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On the Curvature Tensors of the

Indicatrix Bundle over a Finsler Space
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Introduction. Let M be an n—dimensional Finsler space with a
fundamental function F'(x, y), and let T (M) and T*(M) be the tangent bundle

and cotangent bundle over M. Now we consider a mapping
¥ile,y €TM —(x,p e T(M), where p,=08F/3y",

Then N=¥(T(M)) is a hypersurface of T*(M) and called the p—mani-
fold of M, which was first introduced and studied by M. Kurita (4]

Afterwards the p—manifold N was studied concretely and combined to
the theory of A. Deicke ([1], [2] ) by H. Yasuda ([8], [9]). The
P—manifold N is in fact the figurairizx bundle over M. Hereafter we
shall use this terminology and [, instead of P, The figuratrix bundle
was applied to a study of Finsler spaces with absolute parallelism of line—
elements [10].

Similarly we can consider the indicatrix bundle L = U | over

X
reM
M, I, being the indicatrix at a point x of M, and introduce a metric on L

in a natural way. In this case, L is isometric to N by a mapping : (o, {')
€L—(x, l,) €N defined by [, =g,¥, where =y /F(x, y). Therefore,
we can use the methods constructed already in N for the studies of L
itself and their applications.

Along the above statement, the indicatrices of M and curves in L were
investigated in the papers [11] and [12] where L is endowed with the

D—connection. Especially, the indicatrix bundle L endowed with the K—

1) Numbers in brackets refer to the references at the end of the paper.
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connection was treated in the paper [13].

On the other hand, from a standpoint of the theory of Finsler bundle
and tangent bundle the indicatrix bundle L over M is constructed systema-
tically and studied by M. Matsumoto [6], and the metric and the connection
introduced there correspond to our metric and the K—connection respectively.

In consideration of the D— and K—connections, lLandsherg spaces are
treated in the paper [14].

In the present paper, we shall reconstruct the indicatrix bundle L from
a standpoint of the theory of implicit functions and differential forms and
investigate the curvature tensors on L when L is endowed with the K,—,
D,—, K— and D—connections. Especially, for the D,— and D-—connections
we have found many new tensors on M. As for the geometrical meanings
of these tensors, we have obtained the considerable results when M is a
Landsherg space. However, the most part of our problem remains to be
solved. The terminologies and notations are referred to the papers ([12],
[13]) unless otherwise stated.

§ 1. Construction of the indicatrix bundle. The indicatrix bundle
L in Introduction can be constructed over M globally. However, it is in
fact enough to consider L at a coordinate neighborhood.

Let U be a coordinate neighborhood with coordinates (x') (i=1, 2, -+, n)
of M. Then, if we denote by y=y'9/9x" an element of the tangent
space T, at a point x of M, the canonical coordinates of U:rLEJ” I8
are expressed in (x', y*). The indicatrix bundle L is a hypersurface of

T(M) and its local equation is given by
(1..1) G=F(x, y) — 1=0.
On L we have from(1l.1)

(1.2) 9G/ax'=v,", 9G/oy'=Ll,

where ¥ ,. are the Christoffel symbols formed by the metric tensor g,
and ¥ 5 =7v¢:1%l,. Since the vector !, is presupposed as a non—zero
one, we can assume OG/3y"=[,+0 without loss of generality.
Therefore according to the theorem of implicit functions, there exists a

neighborhoob U such that the equation (1.1) can be solved as
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(1 . 3) y”=y“(:c‘, Iz‘ R J,‘ﬂ, y:, y2, O yn—l)

—_—

and the following relations hold good in U by virtue of (1.2):
(1 s 4) ayﬂ/axtz‘)’oaz/!ny 3y"/3yA=-fa/'1n(A=1, 2y, ey n—l).

In this case, if we substitute (1 .3) in (1.1), then the expression (1.
1) becomes an identity and hence [(‘=y'/F=4y" Therefore, for

(1.3) and (1.4) we can rewrite as
(1.3) [ L S N L

(1.4) Al Dzt =-Ap2y ln, OB =-11/ly.

Now we denote by ( (9/9x') ., (8/3l*),) the natural frame at a
point (x!, [*) of L and consider the inclusion mapping ¢:L—T (M).

