection I" in consideration becomes a TM-
connection, * 0. E. D.
Immediately we can state
Corollary 1.1.1. Given flensors T', and O/, satisfving (a) and (b) re-
spectively, a TM-connection is uniquely determined by the axioms (TMI1)—~ (TM6).
Corollary 1. 1. 2. The Hashiguchi connection HI' is a special TM-connec-
tion determined by T', =0 and Q). =0. and it is also characterized bv the
Sfollowing six axioms ([2] ~[4]):
(TM1). (TM2). (TM3). (TM4). (STM6)(in§2). (GT5)(1n§2).

Corollary 1.1.3. The Cartan connection CI' is a special TM-connection
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determined by T', =0 and Q/, =—P/,.
Jollowing five axioms ([2]. [3]): (TM2). (TM3). (TM4). |(STM6). (RTM1)! (in
§2).

We shall call a TM-connection a W7T'M-connection if the tensor T, in

and it is also characterized by the

(1. 2) is defined hy the following weak condition:
(c) T', is a positively homogeneous tensor of degree 1 in y‘ such that 7"
¥, =0

Then we can state

Theorem 1. 2. A WTM-connection is characterized by the following five
azioms: (TM1), (TM2), (TM3), (TM4), (TM5).

Given tensors T', and Q,, satisfving (c) and (b) respectively, a WTM-
connection is uniquely determined by the above five axioms.

Proof. The axiom (TM6) implies 7", y*=0 alone. Therefore the proof
of Theorem 1.1 except this fact is still valid for that of the present theo-
rem.

§2. Special TM-connections. In this section, we shall treat special
TM-connections. First we consider an r-metrical 7M-connection, namely a
T'M-connection satisfying Dg,, =0. For this, it is necessary and sufficient

that the following equation holds ([7] —[9]):
2. 1) TIJA- +Tju< +Qu; i QJU: +2(C{Jr TTK +Pu¢ )=0,
where T, =g, T/, and Q,, =g, O

We shall call a T'M-connection I" an RTM-connection if the I' is r-met-
rical, that is, an equation (2. 1) holds for the I Then we can state

Theorem 2.1. An RTM-connection I' is characterized by the following
five axioms (RTM1) ~(RTM5):

(RTM1) The I" is h-metrical, namely g,,,, =0.

(RTM2) =(TM2). (RTM3)=(TM3). (RTM4)=(TM4), (RTM5)=(TMS6).

Proof. I a connection I'" is an RTM-connection, then it is easily ver-
ified from (1. 1) ~(1. 3) and (2. 1) that the I" satisifies (RTM1)~(RTM5).
Conversely suppose that a connection I'=(I"/f,, I"*,, C, ) satisfies (RTM
1) ~(RTM5). Then in just the same way as in the proof of Theorem 1.1,
we have C), =C/, and (1. 6) together with Q/ v’ =0. Therefore from
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(RTM1) and (RTM3) we obtain Dg,, =0 and hence (TM5)" holds. By vir-
tue of (RTM2) we have y'_ =0, [rom which and (RTM1) it follows that
guny'y’ =L", =2LL, =0, that is, (TM1) holds. If we further take ac-
count of (RTM5). then we can conclude that the connection I in consid-
eration 1s an r-metrical 7'M-connection, namely an R7'M-connection. In this
case, the equation (2. 1) holds, Q.E.D.

Now if we put
(2. 2) e = — Qi

then this tensor satisflies the following condition:
(d) Z,, is a positively homogeneous tensor of degree 0 in y‘ such that
Zijx}’l =Z,,y =0and Z,, +Z,, =0.

Then from (2. 1) and (2. 2) we have

(2 3) QJ"J: Z%g“ (Z.Jrk _T 3 _Trjk )— C.flr Trk 7Pf‘k >

itk

substitution of which in (1. 3) yields
(2 4) ]-‘J’:k '__F*J!k —ijr Tr»: —j—%gir (ZJrk -I_ T}rx _Trlx)J

where I'*’

. is the h-connection of Cartan. Hence we can state

Corollary 2. 1. 1. Given tensors T, and Z,, saiisfving (a) and (d) re-
spectively, an RTM-connection is uniquely determined by the azxioms (RTM1)~
(RTM5). In this case, the h-connection is given by (2. 4).

Next let the A-torsion tensor 7., (or 7,, ) be given, namely

Jix
T)!" - TJ‘,C -}-Qitﬂ' 7(?"K‘J +Qk‘)‘ )’
(2. 5)
Tk = e Pl =T +Qkii )
Then from (2. 1) and (2. 5) we obtain
(2‘ 6) Tyin i Toxw T Tiwg :Z(Tm;.r' +Q£m‘ o Cur Trf +Cm Tyi _Ct.ir Trk
F Py )

hk

contraction of which by g" vyields

(2 7) Tzhf —i- Q(hj +Qth :%g . (Tju +Tt1x +‘r[ki )ﬁ— Cthr TTJ. _cjhr T’i
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+ghk Cijr TT- 7P:h‘1 i

k

Contracting (2. 7) by y' ., we have
(2. 8) ITA;' :%ghk (T,ink t T T Tow /-
Applying (2. 7) to (1. 3), we obtain

FJ‘vr :F*f[k +-%g.” ('ri.x\-r +T,Jrk + Tr.tr )___g-“‘CJ’" T’h 7("‘ ’}"'

I k

(2. 9)
-‘—‘C{ Tl’

kT g

Contracting (2. 8) by ¥’ , we obtain 7,, =7, =0.

Consequently we can state

Corollary 2. 1. 2. Given the h-torsion tensor z,', satisfying ,', =0, an
RTM-connection is uniguely determined by the axioms (KTM1)~(RTM5). In
this case, the h-connection is given by (2. 9), provided that T*, is given by (2.
3).

An r-metrical W7 M-connection 1s called an R WTM-connection or a gen-
eralized Cartan 7-connection [3]. We shall denote this connection by CI"(7).
Then this CI'(7) is characterized by the following four axioms (CT1)~(C
T4): (CT1) =(RTM1). (CT2)=(RTM2), (CT3)=(RTM3), (CT4) =(RTM4).

With respect to CI'(7) the contracted vector 7", does. in general, not

vanish. Therefore contracting (2. 7) by v' . we obtain
(2. 10) T =38g™ (T + Toye T T0s =C Ty, T =g 1y, .

Consequently we can state

Theorem 2. 2 (Hashiguchy, 1975). An R WTM-connection (or a CI'(1)) is
characterized by the axioms (CT1)~(CT4). Given the h-torsion tensor v, ., an
R WTM-connection (or CI'(7)) 1s uniquely determined by (CT1)~(CT4). In
this case, the h-connection is given by (2. 9), provided that T, is given by (2.
10).

Caorresponding to Corollary 2.1.1. we have

Corollary 2. 2. 1. Given tensors T and 7, satisfying (c) and (d) re-
spectively, an R WTM-connection (or a CI'(T)) is uniquely determined by (CT

1) ~(CT4). In this case, the h-connection is given bv (2. 4).
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Note2.1. The Cartan connection CI' is also a special RTM-connec-
tion or a special K WTM-connection defined as follows respectively:

(1) T', =0 and Z,,, =0 or (2) 7, =0.

Let us consider a symmetric T'M-connection. We shall call a TM-con-
nection an STM-connection if the h-torsion tensor 7, vanishes.

Then we can state

Theorem 2.3. An STM-connection is characterized by the following six
axtoms (STM1) ~(STM6): (STMi) =(TMi) (i=1.2,.... 2,

(STM6) The h-torsion tensor T, wvanishes, namely I/, =T,

Proof. From (STM1)~(STM5) we have

(2- 11) Fik :C:Y‘l“E +T{.t < 1—';1 :(}‘jik _‘-T_,'f,‘ 4_(‘)}

x <k

provided that 7°°, satisfies the condition (c), while Q.. satislies (b).

By virtue of (STM6) and (2.11) we have
(2.12) T, o O s T i, |

J ok k J

contraction of which by y, v’ yields 7, =0. Therefore the axiom (TM6)

1s satisfied, Q. E.D.

If we now pul
(2. 13) v/, =0/, +0,,,
then from (2. 12) and (2. 13) we obtain
(2. 14) 0. =X, +T5 =T/, J
Substituting (2. 14) in the second expression of (2. 11), we have
(2. 15) r' =G, +8@U/,,+7T/ . +T., ),
contraction of which by y’ . because of (2. 13), yields
(2: 16) r.=G¢.+7, T .=%0/.

