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ON IS-SPACES IN A FINSLER SPACE

Hiroshi YASUDA

Introduction. In previous papers [4]", [5], we have introduced a TM-connection
TMI' on an n-dimensional Finsler space M from the standpoint of tangent
Minkowski spaces and proved that M is a G-Landsberg space with respect to TMI" ,
that 1s, its Av-curvature tensor Fﬁjmvanishes if and only if the TM-connection in con-
sideration is the IS-connection. A G-Landsherg space with respect to the Cartan
connection is nothing but an ordinary Landsberg space. A Finsler space M is called an
IS-space if M admits the IS-connection ISI. Then an IS-space is always Auv-flat
(;5} x»= 0) and each indicatrix [ x(z : any point of M) as a Riemannian space is iso-
metric under the parallel displacement with respect to IST'.  Further the IST is also
r-metrical, namely Dg, ,= 0. As a special case, the IST" involves the Berwald con-
nection and the corresponding IS-space becomes a Landsberg space. When n= 2 ,
the above case alone occurs. In a previous paper [5], a condition was found for M
to be a non-Landsberg IS-space. With respect to this space, however, there still many
problems to be solved. For example, what special properties does it possess?
Does such a space really exist? And so on.

In the present paper, we shall discuss the above problems and develop the theory
of this space. Since the IS-connection is a GT-connection of SK-type, we investi-
gate, in § 1, properties of the latter generally. In § 2, we find a special property
of an IS-space and consider applications of it to other cases. As a consequence,
we have that if a C-reducible Finsler space M is an IS-space then M is a Riemannian
space or a Berwald space when n= 4 |, and then M can be a LCP-space when n= 3.
In § 3 and § 4, we study a Riemannian [S-space and a C-reducible Berwald IS-

space respectively in detail. In either of these cases, the A-connection of the IS-con-

1) Numbers in brackets refer to the references at the end of the paper.
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nection depends on only the positional arguments. These spaces may be consid-
ered as special IS-spaces. The last section is devoted to the study of a C-reducible
LCP-space. This space is an interesting example as an IS-space and has a note-
worthy property, that is, it admits a LCP-frame.

The terminologies and notations refer to the papers ([4], [5], [6]) unless otherwise
stated.

§1. GT.connections. Let M be an n-dimesional Finsler space with a funda-
mental function L(z, y) and be endowed with a TM-connection TMT* =(T'!, T &,
Ciy). ThenI'!,and I' { are given by

1 I'ie =G +T5a +Q ., T'L =yT}, .
Let M be hv-torsion-free with respect to TMT' | namely
(1. 2) Tix =Gix +T5, (Qf =0).

We shall call a TM-connection defined by (1. 2) a GT-connection. The h-curva-
ture tensor with respect to a TM-connection is given by
Ripxn =Kjpn +Cir Rin . Riw =y R} ya =y Kixn »

(s =3) ey
Kipw =8n Pix —&s Tty 0%, Ty =07, T'hy .

From (1. 2) and (1. 3) we have

(1) (1

1 i
Kj.u; =ijh +T5kh _T,fhrc > Tﬁkh =d T.nn: / dat _Trr; Gj.’cr

(1. 4) )
_P; T;)ur +F;-rk Tirh +Trk Gﬁ.,, s

where H!,, is the curvature tensor of Berwald.
On the other hand, the curvature tensor Rk, with respect to the non-linear connec-
tion " § is given by
: - it g4
(1 5) R:”t =r5;.1—‘i—r_?,; Fi:."jﬂjkh +F§ch _Tflk’
; i) i i
Tin = Tien =0Ty /82 'L Thy +T% G
where Ky, is the curvature tensor of Rund. Then it is verified that the following

relations hold:

'T: /ay ax* =aTj,: /az" . T4, =Gjx +T}, ,

(1. 6)
P Tons =T 5 Tiner s 0" Kbin )y =



— JEINIEFER RS —

From (1. 4) ~ (1. 6), we can state

Lemma 1. With respect to a GT-connection, the following relation holds:
L7 8R4 /@y =Kiu .

We shall say a Finsler space M to be n-flat and h-flat with respect to the connec-
tion in consideration if the curvature tensors R%, and R, vanish respectively. It
is seen from (1. 3) that if M is A-flat, then M is also n-flat. From (1. 3) and Lemma
I, we can state

Theorem 1. With respect to a GT-connection, a Finsler space M is h-flat if and only
if M is n-flat.