For any homogeneous function f{x*, y*) of degree O in y!, we have
(1.5 (o/alt) f=F(a/ay’) f i e. 9/8lt=F 9/oy'.
Then it follows from (1 .4) and (1 .5) that

ty (0/0x') = o/ 0x' —(ys:/la) FO/0y",
(1.6)

t, (8/31%) ,=F|8/dy*— (I:/1,) 9/3y"} ,

where (0/9x!, 9/9y') is the natural frame at a point (xf, y°) of T (M).
Remark. At the present stage, since F=1 we have 9/0y’=9/9l',
Especially when the vector 3/2!‘ operates to homogeneous objects of
degree O in y*, (1.5) is valid and it corresponds to the third covariant dif-
ferentiation Il i of Cartan.
In this case, it is seen from (1. 6) that the coframe (¢*(dxt), {'(dI™)

is dual to ( (8/3x%),, (8/3I*) .), and from (1. 3)' and (1 .4)' that
(17 F(diM) = — (¥o%/ 1n) € dx') — (1a/1a) & (dI7).
In the sequel, we shall omit the symbols ¢, and ¢ when no confusion

occurs.

. : *
Now, let us consider the Cartan connection I' ;%4 on M and the non-
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linear connection T'* 4 y* on T (M). Then, denoting by (&:) the ho-
rizontal lift of (9/9x') to T (M) with respect to this non—linear connection,

we have
(1.8) e, =98/dx —T"/\y*d/dy’.
Further, if we put
(1.9) & =en =9/8y', Dy =dy' +T7,y*dx’,

then it is seen from (1 .8) and (1.9) that the coframe (dx’, Dy') is dual
to (e,, ey). Then, carrying the coframe (dx’, Dy') back to L by . from
(1.7) and (1 .9) we obtain the coframe (dx', DI*) on L and

DI* =di* + N*, do’,
(1.10)
DI® =(N% —v.2/la)dxt —(1a/1,)dI* ,

£ % K -
where we put N4 =074 =T7,41" . Moreover if we denote by (e, e
p 3 i

the frame dual to (dx', D!*), we have
(1 ¥ 11) (65)1_ =(a/a:c‘)1. —N'\L(EIA:)L , ((?cf\v)r. :(a/al'*),‘.
Then it follows from (1 .5),(1.6),(1.8),(1.9) and (1.11) that
(. .12} (e)r =8/3x* =N, 9/l =e,,
(ew\I-)L =a/a[" _([A/ln)a/aln .

In the following, we shall write (e;); and (eax). as e, and e simply.

A metric do? on L is introduced in a natural way ([2], [9]) by
(1,13} do’® =g,dx'dd +g,DI'Dl’ .

Now, let us find an orthonormal frame and coframe on L with respect
to the above metric. For this purpose, we first choose n vector fields

¢ (a=1,2, -++-, m) on M satisfying
(1.14) Ei =1, Q'UCEI ‘:J.:.: =dg .

And further if we denote by (&% the inverse of the matrix (&), then

from (1 .14) we have
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(1.15) o SEEEL . mao= ERETs Iy = B, EL=ghES,
Eol, =80 =0 (a=1, 2, -+--, n-1) ,
where g% is the reciprocal tensor of g,,. Put
(1.16) e. = ae, , ea = §a0/00'
o O @’ = & dx , @ =£¢NI .

Then we can state
Proposition 1. The frame (e,, e.w) and coframe (@°, @'®) formed
by (1.16) and (1 .17) are dual to each other. And they are an orthonormal
frame and coframe with respect to the metric defined by (1.13).
Proof. We know already that (e,, ea) and (dx',D{*) are dual to

each other. So we have
(1.18) dx'(e;) = &%, dx'(ea) = Di*(e;) = 0, D!*ew) = d%.

From (1.12) we get

If we put 7§ =¢&% — (/./ln) €%, then we obtain
L = 20) Cini =d3, w' =93 DI*.
Thus on making use of (1.16)~(1.20), we have
w e, = &

(1 .21} o

' (eq) = 5F.

mn(ﬁ'( m) = w!tz)(e“) = O 3

Next, it follows from (1 .13), (1.15) and (1.17) that
2w’ =g,ddde’, Zo'%w'? =g, ,DItDl
(1 .22) - E

do? = %‘m“w“ + %“&J'“’ @'

that is, the coframe (@, @®) is an orthonormal one with respect to the
metric and so is the frame (e,, ea). Q. E. I

A frame and coframe introduced in proposition 1 are usually called
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an adapted orthogonal frame and coframe respectively. And it follows from
(1.22) that the components of the metric tensor with respect to (e, e a)
are given by &8, (4 B =1, 2, «---, 2p=1).

If we put ey = e, from (1.16) we have
(1.23) ey, = h19/0l" , where h] =61 — 1’1,

In this case, the frame (e, , eu) is considered also as a frame on L,

but it should be noticed that (ew) are not independent because of
lt ey = O.