Given a tensor (', satisfving (b), [rom (2.16) we obtain T' (=10,
and hence 7'/, (=9T', /9y’ ). If we denote 8Q,, ~9v’ by Q). -

then from (2. 13) and (2. 15) we obtain

-1
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(2 17) FJEA_ :(;_,-i,i +%(.Q,,i.- +Q:;’ )—lk%(lecm.f *Q,i'fm\k}

Consequently we can state

Corollary 2. 3. 1. Given a tensor Q), satisfving (b). an STM-connection
is uniquely determined by the five axioms (STM1) ~(STM4) and (STM6). In
this case, the h-connection is given by (2. 17).

We shall consider another determination of I, . Contracting (2. 12)

by v’ and differentiating the result by v’ . we have
(2. 18) T, =10/, T/, =%0, 0,

which, because of (2. 11), implies

(2. 19) Pl =8, + 30 +05 -

= i 4
Since I'), =T,

4

. the following equation holds:

(2. 20) ¥ 1Q) e — Qo J=0

Hence we have

Corollary 2. 3. 2. Given a tensor Q/, satisfving (b) and (2. 20, an ST
M-connection is uniquely determined by the five axioms (STM1)~ (STM4) and
(STM6).

Note 2.2, The Hashiguchi and Cartan connections are special STM-con-
nections defined by O, =0 and Q,, =— P/, respectively.

A TM-connection 1s called a GT-connection il the hv-torsion tensor van-

ishes. Then from (1. 2) and (1. 3) we have

(2..21) e =6, +T ., 7 I}

1ok ik Jie 5 < ik T & & k2

Then we can stale

Theorem 2.4, A GT-connection is characterized by the following five ax-
ioms (GT1) ~(GT5):(GT1) =(TM1). (GT2)=(TM3). (GT3) = (TM4). (GT4) =
(TM6),

(GT3) The hv-torsion tensor vanishes, ie., I' !, =", , =0,

Given a tensor T', satisfving (a). a GT-connection is uniquely determined
by the axioms (GT1)~(GT5 ).

Proof. The axiom (GT35) implies (TM2). From (GT1) and (GT5) we
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have (2. 21) with T°, =0. Therefore it follows from (GT1), (GT3) and Q/,
=0 that the axiom (TM5)" holds. Lastly from (GT4) we have T' =0.

Now let the h-torsion tensor 7', be given, namely

(2. 22) 7. =T, =T, .

4ok

Contracting (2. 22) by v’ . we have
(2. 23) T, =¥7.,,
contraction of which by y, yields 7., =0. From (2.21) and (2. 23) we have

(2. 24) r; :G.fflc +]/:’Zj‘z'u‘pcu.,' s P{x :Gix 'l'%%rolx

FaN

Consequently we have

Corollary 2.4.1. Given the h-torsion tensor 7, satisfving 7', =0, a G
T-connection is uniquely determined by the five axioms (GT1)~(GT5). In this
case, the h-connection and non-linear connection are given by (2. 24).

We shall call a GT-connection a WGT-connection if the tensor T, in
(2. 21) is defined by the condition (¢). Then we can state

Theorem 2.5. A WGT-connection is characterized by the following four
axioms: (GT1). (GT2). (GT3). (GT5).

Given a tensor T', satisfving (c), a WGT-connection is uniguely deter-
mined by the above four axioms.

Contracting (2. 22) by vy’ . because of T', =T"'

i =0 e hiave

(2 25) r["k :.l/é,('rglx T Y”ﬂllk )

Further if we contract (2. 25) by y, . then we have 7, =T,, .
Therefore applying this result to (2. 25), we obtain
(2 26) T‘K :,I/Z(Tu‘x — T‘m“:,‘ ), Ti :g'”‘f

o0

Then from (2. 21) and (2. 26) we have

(2 27) 1;‘& :C;J(x +}2(fl o T‘nnll Kl J )! F!».« ZGI« +%(‘TIJ{IC 7T(DUIH¢ )

0 xit

Consequently we can state

Corollary 2.5.1. Given the h-tosion tensor t,, ., a WGT-connection is

4 KW
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uniquely determined by the four axioms (GT1). (GT2). (GT3) and (GT5). In
this case, the h-connection and non-linear connection are given by (2. 27).

Note 2.3. The Hashiguchi connection is a special G7T{(or WGT)-con-
nection defined by 7', =0 (or 7/, =0).

An r-metrical GT-connection 1s called the IS-connection. For this con-

nection, it follows from (2. 1) that the following equation holds:

(2. 28) T+ T 1300, 7% 3.

“iar

1ik iik ):0

Then we can slate
Theorem 2. 6. 1The IS-connection is characterized by the following five ax-
ioms (I1S1)~(IS5):(ISi) =(GTi)(i=1, 2, 3, 4),

1S5) The hv-curvature tensor P, wvanishes, namely
J kh o

Tjj(kh :F‘l _C‘ --Cj‘r ;yjhrt :0‘ ?jr :Fr,‘ — ". .

Jk|h J Ak

Prooj. 1t is known [8] that with respect to a TM-connection the hov-

curvature tensor P/, vanishes if and only if P/, (=—Q,, )=0 and equa-

J kn
tion (2. 28) holds. Therefore if a connection I’ is the IS-connection, then
it is easily verified that the I satisfies (I1S1)~(185). Conversely suppose
that a connection I'=(I",, , I'', , E'_j‘.ﬁ) satisfies (IS1)~(IS5). Then from
(I1S2) and (IS3) we first have C,, =C,, . Next, by virtue of (IS1). (1S4)
and (IS5) we obtain (2. 21) and (2. 28) together with 7° =7, =0,

Hence the I' becomes the [S-connection. 0. E.D:

We shall call an r-metrical WG T -connection the R WG T-connection.  Then
we have

Corollary 2. 6. 1. The RWGT-connection is characterized by the follow-
ing four axvioms:(RTM1), (TM3), (TM4). (GT5). Then the h-connection and
non-linear connection are given by (2. 21) together with (2. 28).

Under the R WGT (or IS)-connection, indicatrices considered as Rieman-
nian spaces are isometric.

Now we shall consider a special R WT'M-connection which is called a
Wagner connection [2], [5]. This connection 1s characterized by the follow-
ing five axioms (W1)—~(W5):(Wi)=(CTi)(1=1,2,3,4),

(W5) The h-torsion tensor 7, is given by

— 10—
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where s, is a positively homogeneous covariant vector of degree 0 in y".

According to Theorem 2.2 we can deduce

(2. 30) Ty =y, =8, =<L*G), o"
Fyy =T g’ =d'%s, Gl s By T G 87—, 57,
(2. 81)
< & ¥ JELT 0 O 8L, G, =8, 07, I8,
(2. 32) r=y'r/, =G, +s'y, —6',s5,-L"C/}, s".

Now we assume that z°, =y, 7/, =0. Then from (2. 29) we have v,
s, —¥,s5, =0. Therefore there exists a positively homogeneous scalar f(x.

v) of degree 0 in v' such that
(2. 33) s;=—f, /L or s'=—fH /L.
Then (2. 30) —(2. 32) are reducible to

(2. 34) r',=G' +T'., T' =fLk',,

(2. 35) Tt =T% 4, b

J oK

<= P LB 4

3

The above expressions show that the connection in consideration be-
comes an AMR-connection [9]. Converselv we assume that a Wagner con-

nection is an AMR-connection. Then from (2. 34) we have
(2. 36) z. =f(1, 8", —1,6",)

contraction of which by v, vields 7,° =0. Consequently we can state

Theorem 2. 7. A Wagner connection is an AMR-connection if and onlv if
the h-torsion tensor T/, is indicatric with respect to the upper index i, i e.. 70
=0.

Further we can state

Corollary 2. 7.1. An AMR-connection is a special Wagner connection such
that the h-torsion tensor T, Is i(ndicatric with respect to i

Corollary 2.7.2. An AMR-connection is uniquely determined by the foi-

lowing five axioms (AMR1)~(AMRS5):(AMRi) =(Wi)(i=1,2.3.4).
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(AMR5) The h-torsion tensor T/, is given by (2. 36). provided [ is a positive-
Iv homogeneous scalar of degree 0 in v' .
§3. TM-connections without v-connection. In this section, we shall

treat a TM-connection I'=(I"

ok ¥

I, . 0) without wv-connection and denote
it by TMI'(0). In this case, the non-linear connection /7', and h-connec-
tion I", are still defined by (1. 2) and (1. 3) respectively. The absolute

differentials of vectors v and X'(x. v) are defined as follows:

(3. 1) Dy' =dy' +I'' dx",
(3. 2) DX' =dX' +I, X’dz" =X',dz* +X*, Dy*,
(3. 3) X',=08X' /8x*-rI’ X', +I;, X', X', =9X" /oy"*.