Using R, ,x» =g, RT;, we put

Ryixny y* Xt X*

(1. 8) Kix, vy, X)= ‘
y (gjkgth_g;hglk).)"' y* X X

Then we shall call X (z, v, X) the sectional curvature defined by y' and X* with
respect to the connection in consideration. Especially we shall say M to be of
scalar curvature K (x, y) or to be of constant curvature K if K (z, » X)is indepen-

dent of X* or Kis a constant respectively. From (1. 3) and (1. 5), we have
(1- 9) Ru:an =Ka£oh ‘“Tthlo "‘}'T:‘r T.rrl y

where the index 0 means contraction by the vector y* and the short vertical line in-
dicates the covariant differentiation of Cartan.

Applying (1. 9) to (1. 8), we have
(1. 10) (Koson —KL*hip —TFyp1o +Tsr TS )Xt X* =0 .
If (1. 10) holds for any X* |, then we obtain
(1. 11)  2(Kei0n —KL*hiy ) —(Tinte +Thite ) +(Tyy T, +T,, TT )=O0.

Conversely if (1. 11) holds, then (1. 8) holds for any X¢ . Hence we have
Theorem 2. With respect to a GT-connection, a Finsler space M is o f scalar curva-
ture K(x, y) if and only if an equation (1. 11) holds.

Let M be n-flat with respect to a GT-connection. Then from (1. 5) we obtain
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11z R =K +Ths —Thi +TL T4, =75 T4,
F TR iPL, =TT Pt = -where Kby = Ky, .
Contracting (1. 12) by ¥* , we have
(1. 13) Kown =Thie #TE ' Th =0,
which implies

(L. 14) K:ou _Tthl.ﬂ +Tt7' TE =0

Let this connection be of SK-type, namely 7", , +T,, =0. Then it follows from
this property that 7,, T} =T7,, T7 . On the other hand, the tensor K,,, is

3

also symmetric in i and A Therefore in view of (1. 14), we have
(1 15) Kiah +Ti r T: =0: Ti nlo =0.

From (1. 13) and (1. 15) we have K}, =—T" T} | differentiation of which by
y* yields

(1. 16) Keowi=—Tp T} =T T .
It is known [3] that the following identity holds:
(1. 17) Kin =% &Kinin —Kirin )
Substituting (1. 16) in (1. 17), we have
(1. 18) Kinw =8T5e —=Tin )JT? +¥(Th, TE—=TL, TL )
substitution of which in (1. 12) yields

This. —Thns +HThe —Th, JTEH(TE, ¥TL P, JT

(1. 19)
—(Trx ++ Tk +P5, )T} =0.

Conversely if (1.18) and (1. 19) hold, then it is easily verified that equations
(1. 12) and (1. 15) hold.

Hence we can state

Theorem 3. With respect to a GT-connection of SK-type, M is of n-flat (or h-flat)
if and only if equation (1. 18) and (1. 19) hold

Under the same condition, the equation (1. 11) is reducible to
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(1. 20) Ki, =KL*hi —T.L Tt

Then we can state

Theorem 4. With respect to a GT-connection of SK-type, M is of scalar curvature
K if and only if an equation (1. 20) holbs.

We shall seek for another condition. Since K%,,, =Kin(x +C7, Ki, —CL,
K3, , we differentiate (1. 20) by y* v-covariantly and apply the result to (1. 17).
Further noticing that 74|, =T%, +Ci, TS —Cs, T . we obtain

8Ky =L*(K |, R} —K|[, hy )+3K(yx bt —y, k)

(1. 21) ) .
+Thr T§ —Tke T§ F(The —=TL JTL .

Conversely, contracting (1. 21) by ¥* | we can obtain (1. 20).
Consequently we can state

Theorem 5. With respect to a GT-connection of SK-type, M is of scalar curvature K
if and only if an equation (1. 21) holds.

Let the scalar K be a constant. Then the equation (1. 21) is reducible to

(1. 22) K4, =K@ by —y, kL HTL, |
wliere Thy = e Th —T% T4 70 —Th WL} /38
Differentiating (1. 22) by y* |, we have

(1. 23) H,f kh =K(gfk ) ju —&in & .ivc )+“T-j}ch )

where nTuf kh =:f§cuuf d
Suppose that the equation (1. 23) holds. Then by contracting (1. 23) by v/ we
have (1. 22). Further if we differentiate (1. 22) by »' and take account of (1. 23),

then we have
Kn_{(yk f"’fx. _-yh ﬁ:c ):O}

contraction of which with respect to 7 and % yields (n—2) v.K,, =0 and hence

K,;, =0. On the other hand, we have a Bianchi’s identity
(L. 24) Kgchlj +K_Ek1h +K§U|k +P5cr KL +P_i;'r K};h +Pﬁzr ka =0
If we apply (1. 22) to (1. 24), then we obtain

