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On Connections of a Finsler Space

Hiroshi Yasupa

§ 1. Introduction. The connection theories of a Finsler space M have
been studied by many authors. These theories may be divided broadly into
two types. One is the theory standing upon the viewpoint that M is constructed
of line-elements and most of authors are concerned with this type of theory
(see [5]" ~ [9]). The other is the theory derived from the standpoint of tan-
gent Minkowski spaces (for example, [1], [2], [3], [4], [10] ). It is often said
that the latter is more natural geometrically, but little progress has been
made practically since 1962 [4]. In view of this fact, the latter theory should
be given more attention.

The purpose of the present paper is to open up some possibilities for the
developement of this theory. The transformations among the indicatrices at
different points of M have been introduced by the present author ([11], [12])
and developed further ([13], [14]). This transformation theory has been, in this

paper, applied to the theory of non-linear connections by A. Kawaguchi [3].

§2. Transformations among indicatrices. Let M be an n-dimensional
Finsler space with a fundamental function L(x, y). For the present, let M be
endowed with the Cartan connection CI' = (I'*i,, Nk Ci.) or the Berwald
connection BI' = (Gi. Gk, O), where

(2. 1) Ni= Gi, N =y I*i,, Gi = y' Gl

We consider the tangent bundle T(M) = ILGJ‘r T, over M, T, being the
tangent space at a point r of M, and take a vector field X on 7(M) defined
by

(2. 2) X = u'(x)a/ox’ + (v'(x, ¥y) — Nilx, ¥)u’(x))a/ay’
(¢, =1, 2, ..., n)

1) Numbers in brackets refer to the references at the end of the paper.
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where #'(x) and »'(x, y) are the components of two vector fieldson M and
v'(x,y) are homogeneous functions of degree 1 in y'.

Let @ ={@,|tel.} ([.:an open interval) be a local one-parameter group
of transformations generated by X, and ¥, be the restriction of @, to the
tangent space 7',. Then it is known [13] that the restriction ¥, is a mapping
of T, onto 77, where T is the tangent space at the image £ of x by ¥,.

Now we consider the indicatrix bundle 7(M) = ILéJMII over M, where [,

is the indicatrix at the point r and its equation is given by
(2. 3) L(x,y)=1 or L*=g;(x,v)viyv/ =1 (x; fixed).

In this case, [, is considered not only as a hypersurface of 7., but also
as an (#n-7)-dimensional submanifold of /(). If we denote the restriction of
¥, to [ by ¥,, then it is known [14] that ¥, is a mapping of 7, onto [
if and only if the vector v*(x, y) is indicatric, i. e. v'y; = 0(y: = g.;v”). Each

¥, is defined as a set of solutions of the following differential equation :
(2. 4) dxtldt = u'(x), dyldt = vi(x,v) — Nilx, v)u(z).
The corresponding infinitesimal transformation to ¥, is given by

(2. 5) _ f=x'+ u(x)dt,
Par: _ ’
yi=y' + (v (x,y)— Nix, v)u'lx))dt,
where 4¢ is an infinitesimal constant and L(x,y) = 1.

Each tangent space 7. can be regarded as an n-dimensional Riemannian
space with a metric tensor g¢;(r,v) and /(M) as a (2u» — I) -dimensional
Riemannian space with torsion. In this case, the indicatrix /., has the same
Riemannian structure by means of the induced metric and connection from
those of 7. or from those of 7(M) [11]. Further it is known [14] that each

¥, is an isometric mapping if and only if the following equation holds :
(2. 6) vili + vili — 2Piau* =10,

where v:|; = dvi/dy’ — v,Cl; and Piju = Cijury” (the vertical short line

indicates the j-covariant differentiation of Cartan).
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8§ 3. Tangent Minkowski sapces and non-linear connections. In the previ-
ous section, we have stated that each tangent space 7. can be regarded as a
Riemannian space with the tensor g, (x, v). Such a space is called a tangent
Riemannian space. On the other hand, if the fundamental function L(x, v) de-
fines the length of a vector v’ in T, and the vector space T, is regarded as
a centro-affine space with the origin x = (r’) whose indicatrix is given by (2.
3), then T, is called a tangent Minkowski space. Hereafter we shall consider
connections of M standing upon this view-point.