§2. Connections and torsion tensors. Though the choice of
metrical connectons on L with respect to the metric (1 .13) is highly
arbitrary, in this paper we shall consider the four connections, that is,
Koi—, K—, Dq— D—connections. Hereafter we take an adapted orthogonal
coframe (@", w'®).

Let ®j be the connection forms with respect to (@', @®) of a
connection I' on L. Since Dd,, = — @} — @}, any metrical connection

I' is given by
(2.1) I'=(wj), @j=— of.

Firstly, the Ko—connection is defined as follows: In (2.1),
wf=w} o0} =win=! =w"=0 i=I% e +7%,a'"!
Pg. =—86%6C68c, Thrn=—8"|,60E&%.

Secondly, the K—connection is defined as follows: In (2 .1),

y :m‘f"' :O,

Fe =]

a a c a ) {
‘ o) =% & +7% 07, ol =wf, o

2.8 (
F:c:_gfugiugi. FE(T!=7C?;JCZCJ’J‘.
Thirdly, the D—connection is defined as follows: In (2.1), @) and

ja ; tal b ( § sed
@4 are the same as in (2.3), —f=ws =" +1\% o' and

(2.4) e = B eegler Ty =Py EFELEL,

' ; ; ) : )
B gy i=A e R an, Phe=iPii = At vge. Rl = RE 4y .
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Lastly, the D,—connection is defined as follows: In (2.1), the
forms ®%, @% , @ and ®} are the same as in (2. 2), while @% and @5,
are the same as in (2 .4).

The torsion form 7" and tensor T, on L are given by
(2.5) 7 =dot — @ Awj =5 Tic@ Ae® (The + Tty =0)

For the D—connection, from (1.17) and (2.4) we have [9]
ch = Tatyn = Tili. = O, Tlﬁ?c :_chﬂ) =”‘Rut‘:.i6‘:é‘::

£ R s h
T;Jar): =_Trmbc:Ruk‘:a‘:bcc, Ruk_gthR ik s

from which it follows that T2, =0 if and only if R‘y =0, and that
Ta:. are skew—symmetric in all indices A, B and C, that is, a path in L
coincides with an extremal in L [2]. Accordingly we have

Proposition 2. The D—connection is the Riemannian one if and only
if M is a space with absolute parallelism of line—elements. With respect
to the D—connection, a path in L coincides with an extremal in L.

For the K—connection, from (1 .17) and (2 . 3) we have ([6], (9], [13])
2. 7) TS. =Tiain =Tudfn =0, Tine =—Tulm =A4E7636%,
T2 =—T& =R'%EFE.¢L, Ti#h =—Ti9, =Pufilrt%,
For the K,—connection, from (1 .17) and (2. 2) we have [9]
Toe =Tiatn =Tl =0, Tivo =—Tuin
(2.8) = (A% + bk + 1ch)) §760C%,
Ty =—T9 =R'%EFELE:, Tith =—TH, =P8¢5,

Assume T,%» =0. Then from (2. 8) we obtain A%x + [,k + Ixh) =0,
contraction of which by " yields k=0, contrary to hypothesis.
For the D,—connection, from (1 .17), (2.2) and (2. 4) we have

{2 . 9) Tbac = Tiaftn =T =0, T8 =—TH = erg?gigﬁ ’
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Tre =—Tdm = ( Lk + Lhsx —Ruiy) CLELER.
Assume Tj.=0. Then in the same way as before we have h,x =0.
Thus by virtue of (2 . 7) and the above proofs we can state
Proposition 3. The K—connection is symmetric if and only if M is
locally Euclidean. For either of the K,— and D,—connections, the torsion

tensor Tj. never vanishes.
§3. Curvature tensors. Let 24 and Kj., be the curvature form
and tensor on L.  Then they are defined by ([9], [13])

1 )
5K 0 No® (Kj:y =—Kine),

(3.1) Qi = of Aot —dwp =5

which is reducible to
(3.2) 24 =-—R"cdw Nw? + P o &° Nw'? + = SB ey @ Awte! |

First, for the K—connection we know ([9], [13]) that

._n

2, “mb/\wc —dw, = Rhcdw Nw? +Pe @ Ne®

+%Sb.‘awm ST - LA
(3.3) ucd _R-fkhc Ce.g €4, P uw‘d‘w :P;thTCiCKG“:h.

a o i = e kX = h
B THE) _‘SJR #€16,63C%

where Rjxn, PJ/xn and Siy, are the h—, hv—, v—curvature tensors on M.