Ok Bh —3n Bk JK oy 0 b —o B K, O B —y, B, JK 1,
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+Tenty +Tixin +Th1e +Phr TE, +Pir Th +Pir Th=0,
contraction of which with respect to 7 and 4 yields

(1.25) (n—2)0x K1, =3 Kix )4 Touir +T7 0 —T 5w, +Ps. T5, —P2,
Pry . Ty =0

If K 1s a constant, then from (1. 25) we obtain

(L. 26)  Tru. +TL1s =TIy, +P4, T5, —P2, T3, +P, T7, =0
Conversely if (1. 26) holds, then from (1. 25) we have

(12 :27) w K1, —y, Kix =0

Since K,, =0, the vector K|, isindependent of y* . Therefore if we differentiate
(1. 27) by ¥* , then we have g;, K|, —g;, K| =0, contraction of which by g**
yields (n—1)K |, =0. Thus we can state

Theorem B-. With respect to a GT-connection of SK-tvpe, M is of constant curvature
K if and only if equations (1. 28) and (1. 26) hold.

§ 2. IS-spaces. Let Mbean IC-space. Then there exists an indicatric tensor 7"
such that

(2. 1) T,, +71,;, =0, where T,, =g, TT ,

2. 2) Tyyn +T06 +20Coyr Tk +P,x )=0, where Ty, = g,: T} .
In this case, the following relations hold [6]:

(2. 3) T,y Clp +Tr, Chi +T7x Cf, =8P,

2 4) T, +Th, +Pi, +Tf CL, +T Ciy —T% CI, =0

(2. 5) Tisn +Teny +2T] Cryn +2T5 Cryx =0,

(2.6) T +T., +4P!, =0,

(2. 7) Ghipn F+T xin —Cluixw =0, where

‘ i ‘ i i
th:k _cjhlk ! 1 CthT 4Py i _P_rx Gty —P;k Cf—r

(2. 8) - g f
+Trk Jih _zj Crh _T;h CJT .
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Differentiating (2. 6) by y”* , we have
(2. 9) Tj)cm +T§c“h +4P§Mh =0.

By interchanging indices jand 4 in (2. 9), we have a similar expression. Then

if we subtract the latter from (2. 9) and apply (2. 7) to the result, then we have
Cfch:_j _Cif:h +4(P§Unh _Pjthn_r ):OJ
which implies

Bis (Cih:j _Cij:h )+4(P}c1_{rh _Qpi_r Cish

(2. 10)
_Pkr.hu +2Pih Cis; ):0
By means of (2. 3), we have

B(Pikhu_t _Puu'h )=Tr§ Ckr:.; HT_T Ckri:h
'f'(Tjrh _TL )C.v:r.e ‘|‘Tft Ch:rlc '_T.’:t c; Tk 'f'Tjrk Ctrh_T}:kCzw £

(2 11)

On the other hand, we obtain

8 s (Ciu;r i _Cihu,r Tj )=Ch:t_fur T _Ckihwr TI

(2. 12) ;
+Q(Cira C’Isr T,T _Cif Cls‘r T: )

From a Bianchi’s identity we have
(2. 13) Crinly —Cres lh =Pisent —Prxys +P]: Cone =Py Ciyr .
By virtue of (2. 8) and (2. 10) —(2. 13), we obtain
2C%n Cris T —2C]x Cris TG +2(Cix Priy —Cix Py )
(2. 14) +8(Cl;, Pren —Clin Pry, ) H(Tix +Tis oy
(T35 TT 5o T Thas Ty n I ¥(Tsay —Tymz JCE, =0,
Applying (2. 2) and (2. 6) to (2. 14), we have
(2. 15) Uekns =Ukins » Ukny =Cl, Pren —Cl4 Pry, .
In this case, the following relation holds:

(2. 16) Upgyn =" Upgpy -
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We shall say a Finsler space M to be pseudo-CP-symmetric if M satisfies (2. 15).
Applying (2. 3) to (2. 15), we have

(2 17) Tri S;jh_Trlc S;r)h —l_Tfj S;ik_Trh S;ik =O>
contraction of which by g%/ yields
(2. 18) Ty Sen+T5 Sew =T7° (Sarsn +Snesr )

Since tensors T7% and (Sy,en +Sursx ) are skew-symmetric and symmetric in

indices r and s respectively, from (2. 18) we have
(2. 19) Ser Th +80a TE = 0.