As a special case, in (2.5) we put
@1 dx’ = u'(x)dl, vl = — Tilx, v)u'(x),

provided that 7= (7% is an indicatric tensor on M with respect to the upper
index ; such that 7} are homogeneous functions of degree 1 in y*. Then (2.5)

is expressed as

(3. 2) fi= zi'+ dzt, =y = (Ti+ Nidx’

In this case, we can consider (3. 2) as a correspondence between indica-
trices [/, and /> of the tangent Minkowski spaces at any two infinitesimally
near points r and & of M. It is because if we neglect higher terms of J4x' in
(3.2), then L(x,y)= 1 implies L(£, v) = I. Therefore, for any vector y in

T, we have
(3. 3) Lix,v)= L(x, v),

that is, the length of any vector y‘ is invariant under the correspondence (3.

2). From (3. 2) we obtain
(3. 4) dy'= — (Ni+ Tidx'.

In consequence of (3.3) and (3.4), we can define the absolute differential

of a vector y' as follows:
(3. 5) Dyt =dy' + I'idx, v)dx",
where we put

(3. 6) I'i= Ni+Tk.



—— On connections of a Finsler Space ——
According to A. Kawaguchi (3], '} is given by
(3.7 iz, v} = hi&hy’ + y Niyi/L?,

where £]. are homogeneous functions of degree ¢ in y* (or independent of y7),
hi= 8 — y'v;/L* and y; = g;;3’. Putting £} = &5, from (3.6) and (3.7) we

have
(3. 8) Ti= hi(&l — Ni),

which indicates that 77 is indicatric with respect to the index ; in accordance
with our assumption. Then on substituting of (3.8) into (3.6), the non-linear
connection 77} in [3] can be obtained. Further if we let &, be equal to I'j in
(3.7) and put Ti= i — N}, then we have also y; 7%= ¢, that is, a non-linear
connection of type (3.6) can be obtained reciprocally from (3. 7).

From (3.5) and (3. 6) we obtain
(3. 9) dL{x,y) = {:Dy", l:=8L/oy = yi/L.

For an unit vector {' = y'/L, it follows from (3.5) and (3.9) that
(3. 10) LDl = hiDy”, LDl =0, hi=38)—1I;.

Let C be any curve in M represented by
(3. 11) C:x'=x'(¢t) (¢; any parameter) .

If a vector y' is displaced parallelly along the curve (, then from (3.5)
and (3.11) we have

(3. 12) Dyildt = dy'/dt + Wi+ Tidx*/dt = 0,

from which and (3.9) it follows that 4L(x(¢), y(¢))/dt = 0 holds along C, that
is, the length of the vector y? is invariant under any parallel displacement.
Next we consider an unit vector /* and put /" = dx‘/ds, being ds = L(x, dx).
Then the equation of auto-parallel curves of the connection I'i, because of

(2.1) and (3. 12), becomes

(D/ds)dx'fds) = d*xi/ds* + Tz, Dde?]ds)(dx*i ds)

(3. 13) , ,
+ Tilx, Idx"ds) = 0.



On the other hand, it is known [9] that the equation of geodesic curves of

M is given by
(3. 14) dix i dst + iz, D(da’]ds)(dx*fds) = 0 .

Consequently comparing (3.13) with (3.14), we see that auto-parallel curves
of I'i are always geodesic curves of M if and only if Ti(x, )/’ = ¢ holds.
Thus we can state

Theorem 12  The length of any vector y' in each tangent Minkowski space
is invariant under any parvallel displacement by the comnection I'y in considera-
tion. Auto-parallel cvrves of the connection I'l are always geodesic curves of M
if and only if the tensor Tix,y) is also indicatric with respect to the lower
index J.

In the following, we shall consider only the connection 7'} satisfying

Theorem 1. Differentiating I'; by y7, from (2.1) we have

(3. 15) ari/ay’ = Gix+ Tix, where Tin=0aTi/dy’.
For Ti., the following relations hold :

(3. 16) tad = Thy Thiy* =— T}, Thyi=— Ti,

where 7. = g;r Th. We shall seek for the curvature tensor Rj.. This tensor

is defined by
(3. 17) Riy = ari/ax" — arijax*+ riari/oy’ — riari/ay’,
which is, because of (3. 15), reducible to

Rin = )’j[{jkh =+ (aTi/th — T — (8T ox" — Tinl4)

(3. 18) _ -
+ TuGjn — ThGin,

where K4, is the curvature tensor of Rund. In this case, the differential equa-

tion Dy’ = @ is completely integrable if and only if the tensor i, vanishes.