Next, for the K,—connection we know [9] that
@) =08 = wl Awd — dwl :é—Rﬂ“mw”/\wd
+Pﬂa@d. Cn)c/\(sﬂ:d] + %Sﬂ??”d"mw?n/\m(d‘f :
Rlﬂ-cd —-Rﬂcd _R;Ah ? {G‘:,: 'c}:|
Pifliey =Pdue) =Pixn§E0ERELES,
(3.4) o
Sisl% s :Sﬁﬂ?d':Sjith?C‘:‘iC{cfcs's

§1lkh :Sjr.'ch +hnchj; + hin hjk .

Now, if we denote by “R/xn and 'P,)., the semi—indicatrized tensor



— JANERERERE —

of R/, and the indicatrized tensor of P/x», then we have

"foh =Rfkh +Rmhl! “RIM ls )
(3..5)
’PJIkh =Pth +thl‘ _P‘khlj ’ Pth =ngP‘kh|

(I) The Ko—connection. From (2 .2) we have

Then, from (3.2), (3.4), (3.5) and (3.6) we have

(3.7 Ryca =RInGiE185C5, Plusy =PluabiticiCh,
Sutvier =8 fanGIELENEY,
(3.7Y2  Biiea=Pluim =Suw s =0,
(3.7)3 (g =Pi®oy =SPhe =0,
(3.7)4 Riiea ="R/sn ETELEeCYE, Palfh =P/an 085S,
Silftnins =83an CTLHERCH

As well known, any indicatrix of M is locally flat if and only if
Sikn=0. It follows from (3.7)1 and(3 . 7)4 that Kfcp =0 if and only
if "Rfisxs ="Plan =§i£kh =0.

(I1)  The K—connection. The curvature tensor with respect to

this connection is already known as follows ([6], [9], [13]):
Rhacd :RJ(M; C?CiCZC’é B P:c(ﬂ'} =PJ‘kh C(:‘:'; ‘:’égﬁ‘,
(3.8)1
Sw#:(d‘) =SJ’MC?C}',C’§'C%,
(3 . 8) 2 R!B‘]:cd =P-'sa:c:6.- =Su5”11‘f::rf:- =Oa
(3.8)3 RYfca =PV e, =SThie =0,
R i ="RisnCPCuliCl, PiGhar =Pl ol el g
Siblivier =8 kn ETEHEHES.

Suppose Kjcy =0. Then from (3.8) 1 and (3. 8) 4, we have h,.h'
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—h;»h% =0, contraction of which by g¢** vields (n—2)hs =0. So we
have n=2 or h, =0. A TFinsler space M is called quasi—locally
Minkowskian [14] if R/xn =P/xn =0. If n=2, we have always S/ m =
Sixn=0. Therefore, Kicp =0 if and only if R/xn =P/ s =0.
Summarizing the results obtained, we have
Theorem 1. The curvature tensor Kicp with respect to the Ko—
connection is given by (3 .7)1~(3.7)s. In this case, Kicp =0 if and
only if any indicatrix of M is locally flat and "R)xn ="PSxn =0. For the
K—connection, the following hold good:
(i) When n= 2, the curvature temsor Kj.,vanishes if and only
if M is quasi—locally Minkowskian.

(ii) When n= 3, the curvature tensor K¢, never vanishes.

(1) The D—connection. Because of (3 .1)~(3.3) we can ex-

press as
.(_2‘; =(ej\w; —dw}) +&'7 N5 =25 + oAy

(3'9) 17(2 c d a (o3 (5 1_(1 ¥ (&
=§R ca @ Aw +P,,C.§:w FAY S Lt +ES&(TD[0’|CHJ' '"A .

Therefore if we put

Rii =Rans CLELEIEE, Blum =Punbl 81856580,
(3.10)1
Su?'rmw =émhiié’é€§§’&,
then from (2 .4), (3.3) and (3.9) we have
Riisn=Ryixic+Bpi B i = Br Bl i,
(310)1 }IjJrkh:Pukh +PnhBrtk —BerPrih,
ulg‘rmh =Sikn +Prthrtk _Prjkprih-

For 2%, , we have

(3.11) R =do'd 4+ I Nl +§m‘:3 N}
1

1 ) a c ] .
2 d @ e o 42y e
*"?-R-!J'cd‘:‘IJ Nw + Pigicio) @ New'? + =8 aimie @ A,

2

y o H = g 2 ;
(3.10)2 Rfica =Rurn&h6L6L 4, Pl =Punn€88a8cC8,

o 2
Srﬂu):T::ri‘) :S_rikh gffiC:x Cl‘rr‘:ﬁ .
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After a long caluculation using (1 .14), (1.15), (1.17), (2
(3.11) and the Bianchi's identies, we have

2

R};‘kh :B_rlklh _BJ'.!hM: _Pj,-rRrhk -
(3.10) 2 Pyuxn=Buxla =Punix +Brixly +Byur ATkn +Pyur PTrn,
Sf“”'=B‘“"‘_Pklrh"i"elhlk_Przk[h_‘exrAfm+PMT AT, .