We shall call a TM-connection I'=(I"/, , I"', , 0) a TM(0) -connection.
Then we can state

Theorem 3. 1. A TM(0) -connection I' is characterized by the following
five axvioms (T1)~(T5):

(T1) =(TM1), (T2)=(T3)=(TM5)(or (TM5)" ). (T4)=(TM86),

(T5) The v-connection parameters vanish, i.e., C,' =0.

Given tensors T', and Q)', satisfving (a) and (b) respectively, a TM (0)-
cannection is uniquely determined by (T1) —(T5).

Proof. From (3. 1) ~(3. 3) we have

(3. 4) Dg,, =g,,.dz" +2C,, Dy"*,

which implies (1. 9). Therefore if we neglect the v-connection, then the re-
maining proof is just the same as in case of Theorem 1. 0.E.D.

We shall call a TM(0)-connection a WTM(0)-conneclion if the tensor
T in (1. 2) is defined by the condition (¢). Then we have

Corollary 3.1.1. A WTM(O)-connection is characterized by the following
Jour azxioms: (T1), (T2). (T3), (T5). Given tensors T, and Q/, satisfving (c)
and (b) respectively. a WTM(0)-connection is uniquely determined by the above
Jour axioms.

Corollary 3.1.2. The Berwald connection is a special TM(0)-lor WTM

(0))-connection defined by T, =0 and Q/, =0, and it is also characterized by
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the following four axioms: (T1), (STM6). (GT5), (T5).

Corollary 3.1.3. The Rund connection is a special TM(0)(or WTM(0))
-connection defined by T, =0 and Q), =—P,,, and it is also characterized
by the following four axioms: (RTM1). (T2), (STM6), ('T5).

We shall call a TM(0)-connection an STM(0) -connection if the h-con-
nection is symmetric. Then corresponding to Theorem 2.3, Corollary 2.3. 1
and Corollary 2.3.2, we have

Theorem 3. 2. An STM(0) -connection is characterized by the following
Sfive azioms: (T1), (T2), (T3), (T5), (STM6).

An STM(0) -connection is uniquely determined by the four azxioms (T1),
(T2). (T5) and (STM6) if a tensor Q). is given such that

(1) Q) satisfies (b) or (2) Q/, satisfies (b) and (2. 20).

Note 3.1. An STM(0)- connection characterized by the above [our ax-
ioms is also called a generalized Belwald P'-connection [3].

Note 3.2. The Berwald and Rund connections are also special STM

(0)-connections defined by Q) =0 and Q/, =—P/

A

. respectively.

We shall call a TM(0D)-connection an RTM(D)-connection if it is h-met-
rical. Then from Theorem 2.1, Corollary 2.1.1 and Corollary 2.1.2, we
can state

Theorem 3. 3. An RTM(0) -connection is characterized by the Jollowing
Sour azioms: (RTM1). (RTM2). (RTM5). (T5).

An RTM(0) -connection is uniquely determined by the above four azxioms
in the following case ((1) or (2)):

(1) Given tensors T', and Z,,, satisfving (a) and (d) respectively.

(2) Given the h-torsion tensor ¥, satisfving ' =0

Note 3.3. The Rund connection is a special RTM(0)-connection de-
fined by T, =0 and Z,, =0 (or z,', =0).

Note 3.4. Corresponding to Theorems 2.2, 2.4, 2.5 and their corol-
laries, we can define many special TM(0) (or WTM(0))-connections. [f we
replace (TM3) and (TM4) with (T5), then most of the corresponding results
in §2 are still valid for their connections.

§4. Hypersurfaces of M,. Let M, be a hypersurface of M, repre-

sented parametrically by the equation
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(4. 1) ' =z W) =18 conpe=1:8 ..o on—1),

where we suppose that the variables #° form a coordinate system of M, .
In the following, Latin indices run from 1 to n, while Greek indices from

1 to n—1. We puf
(4. 2) B' =@gz' s/8u°,

and assume that the matrix (B‘, ) is ol rank »—1. If we denote the com-

ponents of a tangent vector ¥° to a curve C contained in M, by y° in

terms ol u#”-system, we have

(4. 3) y' =B' y°, 9y’ /3y" =B",.

Also for a general tangent vector X' (or X°) 1o M, , we have
(4. 4) X =B X

The fundamental function L(x“. ¥") on M_ induced from L{x'. ")

of M, is given by
(4. 5) Lo ,»0° J=Lig' ") B 4" )

Then the r-metric tensor g, (", y" )=43°L* /3dyv*dy"is express-

ible in
(1. 6) B @8t =ea @y B, B,

where g,, is the r-metric tensor on M, .

The covariant vector y, corresponding to y" is also expressible in

4.7 Y =8uy’ =L3L/3y" =y, B'

L

With respect to the tensor g,, ., we can choose a unit normal vector

NYu"™, ") at each point («”) of M, such that
(4. 8) By N B =0 g, N'N" =1,

Let (B%, . N, ) be the inverse matrix of (B, . N' ). Then the follow-

@

ing relations hold:

(4. 9) B',B" =é" , B',B°, =48, —N'N,, N'y, =N, v’ =0,

a

-
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(4. 10) g¥ =g¥B%B", B, =g"g;B’,,

(4. 11) guyB'y, =gB%,g¥By=g" B, , N, =g, N",

]

where g™ and g" are the reciprocal tensors of g, and g, respectively.

Hereafter we shall use the following notation:

iy _ i i ik i J 3 ajk a i x
Bms _BuBn’ an‘_'BaBuBr)Blm* _BiBaBY‘

(4. 12)
B** =B" B* B*, .

Now we define g, , s, and g as follows:

(4. 13) #o=CuBYN*, u,=C, B N'N*', p=C, N'N’N*.

Then the following relations hold [3]:

aBaé //a_},ﬁ =B" :2# nru j\"Tr » "Vi-n =M, ]\71 s

ina

(4. 14)

a ay

Nlllu :_2# unB‘a g N’ s B s =8 Moo

From (4. 6), (4. 10), (4. 13) and (4. 14) we have

,_\
N
—
(9]
~—
g
2
<
l
(e}
9]

o 1k as . a 68 apni rj ask
asy 7‘?(’!”8057,};— Il'r—_‘?Ce'Yg — "‘)(’r;(g Bii?‘

§5. Induced connections. Let vectors y° and X bhe related by (4. 3)

and (4. 4) respectively Then the expressions (1.4), (1. 5) and (3. 2) are writ-

ten in
Dy' =B/, +I"',B*, Jdu” +B',dy*, B,!, =8B, /3u",
(5. 1)
Bu‘? :Balr.l
DX' =B',dX* +(B/, +T,,B% +C/, ", B
(5. 2)
+C,,BL,B, )X du" +C,,,BEX tly”,
0
(5. 3) DX' =B',dX* +(B,. +I",), B2 )X "du" .

Now we define Dv" ., DX" and DX° as follows:

(5. 4) Dy" =B Dy', DX°=B", DX', DX" =B" DX' .
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Then on ! we can deline a connection I'=("}, ., I'°,, C" ) or

= n

I' =), I'", . 0) by means of (5. 4). In terms of these connections,

Dy®, DX* and DX are expressible as follows:
(5. 5) Dy® =dy" +I°, du’” ,

DX® =dX°® +(}, +C T Jdu’ +C X" dy”

(5. 6)
—X° du” +X°|.Dy",
(5. 6), X' —9X* /9u" —I'* 3X° s3y* +T * X",
(5. 6), X% — XY royT 1 6E X
5. 7) DX® —dz® +T° X*du” =X" du” +X* Dy,
(5. 7), X, =8X"/ou” —I'",8X" /8y* +T'2 X*, X* =0X*/dy".

If we first substitute (5. 1) in (5. 4) and compare the result with (5. 5),

then we have
(5. 8) e, =B (Boiy I B A

Similarly from (5. 2), (5. 4) and (5. 6) we obtain

(5 9) Pﬂav :Bui {Ba"r ;Pj‘xBi: +BJu Citk (BDK? —F;r Bks +FkhBh7)='r
(5. 10) cr =C, B,

Next substituting (5. 8) in (5. 9) and making use of (4. 9) we have
(5. 11) P2 =B @BF L5 BE LOp WEH. ) 6L =65 B,

(5. 11) H,=N, B/, +I'",B", ).