Consequently we can state

Theorem 7. An IS-space is pseudo-CP-symmetric. In this case, relations (2. 17)
and (2. 19) hold.

A Finsler space M will be said to be CP-related if M satisfies

(2. 20) P =pu(z, 3)C;,

where p (x, v)1s a positively homogeneous scalar of degree 1 in y! .

In this case if we substitute (2. 20) in (2. 15), then we have u (2, y)=0o0r S; .,
= (. Hence we can state

Theorem 8. Ifan IS-space is CP-related, then M is a Landsberg space or v-flat.

Let M be P-reducible, that is, the tensor P, ;. is expressible in
(2. 21) P ,x=@ hyr +P b +P. by, ) f(n+1) (n=3)
where P, =P,,, g’* . Then applying (2. 21) to (2. 15), we obtain
(2. 22) Ci, Pr by —Clh Pr by, =CL, Po by —Cin Pr by,
conract=n of which by g®* yields
(2. 23) mn—38)C,,, PT +P. C" b, =0, where C™ =C}, gt" .
Further if we contract (2. 23) by g*/ | then we have

(2. 24) 2n—2)FP. CT™ = 0.
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Consequently we can state

Theorem 9. If an IS-space M is P-reducible, then a relation (2. 22) holds and the
vectors C, and P, are mutually orthogonal, i.e. ,\P, C™ =0. When n=4, the tor-
sion tensor C, , . is orthogonal ta the vector P* | ie. , C;, P, =0

We put

C=iy @ 3,8 =C; G . P=(F; P* J* . P =F, Pt ,

(2. .25) .
mt =C* /C,n* =P* /P, m, =C, /C,n, =P, /P,

Especially when n=3, we shall call a frame (/¢ , m* , n* ) an LCP-frame if the
frame is orthonormal. Further a three dimensional Finsler space M will be called
a LCP-space if M admits an LCP-frame.

Then we can state.

Corollary 9. 1. A P-reducible IS-space of dimension 8 can be an L.CP-space.

Let M be C-reducible, that is, the tensor C, , , 1s expressible in
(2. 26) G =00, Hpp +C; hyp 6y Wy J fingl) Hm=8).

Then it is easily seen from (2. 26) that M is also P-reducible. Therefore sub-
stituting (2. 26) in (2. 22) and making use of (2. 24), we have

(2. 27) (C; P, +P; C, Jhxp +(Cx Py +P; Cy )by, =(C, Py +F, Cy )by
G, Pe 4P, Co iy

contraction of which by g#** yields
(2. 28) m—3)(C, P, +P, C, )=0.

When n=4, from (2. 24) and (2. 28) we have C, =0 or P, =0. Because of (2.
26), the former implies that M is a Riemannian space. It follows from the latter and
(2. 21) that M is a Landsberg space. On the other hand, it is known [2] that a C-
reducible Landsberg space is reduced to a Berwald space. Therefore M is a
Berwald space. Hence we can state

Lemma 2. [If an n-dimensional IS-space M (n=4) is C-reducible, then M is a
Riemannian space or a Berwald space.

Let n be equal to 3.  Then contracting (2. 27) by C* P"* | we have

(2.29y C*P'h, =P*C, C, +C* P, P,
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I C* P?* =0, then from (2. 25) and (2. 29) we obtain
(2. 30) by, =my, m; +n, n, ,

which indicates that a frame (7! , m* ., n* ) is orthonomal without fail. Conse-
quently we can state

Lemma 3. IfC* P* 0, then a three-dimensional C-reducible IS-sqace is an LCP
-space.

§ 3. Riemannian IS-spaces. Let M be a Riemannian IS-space, that is, M is a
Riemannian space which admits the IS-connection. Then there exist tensnrs 7%

and T, such that the following relations hold for a vector y?* :
@. 1) Tiovn =0, T4 +Tk, =0, T +Tiyx =0, Ty +To0, =0,
(3. 2) Ty =9 Tix Thy =T, y* =0T, +T,, =0.
In this case, the IS-connection (T" ¢, ,T" L , 0 )is given as follows:
(3. 3) P ie =5 HE)+ T (2)T | =T}, ,

where {,% } are the Christoffel symbols formed with g, , (z).

If the IS-connection is symmetric, then from (3. 1) and (3. 3) we have T, =0,
Hence we can state

Lemma 4. The IS-connection of a Riemannian space ts symmetric if and only if the
h-connection I' £ is the Riemannian connection {}.} .