For £2¢, we have

!—"}:g: =_Q‘% = éR-g cd w" A w? +F‘€’cid‘lmc/\mwl
+%§[ua yie @V AT
3

(3.10)3 Ri®a=Rixm€FCLELER, PlPuai =P wa8281CLEE,
S =S nEFELERES,
‘Rjikh =B‘Jk'\h _‘B[;JIHC _Pl_er rkh s

(3 . 10) o f).ilkh =P[.'ﬂ\k _'B ik | h Bh}.’:[ _Bt;rA rkh _Plj‘rprkhq

. 4),

SJ!kh :Pkt,uh_Pher_PJJh[k‘i'Pth!h_‘PihrArik'FPlkf “iH 4

For 2%, we have

213 =23 +3 02 Ne'®)

(3, 12) =%R:éaéd&3r/\fﬂ)d +Prm::m @’ Aw'®!
+i8mi.?13,:m.. [SRAVAVS LA
ﬁ:é?c‘d =R ktC C C gd; P(ﬁ“:'r:o‘ =PJ‘MC?CEC'§CG,
(3 v 10) 4 1
Siéfhier =S/ /xn€e8hE5ECh.

From (2 .4), (3.4), (3.5) and (3.12) we obtain

1

Rjixh :”lekh o (‘B{SkBj.’,h *Bish B“k)gsz s
(3.10)4" Pisx ='Ples +(B'sx Pjin —P'sn Bin)g®* ,
S."ki: :§jtkh +P‘rkpr_rh _Pirhprm .
Especially if S, xn =S,;xx =0, then we have (n— 2) h,x =0,
Therefore when n = 3, the tensor K., never vanishes.

(IV) The Dy—connection. In the same way as before we

can express as

11
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-(_‘-)a =%R:ca @ Nw? + P} o @ Nt +%Sﬁnu{wm 0" A,
and put
=a (1) a —— (1) o
Racaz RJ‘MLCJC':,C';CH. Pioe = PJIMC;C{,C'EC'},
(3.11),

(1)

:fwm =szkh C‘: C‘;,C'%Q'&.

In this case, since the relation between the D, — and D—connectinos is the

same as that between the K,— and K—connections, we have

(1)
Riikn ="Riikn +BrmBr:k “‘Brn:Bru; )
(1)

(3. 11} ¢ Pixn = Psixn +*PonBTix =B x P,

(1)

Sswn = SouesHPran P s — PP s
For 2% , we have
25=80%— 3 N8 =2% — (R4 Ryon) C1EHELE B0 N
R, ﬂnlcdm A@® +P g o) @ N7 +85yyie @7 Nt |
(3.11)2  Riffoa =Rouxn C4ELEEEE, Piafs, =Poan ChELERES,
S =Samn &S ELELLH,

(2) {2)

(3 . 11) g Rthh —Rthha Pixn —P.nich +hoh Riok s Siien =Sixn.
For .@“j’ , we have

n,. (3)
R[balcdszth?CiC:Cﬁs t, el o) —Pumc g CECR
g(ﬁ”um :‘SJ‘M‘:Q‘:I‘:?}'C'}

(31 3

(3.11)s R-th'_‘RJh:ho ijh_Pth+hJi;R ok » S.fkh 5

(3.11)3

For 2% , we have
. (4]
(3. 11)i S 88 a =SJ‘th?C‘éc§r‘:@h
(47 4 (4) 4 (1) 4
(3 . 11) 4’ Rfkh =Rfm., Pf:ch :P.'lxh, Sfml =Sf.m :

Thus we have

Theorem 2. The curvature tensor Kic, with respect ito the D—

connection is given by (3.10)1, (3.10) 1 ~(3.10)4, (3.10) 4" . Especially
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when n =3, the tensor K., never vanishes. The curvature tensor Kicp
with respect to the Dg—connection is given by (3.11)1, (3.11)1"~(3.11) 4,
(3.2« .

§ 4. Special cases. In the previous section we have introduced
many new tensors on M. However, for the present, we can not explicate

the geometrical meanings of these tensors. In this section, therefore, we

shall try it for special Finsler spaces.