§3. Absolute differentials of covariant tensors and connections. Letl us
first define the absolute differential Dy, of a covariant vector y,. For this
purpose, we choose a connection ['= (ri,) of M satisfying the following

relation:

2) This theorem appears as Theorem 2.2 in the paper [4]

— 5 —
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(4. 1) iz, y) = I'i= Ni+ Ti.
Then we can define Dy, as follows:
4. 2) Dy:=dyi:— y;Mudx”,

which is, because of (2. 1), (3.5) and (4. 1), expressible in
(4. 3) Dy:= gDy’ + {(*e — M) y; — Tin)dx*.

Here we require that Dy, = g.,;Dy’. For this, '}, must satisfy
(4. 4) Thys = Iy — Tis-

In consequence of (3.15) and (3.16) we can find such quantities. They are

expressible in
(4. 5) te = Glx + Th + Qls,

provided that @ = (@j) is an indicatric tensor with respect to indices ;i and
j such that @i, are homogeneous functions of degree ¢ in y°.

Let the connection I" = (I'}y) be symmetric, i.e. I'i, = I'j;. Then from (3.
16) and (4.5) we have

(4. 6) Tix+ Q;k = Tiy + Qiur ij}’k = 2T}, Tiwn= Tu.
Let us now define the absolute differential of the tensor g.; as

Dgi; = dgiy — (grjrx?"k S gl'rF;k)dIk = (gr_sC.-’k + girc_;"k)Dyk

(4. 7)
= guisdx® + gi;|aDy*,
where
(4. 8) Gisin = 09:;/0x* — I'idg:s/3y™ — 9rilfs — girll,
(4. 9) Gisl «= 3gi5/0v* — griCle — girCix = 0.

Then from (3.5), (3.16), (4.7), (4. 8) and (4.9) we obtain

Dgiy= —(Tin+ Tiin+ 2C5:Th + 2Puin + Quun + Qiin)dr”,
v’ Dg:; = 0, where Tisn= girTl, Rise = girQlx.

(4. 10)

For Ty, and Q.. the following relations hold :

_6_
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T.-jky’ = Tir, Tx'jk}’j = — T, Tz‘jkyh == Tu,
Qiny' = Quwy’ = 0 .

(4. 11)

We shall call a connection I" defined by (4.5) a TM-connection of M. We
shall say a TM-connection I to be r-metrical if Dg.; = 0 always holds. Then
it follows from (4. 10) that 7" is r-metrical if and only if the following equa-

tion holds:
(4 12) Ti_jk -+ sz‘k -+ ZCz‘JrT,E "|".2P,'jk + Q{ji‘ -+ Q,‘m = 0 S

Further if /' is symmetric, then from (4.6), (4.11) and (4.12) we have
Ti.= 0 and @i.= — P, that is, [ is the Cartan connection.

Let us here give a summary of the results have been obtained hitherto.
Then we can state

Theorom 2. A TM-connection I' of M has following properties:

(1) For the non-linear connection I', Theovem 1 holds.

(2) The absolute differential of a covariant vector v, is given by

Dy: = gDy’

(3) I is the Berwald connection if and only if Th = 0 and Qi = 0.

(4) If I' is symmelric, then relations (4. 6) hold.

(5) I is r-metrical if and only if the equation (4. 12) holds.

(6) I'is the Cartan connection if and only if I' is symmelvic and r-metrical.

We consider a general tensor on M, for example, Xi(x, v). Then the

absolute differential of X! is defined by

DXj(x,y) = Xiudx* + Xi.Dy*,
(4. 13) sin= aXj/ox" — e X'/ ay" + XiI'rw— X7l
Xile= aXi/ay*+ XiCiv — XiCh.

Therefore according to M. Matsumoto [7], our connection can be express-
ed as TMI = (I Tk, Cia).

Since we have now many indicatric tensors on M and know the indica-
trization of any tensor on M, from them or the combinations of them we can
choose a tensor 7% in ['j and a tensor ! in (4.5) in various ways. However
we have at present no criterion for the choice of them. So we take an im-

portant and simple tensor T}, i.e.
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(4. 14) Ti= Lhi= L(8i— 'L,
from which it follows that
(4. 15) Tie=aTifay’ = L;ihi — Lehi— 'hju.
Then the curvature tensor (3. 18) becomes
(4. 16) Bin = v K+ L(Lehh — ki) .