Let M be n-flat. Then by virtue of (1. 18), (1. 19) and (3. 1) we have

(3. 4) Kin =@T5T: +Th: TE —Tkr TR ) /3,
(3. 5) Thrw —Thie +8(T2n T —T5 TE +T5: Tr )=0.

In this case we have T% |, y¥ =0, differentiation of which by y* vields because
of (3. 1) and (3. 2)

(3 6) Tsclh =,)’3 VS T‘kh v(TSEIh z)wl.,‘ =VJ Tih ’

where the symbol V indicates the covariant differentiation with respect to % }.
T
We denote the Riemannian curvature tensor by R!,, . Differentiating (3. 4)

and (3. 5) by ' and making use of (3. 1) and (3. 6) we obtain
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3. 7) Riwn =2TF, T +T4, TT —Tt, Tiw )/ 8
(3 8) \71 Tfh;h =(Tlﬂc T:crh _Tf-n T;.-,: +T.;.l. T_fr )/ 3.

Consequently we can state
Theorem 10. A Riemannian IS-space M is h-flat (or n-flat) with respect to the IS-
connection if and only if equations (3. 7) and (3. 8) hold.

Let M be of scalar curvature K(z, y. Then from (1. 20) we have
Kmuh —KL* h +T;, T} =0,
which is expressible in

(3. 9) iR, kn —K(g,x 8in —&in g!k)+TJiT Tinty y* =0

If (3. 9) holds for any vector y* | then we obtain

T r
R, kn + ch;n _K(Qg;k Bin —8in Bk —&kn L, )

(3. 10) .
+Tj.sr T;h +[‘kl‘.r T_Th =0,

By interchanging indices # and 4 in (3. 10) we obtain a similar equation. Sub-

tracting the latter from (3. 10) and using ﬁ cen 10 (1. 23) we have

(3. 11) RJuch =K(g_;kgfh —E&in Bik )+T_ﬁtkh )

where Tj;;:kh =(Th;r Tix —Txi» TTs 4807, Lisv M8
In this case, the condition (1. 26) is , because of (3. 6), reducible to

¥ (Ve The .Téj — Vs Tth «Ton +20, Ti, +Tge +3 Vs T;Ta
: T:r _3v1 T;t 'Ti:r +4VS T;z . Tir _4VS T;t 'T‘j'r )/3=03

differentiation of which by y* vields

Vr T;z 'T.ft"j "—'VT T;t 'T;zh: +QV1’ Ti_} 'T‘:;: +3vk T}L 'TE”'

(3. 12) )
_‘3‘?1 T;: = Ffar +4"'7h T;t 'Ti-r —4\7h TL 'Tjr =0

Thus we can state
Theorem 11. A Riemannian IS-space M is of constant curvature K with respect
to the IS-connection if and only if equations (3. 11) and (8. 12) hold.

§ 4. CRBIS-spaces. In this and next sections, we shall consider non-Riemannian
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C-reducible IS-spaces. 1f we apply (2. 21) and (2. 26) to (2. 3), then we have
Co (T3 hyn +T7 by +T5 by J=3(P, hyn +P, hes +Ps by, ),
contraction of which by g’ * yields
(4. 1) C; T% =8F; .
1f n=4, then M is, because of Lemma 2. a Berwald space, namely
(4. 2) P, =0, Pi, =0, G}, =0 Cluly =0

Also when n=3, such a case may be considered.

From (2. 2) ~(2. 7), (4. 1) and (4. 2) we have
(4. 3) c, Tr =00, Tr, +C,,, TT =0,
(4. 4) Tisn + T +20C T +CiTya) /(0 +1)=0,
(4. 5) Tars +They +2C, Tiy +C; Tow ) f(n+1)=0,
(4. 6) Ty +Thy =0, Ty =T =0,
(4. 7) Tl own =—T5 Chuar +T4 CTn —T7x Con —Tix Cir.

Since Cppwin =Ciinex » we apply (2. 26) to this expression and contract the

result by g/* . Then we obtain

(4. 8) C,,n =ah,, +2C, C,,/(n+1)—(C, I, +1 C, )/ L,

where a=C, ,, g'* / (n—1)—2C* / (n* —1). By the use of (4. 8) we have
(4. 9) Ct,, =bhi —2C' C, / (n+1)—(C" I, +I* C, )/ L,

where b=a—2C? / (n+1). From (4. 3), (4. 4) and (4. 8) we have

@ 100 €. T, =C* T,,, =—aT,, , Ty C* =bT%.