(A) Let M be a space with absolute parallelism of line—elements,

that is, R4 =0. Then for the D—connection, we have

1 4
Ruxn =R jikn :Rmh +Siikh;

Pusxn =Pyusxn +Pen A"k —A s Pun,
8 siwn =8 sxn +Pran Pliw = Pras Plias
}z?mch :f{ukh = _Il{uﬁch z_i{ﬂkh =+4+Ain —Aunik,
4. 1) Pusn=—Pus=+AuxIn = Punix + Anixly +4,ur A% +Puy Pia,
éJH\:h =~§ukh =’_'§ukh =_§thh =+Phrur —Prun
=P el Ty TP el T =Pomils FPpiaelins
Prn =Puss +Arn PTn —Acx P,
éukh =§Jlkh +Pas Phs == e P

Then we have

Theorem 3. Let M be a space with absolule parallelism of line-
elements. Then the curvature tensor Kj.p with respect to the D—connection
is determined by (4 .1). In this case, the following propositions hold good:

(1) M is quasi—locally Minkowskian if and only if IE'_,M,1 =0 or

R,uen =0.
(2) M is locally Euclidean if and only if Izjnkh =0 and {Il:’,m,, =0 eor
éJikh =0).

(3) When n=2, the curvaiure tensor K., vanishes if and only if

M is locally Euclidean.

Proof. Firstly, we shall prove the proposition (1). Contracting

P,xn =0 by I’, we have Pun =0. We know that P,x =R.x =0 is equi-
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valent to Pxw=Rimwn =0, Next, it is well known that P, =0 s

equivalent to Rxn = A inix —A ik 1n =0.
Secondly, we prove the proposition (2). Suppose P,,x =0. Then from

2
P,xn =0, we obtain

(4-2) Ai.!k'h=_£1AIML_AJ{TAT)HL-

Since the right hand side of (4 .2) is symmetric in the indices k and h, we
have A ,kln —A,nlx =0, contraction of which by [* yields 4, =0, that
is, M is Riemannian. Accordingly R,k are functions of x alone. Then,
differentiating R ,,xy” =0 by y", we have R, ,x =0.

Lastly, we prove the proposition (3). If M is of dimension 2, then we
have always S,ixn =§,,,¢h=0. If Kicp =0, it follows from the proposition
(2} that M is locally Euclidean. The converse is clear. Q. E. D.

For the D, —connection, we have

(4

Rj.'hh ""“RH.UL _R_u‘zkh i P,a'aich —ijkh *I Jikh »

131

(4. 3) SJ(kh —Smcn —Snﬁm. Rmm =—R jixn =Rﬂkh ,
(3 {2) (3

2
Pmch =—Pixn “PJHch S ik __S!fkh =Sikn.

Hence we have

Corollary 3. 1. Let M be a space wilh absolute parallelism of line—
elements.  Then the curvature tensor K., with respect to the D,—con-
nection is dertermined by only the components f?,-im., ;{nm“ 1:3“,”,, ,§_,,kh,

4
Pikn and S ,ixn of the curvaiure tensor with respect to the D—conneciion.

And the following propositions hold good still:
(1) M is quasi—locally Minkowskian if and only if R,wh =0.
(2) M is locally Euclidean if and only if 'R,_.,m. Z}BI,M =

(3) When n= 2, the curvalure tensor Kj.y, wvanishes if and only if
M is locally Euclidean,
(B) Let M be a Landsberg space, that is, P';, =0.  Then for the D—con-

nection, we have

1 2 3 1 1
Pixn =S 5ikn =S sikn =P =0, S sern :S_n.’ch ,
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1 4 _~
Riuwxn =Pusxn +BrnB™oe —Box Biny Siikn =S jikn s
3

(4.4) R;sm==_Rmch=+R;m|h _RJ.-huc

Pikn =—Puxn =Bux|n +Brixls +ByrAkn,

Riwn = Rjikn +(Bisx Bijin —Bisn Buk)!]m .

Then we can state

Theorem 4. Lei M be a Landsberg space.  Then the curvature tensor
Kicp with respect to the D—connection is determined by (4. 4). In this
case, the following propositions hold good:
(1) The tensor R,is h—covariant constant on M if and only if
Run =0,
(2) When n= 3, M is locally Euclidean if and only if fz’,,,ch =i
When n=2, M is a Riemannian space if and only if }27,”5,._ =(),
(3) If M is of scalar curvalure and I]{J,-khzO, then M is a quasi-
locally Minkowski space with S, =0 or M is a Riemannian space
of dimension 2o0r M is locally Euclidean.
(4) If M is of constant curvature and }‘Lm‘ =0, then M is a quasi—

locally Minkowski space with S s =0 or M is a lwo—dimensional
Riemannian space of constant curvalure or M is a Riemannian space of

constant curvature 1.

Proof.  Firstly we prove the proposition (1). In a Landsberg space,

a Bianchi's identity R0 +Rn 0 +Riknyp, =0 holds. From this identity

2
and R = Rikin —Runixr =0, we have Ry, =0.

