

Asahikawa Medical University Repository http://amcor.asahikawa-med.ac.jp/

旭川医科大学研究フォーラム (2016.3) 16:57-67.

平成26年度「独創性のある生命科学研究」プロジェクト型研究課題 脳信 号解読による運動・言語機能検出/刺激による脳疾患治療/代替法の開発

鎌田 恭輔

平成26年度「独創性のある生命科学研究」プロジェクト型研究課題 脳信号解読による運動・言語機能検出/ 刺激による脳疾患治療/代替法の開発

鎌田恭輔*

【要旨】

ALS 患者の終末期には意識が清明にもかかわらず コミュニケーションができなくなる。意志を伝える方 法は、文字盤などの簡易的用具から、パソコンによる 人工音声による手法がある。しかし症状が進行した患 者に残された手段は、脳信号を解読する工学技術が唯 一となる。しかし、いくつもある脳機能計測方法の信 頼性、確実性は未だ確立していない。脳神経外科にお ける脳機能マッピング法は病変を取り除く手術手技と 並んで治療を根本で支える重要な技術である。高次脳 機能である言語機能はその解剖学的基盤が不明確であ り、個人差も大きい。言語野の同定には皮質電気刺激 マッピングが必要であるが、検査自体の侵襲性が高い ことが問題であり、より低侵襲な言語機能マッピング 法が求められてきた。その一つに functional magnetic resonance imaging (fMRI) があるが、以下のような点 で課題が残されている。① fMRI の信頼度の検証が不 十分である、②背景にある神経活動との関連が未解明 である。この点について以下の項目を検討した。皮質 電気刺激マッピングと比較して fMRI の感度・特異度 を算出した。また、BOLD 反応の背景神経活動として 注目される高周波脳律動活動(high gamma activity: HGA)との関係を調べた。更に、HGAの時空間動態を 明らかにし fMRI による言語モデルとの整合性を検証 した。方法)難治性てんかんの治療を目的として硬膜 下電極を留置した患者を対象とした。fMRIの賦活お

物品呼称課題、動詞想起課題を用いた。電気刺激マッ ピングでは、自発語、物品呼称、読字、図形理解の4種 類の言語課題を使用した。計測された皮質脳波に対し てフーリエ変換を行い、HGA の定量化を行った。ま た、HGAの時空間動態を明らかにするために、時間周 波数解析で得た HGA パターンを標準脳に投影した。 結果と考察)fMRIは読字判別課題で最も信頼度が高 く、感度は83%、特異度は61%であった。脳回毎にみ ると、後部下前頭回で最も信頼度が高く(感度 91%、 特異度 59%)、前部中前頭回は低い信頼度を示した (感度 80%、特異度 46%)。高感度、低特異度である fMRI は皮質電気刺激マッピングの代替とはなり得え ないが、電気刺激マッピングの効率化に寄与すると考 える。複数の言語関連領野で BOLD と HGA は有意な 正の相関を示した (R = 0.57)。BOLD と HGA は、側 頭葉において空間的な解離を示した。側頭葉の HGA は早期に減衰した一方で、前頭葉のHGAは、遷延した 活動を示した。HGA の減衰が早いために、側頭葉の 活動が BOLD に反映されない可能性を示した。結論) fMRI は現状では独立した言語機能マッピング法とし て成立しえないが、皮質局所の神経活動を反映する HGAは BOLD とよく相関し、fMRI の背後にある神経 活動の時空間動態を明らかにした。fMRI の時間分解 能の改善によりマッピング精度の改善が得られる可能 性がある。また HGA 自体による機能テンプレート作 成、コミュニケーションデバイス開発に応用の可能性

よび HGA を検出するための言語課題は読字判別課題、

*旭川医科大学 脳神経外科学講座

を示した。

【はじめに】

脳外科手術において言語機能障害の出現を過度に恐 れれば病巣の摘出は不十分となるが、摘出を重視する と言語機能障害が出現する確率が高くなる。したがっ て言語機能温存のための適切な手術方針を決定するた めには脳における言語機能の分布を正しく見極めるこ とが必要である。また、仮に言語機能障害を避けるこ とができない場合にも、それを術前に予測し十分な説 明をしておくことは、その後の治療を協力的に進める 上で非常に重要である。このため言語機能マッピング 法は病変を取り除く外科的手技と並んで脳神経外科手 術を根本で支える重要な技術である。このような言語 機能マッピングの目的は側性化と局在に大別される。

現状では、真の言語機能局在には切除の影響を疑似 的に再現する侵襲的検査が必須である。侵襲的検査を 加えることにより最終的に当該部位に対する手術操作 の可否が決定される。非侵襲的検査による言語機能の 局在は未だ十分な信頼度に到達しているとは言えず単 独で手術、コミュニケーションデバイスへの応用精度 向上も大きな課題となっている。本研究では、言語機 能局在・ダイナミクスに焦点を当てて、functional MRI (fMRI)の信頼度の検証と脳皮質の電気生理学的実体 とされる高周波脳律動活動の詳細な検討を行った。

[本研究の目的1]

コミュニケーションの基本となる言語機能の画像化 とその信頼性の検証を行う。

この目的を達成するために、下記の3つの研究を行った。

研究① fMRIの信頼度を検証するために、皮質電気 刺激マッピングと比較することにより、言語課題による fMRIの感度・特異度を算出した^{1,2,3}。

研究② 連合野における HGA-BOLD coupling を検証 するために、言語課題による BOLD 反応とその背景脳 活動とされる HGA の相関を調べた⁴⁾。

