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On Lie Derivatives on the Indicatrix Bundle

over a Finsler Space

Hiroshi Y asupa

Introduction. In the papar [7]", transformations of the tangent bundle
T (M) over a Finsler space M, which are generated by a general vector
field on 7(M), were introduced, and point transformations of M and map-
pings among the tangent spaces were studied from a wider standpoint. The
indicatrix bundle 7(M) over M is a hypersurface of 7(M) and transforma-
tions of (M) may be considered as the restrictions of those of T(M) to
/(M) under a certain condition. In the present paper, we shall find such a
condition and introduce transformations of [(:‘1*[).‘\\-'hich are generated by a
vector field X tangential to /(M). Further we shall show that any tensor
field 70 on (M) is obtained as the projection of a tensor field T on T (M)
onto /(M) and the Lie derivative of 7° with respect to X may be also given
by the projection of that of 7 onto 7(M). As its applications, we give
conditions fox X to be a killing (or a conformal killing) vector field field
with respect to a metric on [(M). Finally we shall see that the [-connec-
tion on J(M) is obtained as the projection of the D-connection on 7 (M)
onto  /(M). The terminologies and notations are referred to the paper [7]

unless otherwise stated.

§1. Transformations of theindicatrix bundle. Let M be an j-di-
mensional Finsler space with a fundamental function [ (x, v) and the Cartan
connection CI= (7%, N/, Ci.), and T(M ) = ‘U” T . T . being the tangent
space al a point re M, be the tangent bLdeé“wer M. Then a vector field
X on T(M) is given by
(. 1 X = uflx, v)e: + vz, v)éw (1, =12, ... n)

= w'gfox’ + (v'— Niu')a/ay’

1) Numbers in brackets refer to the references at the end of the paper
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where (g,) and (&) are the horizontal and vertical bases, and %' and »¢
are the components of two vector fields on )}/ which are homogeneous func-
tions of degree 0 and 1 in y' respectively.

Let @= {4 (<[} (/-: an open interval) be a local one-parameter group

of transformations generated by X. Then each #, 1s defined as a solution
(1. 2) g T'= Ft(x ), v =yt (x, »))

of the following differential equation:

(1. 3) dreifdt = u'(x, v), dy'ldt= vz, y) — Ni(x, )’ (x, )
satisfying an initial condition

(1. 4) 0 Ge, 2 ) = 2", g il bz, 9 ) = 9%,

Let /(M) = J [., I, being the indicatrix at a point x € M, be the
XeM
indicatrix bundle over 3. Then /(M) is a hypersurface of 7(M), whose

local equation is given by
(1. 5) Lix,y)=1.

I[f we denote the restriction of ¢, to /(M) by ¢, namely ¢, = ¢,|7(M),
then we can state

Proposition 1. Fach vestriclon ., is a transformation of 1(M) into [(M)
if and only if the vector field vio/ox' is indicatric, namely viy, =0 .

Proof. From (1.3) it follows that dL(x, v)/df= v'y;/L. Therefore, the
epuation L(x, y) = 1 holds along the solution (1.2) satisfying an initial condi-
tion L(x,¥) = 1 for /=0 if and only if the vector ¢’ is indicatric. Q.E.D.

In this case, if we consider #f as an infinitesimal constant, then the

corresponding infinitesimal transformation may be written in the form
(1. 6) dar X' = x'+ uilx, y)dt, yi=y (v, v) — Niw/(x, y))dt,
provided that the vector »'is indicatric and L(x, v) = 1.

§2. Tensor fields on [(M). We choose »n vector fields &i (a= 1,

2, ..., n) on M satisfying

(2 1) {;; - /’I = _"'i,"‘L, gu;{: g;} =] (?{Jh '

(R



—— MBERARE — 3

where ¢ = %821,2(.1', v)/ayiay’ . Further, if we denote the inverse of the

matrix (&)) by (£€9, then from (2.1) we have

g =Xtitd, g =XtiLe, ;= allayt,
o a
th=ght,  Gib=t=0 (a=1,2,..,n—1),
where g% is the reciprocal tensor of g,. The coframe (@', ") dual to

(¢;, en) on T(M) is given by
(2. 3) @ = dx’, oW = dy' + Nidx'.

Now we take an adapted orthogonal frame (e, ¢) and its coframe

(w® @) on {(M). These are defined as follows [6]:
(2. 4) €q = é‘rfxeis Cla)y — ;&em , w' = é’?wf, o'® = é't!?w(r'l i
provided L(x, v) = I and

(2. 5) e;=¢€;, en=hlen, o=, ¢"=hia",. where

hi=pi—1;.
Next we can take another frame and its coframe on /(M) given by
(2. 6) (€1 ew)s (w', &) .

Then we can state

Proposition 2. The frame and coframe in (2.6) are the projections of
(¢;,¢n) and (&, @) on T(M) onto I(M).