If we substitute (2. 26) in (4. 7) and apply (4. 3), (4. 4) and (4. 8) ~(4. 10) to
the result, then we can obtain T%,,, =0. Thus we can state
Lemma 5. If an IS-space is a C-reducible Berwald space, then the tensor T is

independent of y* .



— IERAHEE — W

If we differentiate the second equation in (4. 10) by y”* , then because of Lemma

5 we have
(4. 11) Ty G4y =by, TE +BTE, .
Further substituting (4. 9) in (4. 11) and using (4. 10), we obtain
Ty {byn +2bl, / L+2bC, / (n+1)+C, / L* } =0,
which, if 7% 40, implies
(4. 12) byn +281, / L+2b6C, / (n+1)+C, / L* =0.

If we regard (4. 9) as a differential equation with respect to C*? | then it follows
from (4. 9) that (4. 12) is a condition for (4. 9) to be integrable.
Similarly from (4. 8) (or from the first equation (4. 10)) we have

(4. 13) a., +2al, L—2aC, / (n+1)+C, / L? =0.
Since G!,, =0and T!,,, =0, we have

(4. 14) Thin =Tixln ¥ - (Thin Joy =Tjeln -
If we put

(4.15)  Thw =Thia —Thix +Tf Thn —T5 The,

then from (4. 14) we have

4.168)  Then =Thaes =Tiuln —Thats +T5x Tha —TIa Tha .
In this case, from (1. 6) and (1. 12) we obtain

(4.17) Ry =Khu +Thn . Kian =Hixn + T s .

We shall call a Finsler space M a CRBIS-space if M is a C-reducible Berwald
space and an [S-space. If RE, =Fft,, or kujk,, =?j“. then it follows from (4.
17) that this space is a locally Minkowski space.

Thus we can state

Theorem 12. In a CRBIS-space, the h-connection T" ', of the IS-connection is in-
dependent of y* . The scalars a and b in (4. 8) and (4. 9) satisfy (4. 10), (4. 12) and
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(4. 13). The tensors RL, and }{:f:rm are given by (4. 17). Especially if Ri, =
T;h orE L n= Fj wn. then the space in consideration becomes a locally Minkowski space.

Let M be n-flat. Then from (1. 15) and (4. 14) we have
(4. 18) Tiin =Tknls 3° o (Tk1n ) vy =Tknly
which corresponds to (3. 6)in §3. Therefore in the same way as in §3, we odtain
(4. 19) B oo =@Th Tty +Th, T0x —Thr T7a )/ 8,
(4. 20) Tinly =(Tex T]n =T Tk +T5: T35 )/ 3.

Hence we can state

Theorem 13. A CRBIS-space is h-flat (or n-flat) with respect to the IS-connection
if and only if equations (4. 19) and (4. 20) hold.

From (4. 19) and (4. 20) we have H!,, =T%,1, +Tks T%, . Therefore if
the following relation holds, then the tensor H!,, vanishes, that is, M is a locally

Minkowski space:
(4. 21)  Thl, +Tia TE, =0.

Conversely let M be a locally Minkowski space. Then we have K, =0 and
Hi,, =0. Therefore it follows from (4. 17) and (4. 21) that the tensors R}, and
I?; «n both vanish. Consequently we can state

Corollary 13. 1. If we can choose a tensor T , such that an equation (4. 21) holds,
then a CRBIS-space is a locally Minkowski space if and only if M is h-flat (or n-flat)
with respect to the IS-connection.

Note 1. Corresponding to this corollary, a similar corollary can be obtained for
Theorem 10.

The tensor H, ; ;, in this section and the tensor }T?J .xn 1n §3 have the similar

i

property. Therefore corresponding to (3. 11) and (3. 12), we obtain
(4. 22) H i xn :K(guc in —Ein gtk)+rﬁuchs
where iz}m =(Thsr TTun —=Txae Tin +2T5x Tyar M/ 3-

Tt Ty =L 15 T} _*_QTL lr The +8T & The —

(4 23) r r r I3 T t
B [ Thr 4Ty Iy Thip =T 1y T =0
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Hence we can states

Theorem 14. With respect to the [S-connection, a CRBIS-space M is of constant
curvature K in the sense of Riemannian geometry if an.d only if equations (4. 22) and
(4. 28) hold.