Secondly, let us prove the proposition (2). We have another identity

(4.5) Ruklsn +Ruxln —Runk +RurAtsn +R AT =0,
Suppose i’,,kh =(), that is,
(4.6) Bhiwla +Brwls +BirATn=0.
Then subtracting (4 . 5) from (4 . 6), we have
(4.7 Aunln A7 ATn +Rujx —Ryxln +Rnind,

+Apnly +Rur AT =0
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Since Ajun +A,r ATxn is symmetric in the indices j and i, from (4 .7)

we have

tht.lc _R.u?clh +Rmk[1 +A4 hl?cl} +RﬂcrArm
=Ruur —Ruxln +Rusl, +Asnl; +Rixr A%,

contraction of which by /7 yields
(4 .8) Anix =R nioxr —Rionln +Rpoxl, .

The left hand side of (4 . 8) is symmetric in the indices % and i, while the
right hand side is skew—symmetric in the same indices. Therefore we

have A ,,x =0 and hence from (4 . 7)
{4-9) R opjn =Rilklh_Rh!kl: ,
which implies

(4-10) Fthm: =Rs,~my39my‘ —Rsmysguy' .

Differentiating (4 . 10) by y”and y “two times, contracting the resulting
expression by ¢?® and summing the result with respect to s and p, we obtain
(n=2YR s5ex =0 1.8 Ruur =0 or n=2. Conversely if 4,.=0 and
R nix =0, then lzz’mch =0. When n= 2, the relation (4 . 9) always holds.
Therefore if A, =0, then from (4 . 5) and (4 . 9) we have }::’”ml =Ry
+R il =0.

Thirdly, we prove the proposition (3). From Il{mm =0, we have
(4. 11) ' Rymn+8snn +Aan ATk —Asn R0 + R AT —Riud
+R n R —Rex R =0,
contraction of which by /7 yields
(4.12) Rupw+Reond%i =RiondA Tt Rion R~ Reon R0 =0.
Further contracting (4 . 12) by [* , we have
(4.13) Rion =R, onR" .

Let M be of scalar curvature R, that is,
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(4 . 14) Rroh ZR{qu)hths

where R{x,y) is a homogeneous function of degree O in y' . If we subsitute
(4.14) in (4.13), we get R(IR—1)h,, =0, i. e. R=0 or R=1. If R=0,
then from (4.12) and (4.13) we have R,xn =0 and hence Rxn =0. There-
fore (4 . 11) leads us to S,,xn =0.

Next, suppose KR=1, Then we can express R, as
(4 .15) Risn =Ixgin —lngu.
Substituting (4 . 15) in (4 . 11), we have
(4.16) Rukn =L Rixn — L Rjkn —S sixn -
Again if we substitute (4 . 15) and (4 . 16) in (4 . 5), then we get
hingie —hrngs FLRu +Snnx 1A — 1A =0,

constraction of which by {° gives A, =0. The sequent proof is the same
as in the proposition (2).

Lastly we prove the proposition (4). From R,xn =0, we have

(4 - 17) Rmch _lJRu:h +!1Rmh +Sﬂkh g (A!.S‘kRJUt ‘—AtshRnk

+Rsk A —Risn Aje + R sn Ry — R 0 Rju:}g'gt =0.
[Let M be of constant curvature, i. e.

(4 .18) Rix =R(l,9.x —lrg.), where R is constant.
Substituting (4 . 18) in (4 .5) and (4 . 17), we have
(4.19) Ryikn =R ikn +R(hﬂ\:gih *hm!]m +[kAthJ _lhAlkj)a
{4 . 20) Rjtkh +Sthh 7‘!;‘}?1.‘:}1 +l:Rmh ‘i'R(lhRJH: _lk Jth)
+R:(hm.(11k _hmﬂu.):O-

Again, substitution of (4 .19) in (4. 20) yields

(4. ; 21) SJHch +1,Rjikn +R(hmgzh —hm Gk +1y Rnk — xR yn
+leAun —[hfquk) +Rz(hm9rk —hugm) =0,
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contraction of which by [* gives RA,,, =0, i. e R=0 or A,,, =0.
If R=0, then we have R, xn =S ;0 =0. If A;;, =0, then (4.21)

leads us to R=1 or
(4.22) hin ik _h.u:grh'J!‘[:(Ihgm—[k!]m):o-

Contracting (4 . 22) by g'*, we have (n— 2)h;x=0, i.e. n=2. Q. E. D.
For the D, —connection, we have

th 12 31 t4) i1 41 e

Pikn =S k0 =S jikn =Poukn =0, Siikn =S sikn =S sikn s

{11 22 (31 2
Rien = Rixn +Brn BTy —BrxBTiny Ruxn =—Rokn =R,
(4 .22) (31
Pjixn = —Pwm =Bnk|h + Bl + B.lirArkh —hin Rjox,

R'“kh ( =“Rukh b2 (B;-sx Burz Jstn Buk} QS[} =R ixn .