Contracting (5. 11) by B', . from (4. 9) we have

(5. 12) B +I' B*+C}!,N*H,=I'" B, +H

k4 a

N'

oy

(5.12) H =N 48 aprl B% g

1 Ay T ar a

' N*H, )

We shall call a connection I'=(I"°,, I'*,, C,

ax

) on M, obtained as

above the induced TM-connection and denote it by ITMI" In this case, H

¥
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is the normal curvature vector, while #H, is the second fundamental tensor.

Lastly from (5. 3), (5. 4) and (5. 7) we obtain
(5. 13) I's =B* (B* +I'}. B )

) 0 0 0
(6 ]4) Ba‘r +PJ1xBjs: :PnavB'o *h’m« ‘I\"" > H.nr ="N1 (B;r —;FfltBja: -)

We shall call a connection I, :(j'}’“"y, I, 0) on M, the induced T-
M(0) -connection and denote it by ITM (0). In this case, IUIW is the second
fundamental tensor for I, .

Note 5.1. The induced non-linear connection I'", is common for both
of ' and T, .

Contracting (5. 11) and (5. 13) by »”, from (5. 8) we have

0
(5. 15) gt Pl =g I's =I"
Similarly from (5. 12), and (5. 14) we obtain

0
(5. 16) H,=H,=H,, H =N*' (B, +2G"*)

Note 5.2. If the original connection I" (or I'(0)) is a WTM (or WT-
ay induced  from I'(or I'(0))
will be called the induced WTM (or WTM0))-connection. In this case, it

should be noticed that H  is rewritten in

M(0))-connection, then the connection on M

(5. 16), H, =N, B/, +2G' +T", )

Differentiating (5. 11), by v” and making use of (4. 14) and (5. 14),

we have

H,,=H, -0,

T8
(5. 17) )
=H, +p, H,-Q/,, Q, =0, N, B,

Suppose that 7, =0. Then it follows from (5. 17) that

(5. 17) B, =00 ar H, =0,

Conversely we assume that (5. 17), holds. Then if we contract (5. 17)

by ¥*. then we have H, =0. Consequently we can state
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Lemma 1. The normal curvature vector H, wvanishes if and only if the
second fundamental tensor is expressible in (5. 17), .

Let X2 be an object defined on M, such that it is a tensor in
M, of type (1, 1) and, at the same time, a tensor in M, of type (1,1). Then

the relative h- and v-covariant derivatives are defined as follows [3]:
(5. 18) Xm0k g FE el =8 0 U e T, =B 5T 4
where 6, =9/0u” —-I'°,8/9y° and I/, =T"/,B’, +C,/, N' H,
(5. 19) Xal=X g + XL C, — X Ol XG5 =K 5 Ty

where C,", =C,". B', .

0 0 0 0
(5 20) X;‘Z:v :()‘VX.Jr: _}-X::FJ:‘Y 7)(12 P.ikv _|,A"J_:’F:7 _X::- F:Y >
where I, =I"), B, .

By virture of (5. 18) ~(5. 20) we can derive
0
(5. 21) B . =H,N, KB, 6 =H N, B, =g  N*.

If we contract (5. 12) (or (5. 14)) by »” and make use of (5. 15) and

(5. 16), then we have
B! +I' B =r°B, +H#, N',
which 1mplies
(5. 22) é,=B"9/8z"+(B,,—I",B',)a,9y'=B",8,+N'H,38,/8y",

where &, =9,/9z"' —I'’, 9,72y’ . Then by virtue of (5. 22) we obtain
E, =L

Lemma 2. The induced TM-connection and TM (0) -connection are both

=B', L, =0. Hence we can stale

LY

metrical.
From (4. 6), (5. 18), (5. 19), (5. 21) and (5. 22) we have

(5 23) Bany = 8w B frj:: ] gaul-r :g(Jlk B::;: =0.
Similarly we obtain

(5. 24) Bty =Buiin By + 28855 Baie =20 BE «

anr
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Differentiating H_ in (5. 16) by v*, from (4. 14) we have
h b
(5. 125) H,,=H,p, +2H,, H,=N,(B,,+G', B, ).

olla

Note 5.3. For the induced WTM (or WTM(0))-connection, Lemma 1

and Lemma 2 are still valid. And the above expression is rewritten in

H,,=H,u, +2H, +(T}, +T", )N, B", .

| an
For the later use we define two tensors on M as follows:

(5. 26) s Paie TEC gt %t Baniis

(5-27)  w e,

Then we can state
Lemma 3. The tensor v, is symmetric in all indices, while the tensor
. . .. .
w15 symmetric in lower indices.

Proof. From (4. 14) and (5. 26) we first have

i1k ra 13k o~ Th o mli o W
B any (/l'ikun N =B asy ('K.Jhux N =B an C’:‘me N
- £y Th .
=Mooy — B an Cn‘,n. N r = Vasy

which shows that the tensor v _,, is symmetric in a. 8 and 3 hecause of

¥

the symmetry of C Next, from (5. 26) and (5. 27) we have

ik =

&

("{' “ ‘Ul‘ﬁY - '_?.{CYG’? # ’ ™ C:ﬂn'J l"[ <T ): lL[ Dd'f :

a

whict indicates that the tensor g °, is symmetric in A and . Q.E. D.

§6. The induced TM(or THM(0))}-and WI'M(or WTM(0O))-connections. Let
us first consider the induced TM-connection ITMI'. Then we can state

Lemma 4. The ITMI satisfies all the avioms (TM1) ~(TM6).

Proof. By virtue of Lemma 2 and (5. 15). the axioms (TM1) and (T
M2) hold. Next it is seen from (5. 10) and (5. 23) that {(TM3) and (TM4)
hold. Since (5.8) and (5. 15) implies ¥°,=0, it follows from (5. 23) that
¥'Dg_ =0, that is, (TM5) holds. Lastly we shall prove that (TM6) holds.

If we denote the Christoffel symbols of the second kind formed with g, by
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v, . then we have [4]

{6: 1) You=8 (B, +v,  Bate”C,  BiB,,+BIB ~BIB*)

where y,, are the Christoffel symbols of the second kind formed with g, .
Contracting (6. 1) by v“v”. we have

(6. 2) 267 =yl 4" y®

=B, B! +8G")

On the other hand, if we contract (5. 8) by v and replace the index
a« with y then we have

(6. 3) r'=B" (B, +2G")

Therefore from (6. 2) and (6. 3) we can conclude that (TM6) holds.

Q.E.D.
We put
b

Fnr :Bni (Bu(\- —1-6"':8*7 )’ Tu‘r ZT‘)«BT:’ Quq? ZQJ'II:BQJ,:

iar *

Dilferentiating (6. 2) and making use of (4. 14), (5. 16) and (6. 4), we
have

b
(6. 5) G, =G°, =p" H, +T°, .

If we subtract (6. 5) from (5. 8), then we obtain

(6. 6) T T L

=y + T

Differentiating (5. 8) by »”. from (4. 14) and (5. 11), we have

(6. 7) I s =2 H, +B", (B, +F'k..JBz.:).
Subtracting (6. 7) from (5. 11), from (6. 4) we obtain

(6 8) @aav =

Fﬁq'l' _]-‘n7llﬂ = —lu oﬂ [IY +QHQY -
From (5. 11) and (6. 8) we have

(6. 9) v, =t/ B +(u H,—p°H,) P, =p"H, —QF,.

Since p°, =p° =0, T° =T' =0 and Q) =0/, =0, it follows from
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(6. 6) and (6. 8) that
(6. 10) T =T =tk G =0 =

Thus, from Theorem 1.1, Corollary 1.1.1 and Lemma 4 we can state
Theorem 6. 1. The induced TM-connection I'TMI" is the T'M-connection on
M, determined by tensors T°, and Q, in (6. 6) and (6. 8) respectively, and

the h- and hv- torsion tensors 7., and P). are given by (6. 9).