§ 5. C.reducible LCP-spaces. Throughout this section, we assume ¢? p? = ()
Let M be a three-dimensional C-reducible IS-space. Then because of Lemma 3,
M is an LCP-space. We put

(5. 1) Ty =flx, )L (x,y)a} ,a}, =m* ny —n' m, ,

where f{z, y)is a positively homogeneous scalar of degree 0 in y*. From (2. 25),
(4. 1) and (5. 1) we have

(5. 2) Sz, W L(x, y)C=8P.
Applying (2. 21)to (2. 6), we have

(5.3) Tty +Th +P0' by +n, hi Fny bt )=0.
By the use of (2. 26) and (2. 30), we obtain

mt, =m'|, —C(3m’ m,; +n' n, )/ 4,

(5. 4)
mlu =m, |J +C(3m; m; +?’l‘- n; )/4;

n', =n'|, —C(m* n, +n*m, )/4,

(5. 5)
ng,, =ml, +Clmy ny +n, my, ) /4.

If we differentiate (5. 1) by 3/ and make use of (5. 1), (5. 2), (5. 4) and (5. 5),

then we have

6.6 T = Tl Jak AL e =t my gl =t )
—8P(m' a, +n' by )/2,a,, =g, al .
If we putdy, =Ln’|, m, ,then we have
(5. 7) Lm,|y n =Lm’ |, n, =—d, .
Substituting (5. 6) in (5. 3), we obtain

L(f,, ax +fix ab )+f, ak +1c a} )+Pn, hi +n, bt —2n' h,, )

(5. 8) . .
+ /L {mth ne +m'|yn, —nt|, my —nt|, m, +m' Mily iyl
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—nt (mg|, +m,|x)} =0
It is easily seen that following relations hold:

i i k

al, m* =—n' ala* =m' alm, =n,,afn, =—m,,

(5. 9) . ) .
fo 2 =0, m*|, my =my|, m* =n*|, n, =ny|, n* =0.
If we contract (5. 8) by m’ m* n, and #’ n® m; respectively, then on makin
¥ p g

use of (5. 9) we have
(5. 10) Lf,, m" =—P, f,, n' =0.
Therefore the vector Lf,, is expressible in the form
(5. 11) Lf,, =—Pm; .
Since Lm'|, I, =—m, , because of (5. 7) and (5. 9) we obtain

(5.12)  Lm‘|

=== =1 T |
, =—1'm, —n' d, .

Similarly for Ln*|, , we have

(5. 13) Lnt|, =—1*n, +m* d, .

i

Conversely if (5. 11) ~(5. 13) hold, then it is verified that (5. 8) holds.
Substituting (5. 11) —(5. 13) in (5. 6), we have

(5. 14) Tt =/l at, —l,at —1' a,, )—P@m, al, +3m" a;, +3n* by, ) /2.
J i J

In this case, we can prove by the use of (5. 2) and C-reducibility that tensors T’y
and T%, given by (5. 1) and (5. 14) satisfy (2. 1) and (2. 2), and further from (5.
11)~(5. 13) that T%,, =T*',. Thus we can state

Lemma 6. If a C-reducible LCP-space M satisfies (5. 2) and (5. 11)~(5. 15),
then M is an IS-space.

Since C? =g;,, C* C/ and C* =Cm* |, from (2. 26) and (4. 8) we have

mt, =bht —m* m, )/C—8Cm* m,/ 4—1" m, / L,

i

(5. 15),
C,, =0b+C*/4)m, —Ci/L.

which, because of (2. 30), yields

(5. 15),  Lmé|, =—I' m, +L({C/4+b/Ch'n, .

= 16—
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Comparing (5. 15), with (5. 12), we have
(5. 16) d =—L({C/44+b/C)n, .

If d, =0, namely b=—c* /4, then we differentiate this expression by y" and

substitute the result in (4. 12). Then we have
(5. 17) C* L* =8.

The v-curvature tensor is, because of (2. 26), given by
(5. 18) L* S ixn =Sa,am =S, x hen —hn hix ),

where S=—C? L? /8. On the other hand, the indicatrix I, at a point x of M is
considered as a Riemannian space. In this case, the curvature tensor S: ¢ ot Ly
is given by

(5. 18) L Sonn =LY 8y pn 0w b sy By )

Therefore if (5. 17) holds, then the tensor :S':zm vanishes because of (5. 18).
However such a case should be excluded. In the following, we shall consider &,
as a non-zero vector. Consequently we can state

Theorem 15. Let M be a three-dimensional C-reducible space with C* P? = 0.
Then M is an IS-space if and only if M is a LCP-space such that relations (5. 2) and
(5. 11) ~(5. 13) hold, provided d, is defined by (5. 16).