Proof. At any point (x, y) of I(M) we have (2.5). (&,) and (&'”) are
the frame and coframe on the tangent space 7. On the other hand, the
projection of a tensor, for example, T} on 7. onto the indicatrix [, is given
by T4 = Tititi[4]. Then from (2.2), (2.3) and (2.5) we have

T3 ® o'® = Trhihlen ® o = Thhihlen @ @ . Q.E.D.

If the vector ¢ is indicatric, then the projection X of the vector field

X in (1.1) onto f(M) is given by
2.7) X = ule; + vm = te; + vdy = tofoxi + (v' — Niw)alay',

where 2= v'{¢ and L(x,v) = I. Therefore, on [(M) X is identified with

X and the infinitesimal transformation generated by X corresponds to (1.6).
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A tensor field 7" of (1, 1)-type on T(M) is given by

@5 T=THx,»e,QRa* (Y, Z=12..,2n)
B =Tie:®a’'+ TP ®@a' + THea®a™ + THen ®aY,

where T}, T'9, T}, and T} are the components of four tensor fields on A

On the other hand, a tensor field 7 on /(M) is given by

T=Thes @ w® (A, B=12 .. 2n—1)

(2. 9)

=Tfee Q0 + TPy @ ws+ Thea ® w® + Ti8ew ® o',
where
(2 10] ’j‘g: Y‘;Cfgip T‘ﬁ' = T('Jlé‘frta‘ ?n(g) - T(!,]g?é':},

T8 = T g6

Further it is seen from (2.2), (2.4), (2.5) and (2.10) that (2.9) is expressed

in the form

T=Tie®w'+ TP @0’ + The:® o + T{Hew ® 0

(2. 11) - ;
=Tie:Qo’ + TP @’ + ThHe® o + THen ® o,

where T = T2 T = T4, ¢4 and the symbol [] indicates the indica-

trization with respect to the vertical indices (¢), namely

2. 12) 'TO=TPhi, 'Th=Thh], T=TEhiks

Thus from (2.8), (2.11) and Proposition 2 we can state

Proposition 3. Auny lensor field T on [(M) is the projection of a tensor
field T on T(M) onto [(M) and the field T is obtained from T in the way
as (2.11).

§3. Lie dervatives. Let X be a vector field on T(M) defined by
(L.1).  Then the Lie derivative L% T of tensor field 7 in (2.8) with respect

to X is given as follows [7]:

LiT= LiTa:® @ + LiTV20 @' + LiTHe,® &
(3. 1) + LiTHen ® @,
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LiT9e, @& = (LT )2 ® &' — (TP ;)2 ® &
+ (THuh)en @ @,

LiTHe @@ = (LxTh)e:® e + (Tin Wie, ® @’

3.1 ,
—(T5HWhe, @a",
LiTHén ® eV = (L3THen)@aY — (TP u))eé; @ o’
+(THWHew, ® @',
where
LaTt= Tt o =Tk 5 Thullsob Lt
LyT@ =T9D yr— TOVL+ TOy,, + T -0,
(3. 2 LTS = Thru"— Thuiyr + T Vi+ Thrv",
LyTg = T u"— TEHVi+ THVI+ Ty, 0",
W "- = f’i,i i (?_;:k 0 v¥4 Kf;jk”?‘, V: = g ijuuk.

Let X and T be the projections of X and 7 onto I(M). Then, if the
vector ¢ is indicatric, then we have seen that X=X on /(M). And the
Lie derivative Ly T of T with respect X can he regarded as the projection
of (3.1) onto 7(M). Consequently by virtue of (3.1) and Proposition 3 we

have

LyT=LyTie:@w’ + LxTP e @ o’ + LxTihe: ® o
+ LxTiHem ® o,

LxTje;@a’ = (LxT)e;@ ' + X Tiu" ;)e; ® oV
—XTiWien @ e,

3. 3) LxT®¢m P’ = (LxT%)en ® o’ — *( TT'yr)e; @ ™

+ T e ® 0™,

LyThe ® o ="(LxTH)e; @ o'+ (THW e ® o
—XTHWien ® o,

LyTHem ® o = (LyT e @ 0 — (TP u'); )e: @ o
+ X T When ® o,

where the symbol [*] indicates the indicatrization with respect to the indi-
ces corresponding to vertical bases; for example, in the third term of the
right side of the third expression in (3.3), (7w’ ,)=T P w’, ikt the indi-
ces { and j corresponding to ¢, and «“'. Thus we have

Proposition 4. The Lie derivative LT of a tensor field T on 1(M)
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with respect lo a vector field X is given by (3.3) fogether with (3.2).
A metric on /(M) may by given by the projection of a metric on T(M)

onto /(). On T(M) we take the following metric:

(3. 4) G=G + &, where G, = g, @ & and G, = g,;0" ®@ & .

Then it follows from proposition 3 that the projection G of G onto

[(M) is given by
(3. 5) GC=Gi+ Gs, where G, = g0’ @ o and G, = hjw' @ o .
Noticing #' ;v = 0 and vy, = 0, from Proposition 4 we have

L.\'Gl — (Z(;[j -+ Uy g + —r')cher;()C0£® w"' + f]ir{{’;n_I(I)i@ w(J)
+ gritt’ 0 @ @,

LiGo = (vd; + vili = 2Comott") 0" ® @V + gaW ihie' @ oY
+ grWihieo" ® o’ .