When T, =0 and Q,, =0, from (6. 6), (6. 8) and (6. 9) we have

h I3 b
6. 11) T =—u* B, QF =—4"H,,

h B b h b
(6 ]2J T:‘r =M ﬂ.'s ]]7 — K u'r }In 3 Punv =M ua Ilr'r &

From (5. 25), (5. 27), (6. 11) and LLemma 3 we have
i A b
(6 13) T.uu'r = Tur-:ﬂ e E.ar I{a _‘?tu u? ‘F[n :

From (6. 11) and (6. 13) we obtain
L] h h

h b [
(6 14) ‘r'na‘.f :G:T +Tﬂav +Qnu*f :Guav _pﬂsv Hn _‘—?ﬂ av H.u ___'u“ﬂ ‘H—wf 2

is the intrinsic h-connection of Berwald, namely G, =G°,,, .

87T

where G,

From (5. 11) and I'/, =G, . we have

i [ b b
(6 ]5) Pﬂu? :Fﬁur +1u nu I{T L] 11:7 ‘“_if B "1 (B;I‘T + GJ!P( B ir: )

Consequently by virtue of Corollary 1.1.2 we can state

Corollary 6.1.1. The induced Hashiguchi connection IHI" is the T'M-con-
nection on M . determined by tensors ’];i'“, and é:T in (6. 11). The h- and
hu-torsion tensors are given (6. 12) and the h-connection is expressible in (6.14)
(or (6. 15)).

Now, by the use of (6. 14) and (6. 15) we can calculate G,°, and gel

b b b
(6 16) Gauv =J—'uor +,f.1 "mHn —2\(# nu Ifa +|u07 ‘Un )

Similarly, when T' =0 and Q,, =—P,', we obtain

c c b

(6.17) TSl B =—p Sl —Pr o, £ =Py, B
4 b b [ b

(6 18) Taﬂv zﬂna ‘Hv _/‘tn'rH.a» P:'r :/‘lunHT +Pnaa--
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¢ h
Since T =7T° , from (6. 13) and (6. 17) we have
c 7 < b b
(6 19) Faa‘r = GnaT + Tnu‘r +Qua)' = Guay —H nn hro-‘?/“a‘r Ha ‘nuﬂ.u H‘r _Puav 3

On the other hand, from (5. 11) and I/, =I"*’, we obtain

¢ B b
(6. 19), o = Oy =Pl b’y B

Consequently from Corollary 1.1.3 we can state

Corollary 6. 1. 2. The induced Cartan connection 1CI" is the TM-connec-
tion on M, determined by tensors ”1.';", and é:, in (6. 17). The h- and hv-
torsion tensors are given by (6. 18) and the h-connection is expressible in (6. 19)
(or (6. 19), ).

Note 6.1. We denote the intrinsic h-connection of Cartan by "%’ and
. by P®*° . From (6.19) and (6.

19), we can calculate G/, , but not I'*7 or P*° .

the hv-torsion tensor with respect to ™[

Next we consider the induced W7TM-connection I". For this connec-
tion, it is easily seen that the I' satisfies (WTM1)~(WTM5). Hence from
Theorem 1.2 we can state

Theorem 6. 2. The induced WTM-connection I' is the WTM-connection on
M., determined by tensor T°, and O, in (6.6) and (6. 8), and the h- and
hv-torsion tensors T,°, and P, are given by (6. 9).

Note 6.2. For the above connection I', the vector T"G does not van-
ish, that is, a path with respect to I" is not, in general, a geodesic of M.

Now we shall consider the induced T'M(0Q)-connection f'n. It we take
account of the definition of I', and use the proof of Lemma 4, then we
can prove that all the axioms (T1)~(T5) hold. From (5. 8), (5. 13), (6. 5)

and (6. 7) we obtain

(6. 20) Th=tp il +0% B =—20% 8, +05
(6. 21) 7oy =m0 Pl =, B — 10, .

Then it is seen that tensors 7°°, and 0, in (6.20) satisly (a) and (h)
respectively. Consequently, from Theorem 3.1 we can slate
Theorem 6.3. The induced TM(0) -connection ITMI'(Q) is the TM(0)-

connection on M . determined by tensors T°, and Dj’" in (6. 20), and the h-

e 87
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and Ffﬁ;'?, are given by (6. 21).

Immediately from Corollary 3.1.1 we have

Corollary 6. 3. 1. The induced WTM(0)-connection is the WTM{0)-connec-
in (6. 20). Also in this case,

and huv-torsion tensors T

ar

tion on M determined by tensors T", and O°
n-1 - v

Note 6. 2 is wvalid. The h- and hv-torsion tensor ©,°, and P, are given by
(6. 21).

If ' =0, then from (6.21) we have 7,°, =0. Hence we can state

Lemma 5. If a TM(O) (or WTM(0))-connection is symmetric, then the in-
duced TM(0) (or WTM(0)) -connection is also svmmetric.

Let us consider the induced STM(0)-connection I”, . that is. the con-

nection on M, | induced from an STM(0)-connection on M ,. Then this

I, satisfies (T1), (T2). (T3), (T5) and (STM6), while the tensor Q. in(6.
20) satisfies (b).
Since T, =20Q,, on M,, we have T°, =%0Q, on M,,. There-

fore by the use of this relation, we have
(6. 22) YO =—p ' H, +%0 =—pu° H, +T°, =T",,

which shows that the relation between 7°°, and (), in (6. 20) is compati-
ble with that in (2. 16) (or (2. 18)). Hence from (2. 17) we have

6.28) I, =Gl +%@Q) + 0, HHUQ ws + 0w )-
Consequently, [rom Theorem 3.2 and Lemma 5 we can state
Theorem 6. 4. The induced STM(0)-connection is the STM(0)-connection
on M, determined by the tensor QF, in (6. 20) and the h-connection is ex-
pressible in (6. 23).
When Q/, =0. from (6. 20) and (6. 22) we have
. f_"n " [ i ! .l & & [ 0 %
(() 24) 1 y T T H 1[0 , Qu'v :(_]D.’s'f ]:-Qlu 4 HY ] Qvn :"—2/107 [[n
From (6. 13). (6. 23) and (6. 24) we obtain
b I h
6.25) I}, =G} —p° Hy—2u" H +p° H,).
Consequently from Note 3.2 we can state

Corollary 6.4.1. The induced Berwald connection IBI' is the STM(0)-
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a
BY

I
connection determined by the tensor (0 in (6. 24) and the h-connection is ex-
pressible (6. 25).

Note 6.3. The expressions (6. 16) and (6. 25) are mutually equivalent.

Similarly, when Q/, =—P,, we obtain
’ ¥ r b
Tar zifla'rHo L] anr :(_Pﬂar)z—‘?#auHY A_‘IJJ:'?‘ 3
(6. 26) ,_
O, =—2u"H,.
- b B
(6 27) Pnar :G:Y _#UHYH[I _Pauv _2(# QaHY +Par H.a ).

Hence we have

Corollary 6. 4. 2. The induced Rund connection IRI" is the STM(Q) -con-
nection determined by the tensor é‘,",, in (6. 26) and the h-connection is express-
ible in (6. 27).

Note 6.4. From Corollary 2.1.1 and Theorem 3. 3 we can express
(6. 27) in another form (containing I'*" ).

§7. Various induced connections. In this section, we shall treat vari-
ous induced connections. First we can state

Lemma 6. If a TM-connection is r-metrical, 1.e., Dg,, =0, then the in-
duced TM-connection is also r-metrical,

Proof. 1f Dg,, =0, then from (5. 23) we have Dg,, =0. Q.E.D.

The connection on M, induced from an RTM-connection on M, is
called the induced R7TM-connection. Then taking account of Lemma 6, we
can easily prove that all the axioms (RTM1)~(RTM5) hold for this connec-

tion. From (6. 6) and (6. 8) we have

(7. 1) T, =—p", H,+T°,, 05 =—u%H,+0.),.
If we put Z,,, =0,,, —0,., . then from (7. 1) we have

(7. 2) Z = B —~ By =2 B

which implies that Z,,, +Z,,, =0 and Z,,, =Z,, =0. Therefore from (2.

4) we have

(7' 3) FBQT :F*ﬂa‘f - Cﬂat TEY +%g N (FZ_-BIT +TBC? _Ttﬂ'} )
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Consequently from 2.1 and Corollary 2.1.1 we can state

Theorem 7. 1. The induced RTM-connection is the RTM-connection on
M., determined by tensors T°, and Z.,, in the expressions (7. 1) and (7. 2)
respectively, and the h-connection is expressible in (7. 3).