We shall call a three-dimensional Finsler space M a CR8IS-space if M is a C-
reducible IS-space with C* P* 0.

Put A, =m;|, n* =m*|, n, . Then we have —A, =n,|, m* =n'|, m, .

Since m', [, =m*|, m;=n'|, [, =n*|,n,0 tensors m* |, and n'|, are express-

ible in
(5. 20) mt, =at A, ,at |, =—m* 4, ,
which, because of (5. 1), implies
(5. 21) gk, =0, TY; =Lf); ak.
From (5. 2) we have

(5.22)  f|, LC+fLC|, =38P, .
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Since P, =C,|, ° , P, =Pn, and C; =Cm, , from (5. 20) and (5. 22) we have
(5. 23) €, =0, P=E&, ;, fL=3Ay., FloLC=8F |, .

Let this space be of scalar curvature K with respect to the [S-connection. Then

from Theorem 4 and (5. 1) we have
(5. 24) Kbt =(K+f2)L* b, .

Hence we can state

Theorem 16. A CRS8IS-space M is of scalar curvature K with respect to the IS-con-
nection if and only if an equation (5. 24) holds. In this case, M is of scalar curvature
K+ f*% in the usual sense.

On making use of (1. 12), (2. 21), (5. 1), (5. 14) and (5. 21), the curvature ten-

sor R4, with respect to I" § is found as follows:

(5. 25) Riw =K&, +L {f 1w ok —Fia ah L0 B = B ) HFPrt ap, }
Let M be n-flat. Then from (1. 18), (5. 1) and (5. 14) we first have

(5. 26) Ky =LAf (e by, — b hL)+4fPn’ an, / 3},

whitch implies K; o =f*L*h,,. Next, from (5. 25) and (5. 26) we have

(5. 27) Linar—Fsah —fFn* ap /3=0.

Contracting (5. 27) by a*, we have —f |, bt —f|r a} ah —fPn' h,,,/3=0,
contraction of which with respect to 7 and j yields —2f |, +f|x 2§ —fPn,/ 3=0.

Since f |, [* =0, from the above expression we have

(5. 28) fin=—%fFn, .

Consequently from Theorem 3 we can state

Theorem 17. A CR3IS-space M is n-flat (or h-flat) with respect to the IS-connec-
tion if and only if equations (5. 26) and (5. 28) hold.  In this case, M is of scalar cur-
vature f* in the usual sense.

Let M be of constant curvature K. Then the equation (1. 23) first holds. Now
we shall calculate #T""_‘, en in (1. 23). From (5. 2), (5. 4), (5. 5), (5. 11), (5. 12), (5.
13), (5. 15), and (5. 16) we have

(5. 29) P,, ={—CPm; +fL(b+C?*/ 4)m,} =(Lfo—CP/4)m, ,



(5.
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30) Ln', == {l' n, +LCn* m,/ F+L(ECHb/Chnt n,}

31) Layy,, =l a,x +4+LCay, m, .

By the use of (5. 29) ~(5. 31), we have

—~

Tj e = (g, 04 —&in d‘f:)-|—4an£(lk a;n —1 ax )/ 38
32) —2Pm, (I h} —I, ki )+4a,, { Pt 1, —1I n, )
—3p* (5+b/C%)m' n, +P*(9b/C*—4)n* m, } /3.

Next we shall calculate (1. 26). The tensor %-fk in (1. 26) is given by (5. 26).

Therefore applying (5. 26) to (1. 26), we have

(5.

Sf(fh lk _f|k !J )+2 {_(Jf|r P—]—fP'r)nT +meT ’lr} a; i

33
) +2fp(ﬂj lk_ﬁ”ﬁ: A’.‘ )+2{(flkp+fpik)mj_(f\f P"i‘fpb)mk}:O-

If we contract (5. 33) by /* and m’ respectively and use (5. 22) and (5. 23), then

we obtain

(5

Sis =Flo by L —4C1 |4 m; [ 9—2Pfn, /9,

. 34) Plo=Cf, b /3+(P |, m" )m, +(Pi.n" Jn.,

Mo =Fly /S+(m"™ X, Jmg +(n7 A, o, .

Conversely if (5. 34) holds, then it is verified that (5. 33) holds.
Hence we can state

Theorem 18. A CR3IS-space M is of constant curvature K with respect to the IS-

connection if and only if equations (1. 23) and (5. 34) hold, provided that the tensor

—~

TS wn in (1. 23)is given by (5. 32).

(1]

2]
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