Then we have
Corollary 4. 4.  Let M be a Landsherg space.  Then the curvature
tensor Kjcp with respect to the Do—connection is determined by (4. 22).

In this case, the following propositions hold good:

(1) The tensor R, is h—covariant constant on M if and only if

Ron =0

(2) M is locally FEuclidean if and only if KI:'TIJ,M =0,

(3) If M is of scalar curvature and rfli;,,m, =0, the M is a quasi—locally
Minkowski space with S, =0O.

(4) If M is of constanl curvature and ;flg',,-k,L =0, then M is a quasi—
locally Minkowski space with S ;s =0 or M is a lwo—dimensional
Riemannian space of constant curvature or M is a Riemannian space of
conslanl curvature 1.

Proof. The propositions (1) and (4) are theﬂ same as in Theorem 4.
First, we prove the proposition (2). From ﬁ:,{k,‘ =(), we have

(4 . 23) Bthhh +B}u'k [J +BjtrArkh _h(hRJok :O

Then subtracting (4 . 5) from (4 . 23), we obtain
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(4 .24) AuxlntAurATen +Rpsx —Ryunln +Raxly
+Anily +RixrATin —hin Riox =0.
In the same way as in Theorem 4, we have
(4 .25b) Anix =Rnioxr —Rioxln +Ruoxl, =0.
Therefore from (4 . 24) we get
(4.26) Rujux =Ruxln —Ruul, +hinRjox,
contraction of which by g¢g'* yields
(4.27) Rx =Roxl, +nR o,
which implies
(4 .28) F'Ryx =Rixy' ginyn +0Runny’ 4.
Differentiating (4 . 28) by y‘ and y" two times, we have
(4.29) 29 iR =R gni+Raxgy + a(Ryne + Rasunh

contraction of which by ¢‘* gives R,;x =0. Then, from (4 . 27) and (4 .29)

we have
(4 A 30) R;olc =O| Ruhk +Rthk =O-
In the same way as before, we have R,n =0 or n= 2. When n= 2,

the condition (4 . 30) implies R, xx =0, too.
(RN}
Next, we prove the proposition (3). From R,x» =0, we obtain

(4 . 31) Rukh _l:Ruch +IJR.ikh +Sukh + 4 Tih RTM —A r:erth

+Rn ATk —R ok ATin +R1'Jth!k _RHA:RTU: =0,
contraction of which by [* yields

(4 . 32) Rnah _!JRJOh +J:Rmh "'Ar.mRruz +Rro-'ATm _erRror

+RrOJRT:h =0,

Further contracting (4 . 32) by !’ , we have
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(4.33) R,onR70 =0.

Let M be of scalar curvature. Then if we substitute (4 .14) in
(4 .33), then we have R=0 and hence R, =0. Therefore by virtue of
(4 .32) we have R,,0n =0, from which it follows that

(4.34) Rﬂkh:_R}lkslh!s-
On the other hand, the following identity holds good:
(4 . 35) Rjncslh +SJisrRrhk '_'R.'tsrArkh +RﬂkrArsh =O

In consequence of (4 . 34), (4 .35) and R,,on =0, we have R,x, =0. Ac-
cordingly from (4 . 31) we obtain S,k =0. Q. E. D.
(C) Let M be a quasi—locally Minkowski space, that is, P'x=R", =0.

Then for the D—connection, we obtain
1 2 3 H 3 4
Pxn =S jixn =S ikn =R jixn =Rien =P oxn =0,

(4.36) Rykn =Rjixn =S jikn =S sikn s Siikn =§thh "
PJikh :_Pu.’ch =AJ¢H}. +Ah4k!, +AurArkh-

For the D,—connection, we have

(] 2 i3 121 13 {41
Pixn =8 jikn =8 jixn =R jiken =Ryikn =P yen =0,
(B ] 14) 1 i4) —

(4 .37) Rikn =R uxn =S sixns Ssixn =S 5ixn =S sixn

(3 4

(2}
Pm:n =_Pukh: P .

Then we have
Proposition 4. Let M be a quasi—locally Minkowski space. Then
the curvature tensors with respect to the D,— and D—connections are

determined by (4. 36) and (4. 37) respectively. M is locally Euclidean if
and only if }5““ =0,
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