When 7%, =0 and Z,, =0, from (7. 1) and (7. 2) we have

(7. 4) T8, =—p" H,, 2, =0.

k4

¢ h
Since T° =T°,, from (5. 27) and (6. 13) we have

¢ b
{7 5) Tsa? = {“ Ve -+ S(C:swr M ” 5 Cuca H a? )} Ho _2/‘!.3? H

=

If we apply (7.4) and (7. 5) to (7. 3) and take account of Lemma 3,

then we have

(7. 6) Tg=Tte S H (004 C8 g% =0 a t Hapt)

b b
o B =y H,

a

b b
where H* =g ™ I, .

Then by means of (6. 16) and (7. 6) we can calculate P*" and get

(7 7) P:l;n'? :Puar +H0 (;u any +Cn"r M 57 +C:; M Eu _C.:yf‘t a: )
b b b
4‘7#57 H* —‘# an H'r +#“YH“ *

Consequently we can state

Corollary 7. 1. 1. The induced Cartan connection is also the RTM-connec-
tion on M, determined by (7. 4) and the h-connection ];;, is also expressible
in (7.6). In this case, expressions (6. 19) and (7. 6) are changeable to each oth-
er by means of (7. 7).

Note 7.1. If the kv-torsion tensor 7.7, satisfying 7%, =0 is given, then
the induced RTM-connection is determined by 77 alone according to the
method of Corollary 2.1.2.

Note 7.2. As well as the induced RTM-connection, we can consider
the induced R WTM-connection and it becomes also the R WT'M-connection on
M, ., determined by the hv-torsion tensor 7, (or tensors 7° and Z

apy )

according to Theorem 2.2 (or Corollary 2.2.1).
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The connection on M, induced from an S7TM-connection on M, is
called the induced STM-connection. Then we can prove that this connection
satisfies all the axioms (TM1)~(TMé6), while it does not satisly (STMé) be-
cause of (6. 9). In other words, the induced STM-connection is a T'M.con-
nection, but not in general an STM-connection. Consequently from Theo-
rem 1.1 we can state

Theorem 7. 2. The induced STM-connection is the TM-connection on M, _,
determined by the tensors T°, and @,,", in expressions (6. 6) and (6. 8) respec-

tively, and the h-torsion lensor T 1s given by

(7. 8) v, =pH, —p°H,.
If ., =0, then from (7. 8) we have
(7.9) PosHy =p H,

which implies that #, =0 or there exists a positively homogeneous scalar

A of degree —3 in ¥“ such that
(7. 10) Mo, =AH H, (H %0).

If A0, then contraction of (7. 10) by y° yields H,6 =0. Therefore
b

from (5. 25) we have }}H:O. The condition H_,=0 implies also H,=0. Dif-
B")=0. Sim-

x

ferentiating this result by v°, we have fﬁw =N, (B/, +G/
ilarly 1‘1}””“7 =N, G, ,..BL =0 And so on

Hence we can state

Corollary 7.2.1. The induced STM-connection is an STM-connection on
M,

is expressible in (7. 10). In this case, the following facts hold if g, =0:

. if and only if the normal curvature vector H, wvanishes or the tensor p,,

b b
(7.11) H =0, H,=0, H,=0, N,G/,, B =0 and so on,

0 I kh aay

where G =G

J kb 7 klln

The connection on M, induced from a G7T-connection on M | is called

no
the induced GT-connection. For a GT-connection, we have Q/, =0. There-

fore from (6. 8) we obtain

(7. 12) 05 =—u° H._.

— 26 —
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The induced GT-connection satisfies all the axioms (TM1)~(TM6).
However the expression (7. 12) shows that the axiom (GT35) does not, in
general, hold.

In other words, the induced GT-connection is a TM-connection on
M, . but not in general a GT-connection. Consequently we can state

Theorem 7.3. The induced GT-connection is the TM-connection on M | de-
termined by tensors T, and Q, in expressions (6. 6) and (7. 12) respectively.

If 0 =0, then from (7. 12) we have
(7. 13) p'y=0o0r H =0,

Therefore it follows from (6. 6), (6. 8), (6.16) and (7. 13) that

e o e h
(7. 14) T =T%, FL=0%, =T, 05 =05 =0 B}, =TI}
In consequence of (7. 14) we have
(7. 15) Paa'r =B |,r (Bn“? + ]-'l'..AB :;: )= Gunr W T“oY ’ Fn-r :Ga-r e Qr ,

which shows that the induced GT-connection is the intrinsic G7T-connection
determined by 7", (the tensor on M, induced from a tensor T, deter-
mining the original G'T-connection on M ). In such a case., we shall sim-
ply say that the induced connection is intrinsic.

Consequently we can state

Corollary 7.3. 1. The induced GT-connection is a GT-connection on
M, . if and only if the induced GT-connection is intrinsic.

The connection on M, induced fromthe IS-connectionon M, is called

1

the induced IS-connection. Then it is seen that this connection satisfies all
the axioms (RTM1) ~(RTM5) and the tensors T"Y and @f? are given by
(7 16) T“}’:_‘MG?I,{ TTOY! Qﬂa)‘:_#aﬂHY‘

Then we have Z,,, =0,,, —0,., =0. Differentiating 7%, by yv°. we
have

b
Te =T, =—p° H, —2u" H, +T2, +2u° T' N, B*,,

which, because of (5. 27), implies
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b

e ?F;;"r = ?‘.BET = _Hn (Vnw _Qcmrp‘l dn _2Cncafu dy )_ Q#EYH

a

(7. 17)
+T., +2,T", T =T' N,B".

Since the original connection is the [S-connection, the [ollowing rela-

tion holds:
(7 ]8) (Cijr T’k ) :::: . _PUIY _%(Tcsv + Tﬂ:? )
On the other hand, the following relation holds:

'\!7 19) Caut Td? :Cjir (6 rh _ATTA'TA )/‘rhnB‘M :(CJ’H: Thk )BJM T Mo T“‘

Bea ALy : S

If we apply (7. 16) (with Z,,, =0) and (7. 17) ~(7. 19) to (7. 3), then

@

we have

b i
Ty =8 (O G + 0y, — Gt o Mot H® =¥,

ar ar a

(7. 20) )
+Pg + T, +0°, T =T, +P + T, +p° T"

¥ -

Consequently from Theorem 7.1 and Corollary 7.3.1 we have
Theorem 7. 4. The induced IS-connection is the RTM-connection on M | de-
termined by tensors T", (in (7.16)) and Z

pressible in (7. 20).  The induced 1S-connection is the IS-connection on M, if

way (=0), and the h-connection is ea-
and onlv if the connection in consideration is intrinsic.

The connection on M, induced from the R WGT-connection on M _ is

called the induced R WGT-connection. This connection satisfies all the axi-

oms (CT1)~(CT4) and tensors 7‘"7 and ,@;Y are given by (7. 16).
Consequently from Corollary 2.2.1 and Theorem 7.4 we have
Corollary 7. 4. 1. The induced R WG T -connection is the R WTM-connection

on M, determined by tensors ?1-‘”', (in (7. 16)) and Z

tion is expressible in (7. 20), provided thai T"D =T° *0.

(=0), and h-connec-

1 aar

We shall call the connection on M| induced from a Wagner connec-

tion on M, the induced Wagner connection and denote it by IWI'. This con-
nection satisflies (CT1)~(CT4). From (6.6), (6.9), (2.29) and (2.30) we have

(7. 21) T, =—p H, +T°,, T, =5"y,—6%s,—L" (C}, s'),
(7 22) ?aav Z#nu 'hr'r 7#0}’ ‘L[zs +7"u07 * ruuv :d‘ua "'.'f _d‘ﬂ}f Su ]
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Tﬂm‘ :nu.aa 1_]-,- =, }[” e s) =i Py "CY

T 3
aay * ¥ gav Aa T Ta ot

Making use of (2. 10) and (7. 22) we obtain

Ttu :,l’ég . (-Tﬂm -+ T et T T gva )_ C:a Tdu (Tdo =8 v T oor )
(7. 23) i
=5 v;_d\:a e —H Cd‘Hn—}T‘z Cd‘d‘ s? (I;[u :}[0 +Tﬂ"b}’

which coincides with (7. 21). Therefore from (2. 9), (7. 22) and (7. 23) we have

'1—'501' :F*ﬂﬂ;’ + [[‘r # ar —-111 o‘f Hﬂ + gBT S.ﬂ + SQ Cﬁa? + ()?a C

(7. 24) =Gl —Cly, )" +H (C ', +C o —C ™)
o Z:‘ (C'Yﬂﬂ C.‘Sdk‘ -{- Cﬁaﬂ CY‘TE - CO‘“E Cﬂo"f )s ‘ (HG = Ig—ac f]r: )3
which implies

{7, 26) P =G —p  Hy+y,5" =8%s ~L' CF, 5",

T

Thus we can state

Theorem 7.5. The induced Wagner connection IWI' is the RWTM-con-
nection on M, determined by the h-torsion tensor T, in (7. 22), and the h-
connection and non-linear connection are expressible in (7. 24) and (7. 25) re-
spectively.