Since a tensor h: = g.-h) is called the angular metric tensor, we shall
call a connection I'j defined by (4. 14) the AM-non-linear connection. If Ri, =
0, then from (4. 16) we have K= — (vihin— vihin) , where Kuon = giry’ Kin
which shows that A is of constant curvature. Hence we can state

Corollary 2.1. For the AM-non-linear connection, the curvature lensorv Ri
is given by (4. 16). If the curvature tensor vanishes, then M is of constant curva-
ture — 1.

We shall call a TM -connection (4. 5) defined by the AM-nonlinear connec-
tion a TMA-connection. Let this connection be symmetric. Then from (4.6)

and (4.15) we have

Q}k - Q.{u = Tij - ‘J’:k = 2”&:11_5 - [,i}?-i),
th}’k =2Lhi=2Ti, Tiw= Tw= Lhjx,

from which it is seen that " is of form
(4- 17) F,::k = G}:k = fjh-§¢ -+ l-'kh; - l-”hu'k 5 .Ql:k,

provided that 2 = (2!,) is an indicatric tensor with respect to all the indices
i, j and % such that g%, are homogeneous functions of degree ¢ in y‘ and
i, = 2, Hence we obtain

Corollary 2.2. A symmelric TMA-connection I' is given by (4. 17).

Let a TMA -connection ' be r-metrical. Then because of (4.12) and (4.

15) we obtain

(4. 18) Qi + Qe = 2lhisle — LCit— Pinn),
which implies that I" is of form

(4. 19) Fiv= I+ Lk — Uhye— LCix + is,

_8_
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provided that £ = (£%,) is an indicatric tensor with respect to the indices ¢
and j such that £%, are homogeneous functions of degree ¢ in v’ and 2,
+ 2%, = 0. Consequently we have

Corollary 2. 3. A TMA-connection I' is r-metrical if and only if the
equation (4. 18) holds. An r-metrical TMA-connection I' is given by (4. 19).

§5. A connection based on an isometry. As a trial, we shall utilize the
equation (2.6) in §2 to determine tensors T} and Tj.

First we consider a special TM-connection " such that
(5. 1) iy = arifay’ = Gix+ Th,

that is, a connection obtained by putting @i.= ¢ in (4.5).
Next it follows from (3.1) and (4. 9) that (2. 6) is reducible to

(Tx'jk + TJ'U&' -+ ZCiJr T: T 2P|’jlz) uk = 0 .
which implies that for any «’ each ¥, is isometric if and only if
(5 2) T:‘j,‘g + ij + 2C,~erZ + ZPijIe =0.

In this case, because of (2.4), (3.1) and (3. 12) we see that each indicatrix
/= as a Riemannian space is isometric under the parallel displacement along
any curve C also if and only if (5.2) holds. Further it follows from (4.12)
and (5.2) that the connection [ is r-metrical. Contracting (5.2) by y* from
(4.11) we have

(5. 3) Ti+ Ti=10.
Since Tuyx= 8T /0y’ — 2C;r: Tk, (5.2) is reducible to
(5. 4) 3Tsuf 0y + 3T /3y’ — 2C5Tra+ 2Pisn= 0,
provided that
(5. 5) Tayt=28, Tayt=1..
Further we can eliminate the terms of partial derivatives, that is

{5 6) Tric;'-k + T:-;CQ; =+ Trkcri = 3Pi.ik-
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Now we are confronted with a problem if there exists a tensor T
satisgying (5. 4) under the conditions (5. 3) and (5. 5).
Let first M be of dimension 2. Then from (5. 3) and (5.5) we have

(5. 7) Ta=0, Tie=— Ta, le}’l = T21y2 =),

from which it follows that 7', = ¢ and hence P = . Hence we obtain

Theorem 3. Let M be a two-dimensional Finsler space. Then if M
allows an indicatric and skew-symmeltric tensor Ti; salisfying (5. 4), then M
is a Landsberg space and the connection I' in consideration becomes the
Cartan (or Berwald) connection.

We shall call a solution of the equation (5.4) such that T:;= 0 and
P:jn = 0 are satisfied the trivial solution of (5.4).

In a general case, i.e. # = 3, there exists the trivial solution without
fail in view of the form of (5.4). However it is for the present open if

there exists any non-trivial solution.
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