(3. 6)

(3.7

Since /! = yi/L = yi on I(M), we have
(3. 8) o' = hi(dl + . 07de?) = dlf + Nide! = DIF,

which is indicatric. Then we have

Lemma. For a veclor Z:, Z:w"' = O holds if and only if
(3. 9 ‘2= Z k= 0.

Proof. We have Z;0'" = Z{hiw"') = Z(LiENY = Z, Cie™ = 0.
Since o™ (a= 1,2, ...,n— I)are independent, we get Z,{;= 0 and hence
(3.9) follows. The converse is evident. Q.E.D.

Remark. If Z;is indicatric, then 7, 0'” = 0 implies Z; = 0 because
of (3.9).

Taking account of homogeneity of #' and ¢, from (3.2), (3.6), (3.7) and
Remark we can state

Theorem 1. A wvector field X on [(M) is a killing vector one with ves-

pect to G if and only if the following equations hold:

Uy -+ Ui T 2C,'J1¢i/'k: (,), !‘,’gl,' o l;JI" e 2C,’\,‘R (]“k: {),
wiz = 0, (', 4+ Cluov®+ Ki{put® Y= 0.

Immediately we have

(3. 10)
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Corollary 1.1. A vector field X = u'e; on (M) is killing vector one
with respect G if and only if the following equations hold:

(3. 11) oy + uyi=0, u'y, =0, Cijmott* = (K§ju— Kionl;/[L)u*= 0.

Corollary 1.2. A wvector field X = vie,, on I(M) is a killing vector

one with vespect to G if and only if the following equations hold:
3. 12) Cusv*= 0, v + Ui =0, vi;+ Cluov*— vil;/L= 0.

For a conformal killing vector field, we have
Theorem 2. A veclor field X on I{M) is a conformal killing vector one

with vespect to G if end only if the following equations hold:

3. 13) was + w5+ 2Cun0" = 2pgi;, vili + vili — 2Cmou* = 2ph,;,
- HEIIJ' = (); (Ui|r‘|’ Cg'mo b‘k‘l‘ K(; rkuk)h_;-z 0
In this case, the scalar p s given by

(3. 14) p=(u'; + CioYn=(v,i— Chou')(n—1).

Corollary 2.1. A vecitor field X = w'e; on [(M) is a conformal killing

vector one if and only if the following equations hold:

(3. 15) R = OEh ?Uklﬂﬂk.: - Ph;’j, Zlillj =0,
(1{{; gk Ku’ uj,lj/L)uk: 0.
In this case, the scalar is given by p= w';/n= — Ciou'f(n— 1).

Corollary 2.2. A wvector field X = viey, on (M) is a conformal killing
vector one if and only if X is a killing vector field.

Proof. From (3.13) we have C..v*= pg:;, contraction of which by
{7 yields p= 0. Q.E.D.

§4. Connections. On T(M) we consider a connection such that in-

crements of the frame (&,, €.,) are given by
(4. 1) dé; = aie; + @'Y e, dey, = wie: + olén,
where

- i ;e - .y -, . g |
(4. 2) oi= I+ Cla™, il = @, @' = — (B'na” + Pia™
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og) = Bivw* + Pha™, Bliw=LCh+ Ro'u/L, 5= Cliuo ,

B'w= BTugrig™, ie= P (necessarily valid) .

We shall call such a connection the D-connection on T(M). Now we
shall seek for the projection of this connection onto [(M). First, according

to Proposition 2 the relation (4.1) may be written in the form

(4. 3) de; = wie; + w'few , desy = wihe: + wiflew .

Next, for w! we have

(4. 4), i = I'*jre®+ Ciilie™ = Mo+ Che® (L, 2 =1),

which are, because of (3.8), the connection forms of Cartan.

For @ and wd,, we have
(4. 4), w(f’ = cu‘}"f:?, w(f}: - wt.f) é',s )

where 'Y = — (Bie*+ Pl.e™) and ol = Bie®+ PALW.

For w!4), we have
(4. 4), wii} = Chofli+ £idE).

Thus we have obtained the projection of the D-connection onto I(M).
On the other hand, on /(M) we have the D-connection [6]. In this case,
we can prove that the above projection is identified with the D-connection.
Hence we have

Proposition 5. The D-connection on (M) is oblained as the projection
of the D-connection on T(M) onto I{(M).

On T(M) we can take another connection. This is defined as follows:

In (4.1) and (4.2), @' = &, = 0, namely

(4. 5) de; = wié;, deé ;= i) e .

Such a connection will be called the K-connection on T(M). On the
other hand, on /(M) we have the K-connection [5], [6]. Concerning this,
we have

Corollary 5.1.  The K-connection on [{M) is oblained as the projection
of the K-connection on T(M) onto [(M).
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As for the Lie derivatives of the above connections, we shall discuss

them in later papers.
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