The connection on M, induced from an AMR.connection on M, is
called the induced AMR-connection. This connection satisfies all the axioms
(RTM1) ~(RTM5) and the tensors T°, and 7. are given as follows:
@88 0 T ut B T, TSP = )
where flu®, ¥° )=f(x" (v ) B*,v° ) and i =", — 1"

};q}’ :#nﬂ ]{" _#u'f}[ﬂ +Tﬁﬂ7' TB“T zf‘“([ﬂdu.r —leaa)’
(7. 27) N
Towr =HoaHy = Pra Hy + Tray s Tugy =L p Bya = Ly £ )-
From (2. 33) we have

(7. 28) s, ==y, #L or s*=—f* /L.

Applving (7. 28) to (7. 23). we have
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- __ i
(7. 29) T e, +FLH, (8, =8 ),

which coincides with (7. 26). Further if we apply (7. 28) to (7. 24) and (7.

25) we obtain

(7. 30) G, +T°,, T, =—pu" H, +fLh°

¥ *

a
I,

a
Ly

™+ By, —p" H, + 81"k, —LC,),)
(7. 31)
—1—110 (c‘r“: “ tu —i-cuuz H :'r s Cuc'rl‘! nz )

b

b b
Siice H, =H, +T" =H, +fL5" N, B’ =H,. (7. 31) is, because of

(7. 6), expressible in

(7. 32) il Sl N L R L

¥

Consequently we can state

Theorem 7. 6. The induced AMR-connection is the RTM-connection on
M, determined by the h-torsion tensor z°, in (7. 27), and the non-linear con-
nection and h-connection are expressible in (7. 30) and (7. 31) (or (7. 32)) re-
speetively.

§8. Special hypersurfaces. In this section, we shall consider various
special hypersurfaces. Let us first consider a curve C: «" =u”(s) (s:arc-
length) in M, . Since a‘ =x'(«"(s) along C. the unit tangent vector is

given by
(8. 1) Y =deirde=8", du s ds)=B" 1",

Then the absolute differentials of hoth sides in (8. 1) are, because of

(5. 16) and (5. 20), as follows:

Bl =, 1" N de” 48", 00 =H N8B D",
(8. 2)

4]

Di*=(H, !")N'du" +B',Di* =H,N'du" +B',D1".
Therefore from (8. 2) we have along C
[1]
(8. 3) Di'yds (or DI'/ds)=(H,du"/ds)N' +(D1"/ds)B", .

Paths with respect to [TMI" (or ITMI'(0)) are geodesics of M, be-

i e



— MNERAFHE — 31

cause of (TM6) (or (T4)). Similarly with respect to TMI'(or TMI'(0)) the
same fact holds on M ,. Hence it follows from (8. 3) that geodesics of M, |
are those of M, if and only if H, =0. Consequently we can state

Theorem 8. 1. A hypersurface M, of M, is totally geodesic with respect
to ITMI (or IT'MI'(0)) if and onlv if the normal curvature wvector H, identi-
cally vanishes.

If #,=0 then we can deduce H,, =0. In this case, we have
0
H,=H,=T+0), T =NT/S B?.
Therefore taking account of LLemma 1, we obtain

b
(8. 4) Hop =T 2 =0,

as a s

Conversely if (8. 4) holds then we have H,, =0, +p, H, (or ](}]'“ =
Q.. ). contraction of which by v7 vields #, =0. Hence from Lemma 1 and
Theorem 8.1 we can state

Corollary 8.1.1. Let M, be a hypersurface of M, endowed with the
induced TM-connection I' (or TM(O)-connection f'ﬂ ). Then the following prop-
ositions are mutually equivalent

(1) M., is totally geodesic with respect to I' (or I’ ) ).

(2) The normal curvature wvector H, identicallv vanishes.

(3) The second fundamental tensor H,, (or [}] ea ) 1S expressible in (5.17), .

(4) A condition (8. 4) alwavs holds.

Nate 8.1. For the IBI" and [RI", the above propositions (3) and (4) are
the same.

A hypersurface M, is called a fhyperplane of the first kind if each
path of M, with respect to I'(or I')) is a path of M, with respect to
I'lor L, )

For the induced WTM (or WTM(0))-connection, the equation (8. 3) also
holds. Hence we can state

Theorem 8.2. A hvpersurface M, of M, is a hyperplanc of the tirst
kind with respect to the induced WTM (or WTM(O))-connection if and only if
the normal curvature wvector H, identically vanishes. In this case. Lemma 1

still holds.

— 81—



32 —— On TM-connections of a Finsler Space and the induced connections ——

h

The IWT is a WTM-.connection on M, _, and }}a :Hu—*-'}i"a. Hence
from (2. 30) and Theorem 8.2 we can state

Corollary 8.2.1. A hypersurface M, of M, is a hyperplane of the
first kind with respect to the induced Wagner connection if and only if the fol-

lowcing equation holds:
ﬁ o’ 3
8.5)  H, =N, (D C/.s'—=s'3,).

We shall call a curve C: 2’ =2"(s) in M,an h-path with respect to I"

(or I",) if the following equations hold along C:
(8. 6) Dy' ds=0, Didz'ds) /ds=d’x' s + T, (x,3) (dx’/ds) (dx* /
ds)= 0.

A hypersurface M, , is called a hyperplane of the second kind if any h-
path in M, with respect to I'(or I',) is an h-path in M with respect
to I'(or I')).

Along a curve C:a' =z («°(s) in M, ., from (5.1)~(5.4) we have

(8. 7) Dy'/ds=(Dy"/ds)B', + H, (du"/ds)N",
Didz ' /ds) /ds= (Didy°/ds)/ds)B", +{H,, (u* v ) (du"/ds) (du */ds)

Fp,(wt, v ) (du®ds) (Dy'/ds) Y N*,
(8. 8) 5 0 0
Didx'/ds)/ds=(D(dy*/ds)/ds)B", + {H,, (u*,y" )(du’/ds)(du * /ds)

e, (wt Ly )du” Sds)(Dy”"/ds) Y N© .

Then it follows from (8. 7) and (8. 8) that any h-path in M, with

respect to I'(or I°,) is an h-path in M, with respect to I'(or r' ) if and
only if H, =0 and (H,, +H,,),/2=0 (or (H,, +H,,)/2=0)

Consequently from Corollary 8.1.1 we state

Theorem 8. 3. A hvpersurface M, of M, is a hvperplane of the second
kind with respect to ITMI (or ITMI'(0)) if and only if M,
desic and the tensor Q)

aad

Corollary 8. 3. 1. With respect to the induced GT-connection or ITMI(0)

is totally geo-

1

15 skew-symmetric.,

with O, =0, the following propositions are mutually equivalent:
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(1) M, is totally geodesic.

(2) M, ., is a hyperplane of the first kind.

(3Y M is a hyperplane of the second kind.

Note 8.2. The IHI' IBI' and the induced IS-connection are practical
examples for Corollary 8.3.1.

Corollary 8. 3. 2. With respect to ITMI (or ITMI'(0)) with the symmetric
tensor Q.. M, is a hyperplane of the second kind if and only if M, is
totally geodesic and the tensor Q, wvanishes, i.e., H,, =0.

For an AMR-connection we have Q,), =—Lf, k', +fI, h', —fLC/, —
P/ [9], which implies Q,", =—(fLC,, + P/, )N, B}, namely Q./, =0, .

Note 8.3. The ICI IRI" and the induced AMR-connection are practi-
cal examples for Corollary 8.3. 2.

Similarly from Theorem 8.2 we can state

Theorem 8. 4. A hypersurface M, of M, is a hyperplane of the second
kind respect to the induced WTM(or WTM(O))-connection if and only if M ,_, is
a hyperplane of the first kind and the tensor (., is skew-symmetric.

For the R WGT-connection, we have Q,', =0 and hence Q,, =0. Con-
sequently we have

Corollary 8. 4. 1. With respect to the induced R WGT-connection, a hyper-
surface M, of M, is a hyperplane of the first kind if and only if M, is
a hyperplane of the second kind.

For a Wagner connection, from (2. 29) we have T, — 7T, +0Q., —
Q.s =%, =0.

Therefore if the tensor )", is skew-symmetric, then from the above

relation we obtain
(8 9) Qn"u =.1/2’(T.|ﬂu - "rnﬂa )

Since H,, :Igw +T,, +0.;, =0, (f H, =0), it follows that the ten-
sor T, is symmetric. Hence by virtue of (8.10) we have Q,, =0.

Consequently we can state

Corollary 8. 4. 2. With respect to the induced Wagner connection, M, 1is
a hyperplane of the second kind if and only if M, is a hyperplane of the
first kind and the tensor Q., wvanishes, that is, H, =0 and H,, =0.
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The projection factors B, are independent of »°, while the recipro-
cal projection factors B, are, in general, dependent on y°. If the B® are

independent of y°, namely B° , =0, then from (4. 14) we have
(8. 10) #e, =C, B2 N*=0.

We shall say that a hypersurface M, , is projection-factor-direction-free or
simply pfd-free if the equation (8. 10) holds for the M, .

When a hypersurface M, :2' =2' («") of M, is given, we first
at the (B,

N*). However, there are many ways to choose (B‘,, N'). For this, it is

choose a hypersurface element (B',, N') and then discuss M,
known [3] that a hypersurface M, is pfd-free at any hypersurface element
if and only if the enveloping space M, is a Riemannian space.

Now we shall seek for conditions that the induced TM (or TM(0))-con-
nection is intrinsic. A TM (or TM(0))-connection is the connection deter-
mined by tensors T°, and Q/, satisfying conditions (a) and (b) respective-

ly as follows:

Pr=gt T, I, =G T

X k k JK

FJ"J: = Gi}k + TJ'tk %7 Qth A

Therefore the intrinsic TM (or 7'M (0))-connection on M, , correspond-
ing to the above TMI" (or TMI'(0)) on M, is constructed as follows:
(8' 1]) T“v o 7”« B :: 2 T.iﬂ‘r = an;,‘x v ,]Yj’k B r!l:";: T ‘?T ‘k }\rl ]3 kY ’fi u.‘: :

(8.12) % =ilf, %, T2 =60 +T2 + 0%, 8 =p! B

8Y r <pY

where G, is the h-connection of Berwald formed by L (¢, v°) and
Gﬂ.r ::\Jﬂ (;‘307

By virtue of (5. 11), (5. 13), (5. 27), (6. 16), (8. 11) and (8. 12), the above

' is expressible in

a7y

(8. 13) e e N TS L S (for TMIM,

g 0
(8. 14) e =@’ H,),, +2" H,+I'", (for TMI0)).

ar

e 0
Then if I, =T, (or I';),), then contraction of (8. 13) (or (8. 14)) by

y”" yields g H, =0 and hence u”, I, =0. Conversely this condition im-
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0

plies I'* =I"°, (or I'",) and hence y* ', =I" . Especially for TMI", from
(9. 10) we have C, =C,, B . Thus we can state
Theorem 8. 5. The induced TM (or TM(0))-connection is intrinsic if and
only if M, is pfdfree or M _ is totally geodesic with respect to ITMI (or
ITMI ().
Similarly we can state
Theorem 8. 6. The induced WTM (or WTM(0))-connection is intrinsic if
and only if M, is pfd-free or M, is a hyperplane of the first kind with
respect to the induced WTM (or WTM(0)-connection.
A hypersurface M is called a hyperplane of the third kind if the unit
normal vector N‘ is parallel along any curve Cin M, | .
By the use of (5. 18) —(5. 20) we can deduce
(8. 15) DN'=N'_du®°+N'|,Dy", 15}\"" =N',du®+N' Dy".
Taking account of (4. 8), we can deduce that
N Y=-H,B", g"+g,,.(N'N' 2—g" )N*,
(8. 16)
N|,=—p,,B%g".
N',=—H,B%g" +g, ,(N'N' /2—g" )N*,
(8.17)
N, =—%u" B, —pu, N*.

Then it follows from (8. 15)~(8. 16) that N* is parallel along any curve

Cin M, if and only if the following equations hold:

(8. 18) B +8::BuN"=0, g, .N'N* =0, pn_ =0,

(8. 19) H, +8,uB  N*=0, g, ,N'N*=0, u*, =0, u, =0.
On the other hand, the following relations hold:

(8. 20) g.=2,.B%,.8,.,=g.,.B" +2C,, N"H,.
In consequence of (8. 18)~(8. 20). we obtain

(8. 21) H,+g,.BN'=0,g,.B*N'=0, u,, =0,
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(8 22) f]ad —“gi.r s B;: ‘T\,'J :O gu‘.ilk A’T‘ Arl Bkﬂ :0' tunu :O’ Ja;: :()
If we contract the first equation of (8. 21) (or (8. 22)) by v°, then we
0
have H, =0 and hence H,, (or H,, )=0,",. Therefore equations (8. 21)

and (3. 22) are expressible in

(8. 23) H =0, 0, +8uBulN'=0,g,,N'N'B* =0, p,, =0,

af

‘r-'r 20- Qn b T BITJVI :O,, g“w‘?\,"‘,\,TJB* :Ov Ho :O*
a a s i1k 8 B

(8. 24)
iy =12

Consequently we can state

Theorem 8. 6. A hvpersurface M, of M, is a hyperplane of the third
kind with respect to ITMI (or ITMI'(0) if" and only if (8. 23) (or (8. 24))
holds.  In this case, M, is both pjd-free and totally geodesic.

Immediately we have

Corollary 8. 6. 1. With respect to the induced RTM (or RTM(0))-connec-
tion. a hvpersurface M ., of M, is a hyperplane of the third kind if and only
if the following fact (1) (or (2)) holds:

(1) M, is both pfd-free and totally geodesic and the tensor Q., wvanishes,

that i:S- Has =0 and I.[rm =0.
@ M,

is both pfd-free and totally geodesic and the tensor Q, and the
vector g, both vanish, that is, H ,=p,, =0 and p, =0.

Note 8.4. The ICI',.the induced AMR-connection and the induced IS-
connection are practical examples for the first case of Corollary 8.6.1, while
the IRI" is that for the second case.

A TM(0)-connection is called a GT(0)-connection if the hv-torsion tensor
vanishes. The connection on M

M

induced from a GT7T (0)-connection on

net

. is called the induced G7'(0)-connection.

For a G71 (or GT(0))-connection. we have

(8. 20) B = = L a4 =2 Trx i Pu; s

ir

We consider the induced GT'(or GT(0))-connection. Suppose that H, =0.
Then from (4) in Corollary 8.1.1 we have T =0 and hence 77, =0,

Therefore from (8. 25) we obtain
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g ik Bi: N’ =— Tnmx _2(:”"7 TT[! +Pnrm )s
(8. 26)
Einn ‘IV‘ N Bk.-i = _Q(Tv:rm _l':ur Tyn +Pnnn ):

where the index N means contraction by N' . Applying (8. 26) to (8. 23)
(or (8. 24)), we have

(8. 27) H,=0, p,=0,T,, +2P,,=0, T,,+p, T, +P

nep | nng

:0’

nng

(8 28) bra.—; :nuan :Oa M. :O’ :r + QPrnm ZO’ Tn:m Lmem :0

naa

Thus we can state

Corollary 8. 6. 2. With respect to the induced GT (or GT(0))-connection,
a hypersurface M, of M, is a hyperplane of the third kind if and only if (8.
27) (or (8. 28)) holds.

Note 8.5. The [HI" and [BI' are practical examples for Corollary 8.6.
2 and the last two common conditions for both are given by P ,, =0 and
P =0,

Similarly we can state

Theorem 8. 7. With respect to the induced WTM (or WTM(0))-connection,
a hypersurface M, of Mn is a hyperplane of the third kind if and only if (8.
23) (or (8. 24)) holds. In this case, M .
first kind.

Corollary 8. 7. 1. With respect to the induced WRTM-connection, a hyper-
of M, is a hyperplane of the third kind if and only if M, is a
"=0, that s H, =p =0.

ag

is pfd-free and a hyperplane of the

surface M

pfd-free hyperplane of the first kind together with Q
Note 8.6. The induced Wagner connection {WI is the practical exam-

ple for Corollary 8.7.1.
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