【方法】

本研究は、上述した3つの研究で構成した。対象は すべて、申請者の施設で難治性てんかんの治療を目的 として頭蓋内電極を留置した患者とした。頭蓋内電極

留置は、MRI 上器質的病変が明らかでない例の他、術 前の非~低侵襲的検査ではてんかん焦点の同定に至ら なかった例で、てんかん焦点の同定を行う目的で行っ た。脳・脊髄・末梢神経疾患の臨床研究については当 院倫理委員会審査で承認を受けている。頭蓋内電極留 置後から焦点切除術を行うまでの2~3週間の間に、 てんかん発作を補足するための長時間皮質脳波計測を 行った。更に、焦点切除術を安全に行うための言語機 能局在を目的として頭蓋内電極を使用した電気刺激マ ッピングを行った。さらに、本研究を目的とした言語 課題による皮質電位計測を行った。頭蓋内電極を用い た電気刺激、脳電位記録による機能的神経回路の研究 に関しては当院倫理委員会審査で承認を受けている (#178)。言語課題下の皮質電位計測は、最後にてん かん発作が起こってから24時間以上経過した後に行 った。

[研究①の方法:fMRIの信頼度の検証]

対象 2007 年 4 月(申請者の前任地)から 2015 年 9 月に難治性てんかんの治療を目的として頭蓋内電極 を留置した 15 名の患者を対象とした。WAIS-R による 言語性知能指数が 70 未満であった 1 名、電気刺激マ ッピングを施行しなかった 4 例、言語優位半球の中・ 下前頭回に頭蓋内電極が留置されなかった 2 例を除外 し、結果として 8 例(男性 3 名、女性 5 名)について 解析を行った。表 1 に検討した患者の詳細を示した。

全例でてんかん焦点の切除術に先立って和田テスト を行い、言語優位半球の同定を行った。7例で左言語 優位を示す結果が得られたが、1例では両側性の言語 機能分布が示されたため、両側を言語優位半球として 扱った。本研究では、単語レベルでの言語課題を使用 したため、fMRI 賦活部位は前頭葉を中心に分布する ことが予想された。最終的に9大脳半球前頭葉に関し て言語 fMRIと皮質電気刺激マッピングの比較を行った。 [言語 fMRI]

3テスラ頭部専用 MRI 装置(GE Healthcare、USA) および phased-array コイルを用いた。fMRI の検査パラ ダイムは box-car design を用いた。各 fMRI セッション は、賦活ブロック3回と対照ブロック4回からなり、 20秒間の各ブロックで5イメージボリュームを取得 した。撮像開始時の信号を安定化させるため最初の3 スキャンは破棄した。したがって1回のセッションは

Patient	Age, y/Sex	Diagnosis	Language dominance	VIQ Score	Electrodes, n	
1	50/F	Right TLE, cavernous malformation	Left	91	30	
2	40/M	Left TLE	Left	85	24	
3	33/F	Left FLE, left TLE	Left	94	32	
4	40/M	Right TLE	Left	93	21	
5	35/F	Left TLE	Left	107	20	
6	21/M	Left TLE	Left	79	20	
7	36/F	Left TLE	Left	72	29	
8	31/F	Right TLE	Bilateral	86	Left 25, Right 21	

表1 患者情報の詳細

FLE, frontal lobe epilepsy; TLE, temporal lobe epilepsy; VIQ, Verval Intelligence Quotient in the Wechsler Adult Intelligence Scale, revised;

図1 fMRIのタスクデザイン(box-car design)
 5スキャン、20秒ごとに安静と課題を繰り返し行い、課題は3回繰り返し1回あたり
 2分32秒の検査時間とした。

2分32秒で終了し、38ボリュームが取得された(図1)。 動詞想起課題:ヘッドフォンを使用して聴覚刺激を行った。賦活ブロックでは、簡単な具象名詞を提示した。患者は提示された単語と関連する動詞を想起することとした。対照ブロックでは、逆再生した単語を提示し、一次聴覚野の応答を相殺した。音声の提示は500ミリ秒以内とし、刺激間隔は1600~2400ミリ 秒とした。

読字判別課題:ヘッドコイルに装着した鏡を通して患 者の足元にある液晶モニターによる視覚提示を行っ た。賦活ブロックでは、3文字の平仮名からなる単語 を提示し、その単語が具象語か抽象語かを判断するよ うに指示した。対照ブロックでは、一次視覚応答を相 殺すべく、全体の輝度を賦活ブロックの単語と合わせ たランダムドットを提示した。刺激提示時間、刺激間 隔はそれぞれ 500 ミリ秒、2000 ミリ秒とした。

物品呼称課題:文字読み課題と同じセットアップで視 覚提示を行った。賦活ブロックでは、ありふれた物品 のカラーイラストを提示し、物品の名称を想起するよ う指示した。対象ブロックでは、全体の輝度を賦活ブ ロックのイラストと合わせた無意味な画像を提示し た。刺激提示時間、刺激間隔はそれぞれ 500 ミリ秒、 2000 ミリ秒とした。

得られた機能画像は、Dr View (AJS、日本) で解析 を行った。賦活ブロックと対照ブロックのすべての画 像からボクセル毎に Z 値を算出した。Z 値のカットオ フ値を 1.65、1.96、2.24、2.58 (両側検定でそれぞれ 0.1、0.05、0.025、0.01 の P 値に対応する) に設定し、 それぞれに対応する機能画像を作成した。

[皮質電気刺激マッピング]

使用した硬膜下電極は電極径 3mm、電極間距離 10mmのものを使用した(ユニークメディカル、日本)。 電気刺激は、極性の反転する 0.2 ミリ秒の矩形波から なる 50Hzの定常電流を用いて 2 つの電極間で行った。 言語課題を開始して数秒の時点で電気刺激を開始し、 言語機能の変化を観察した。刺激後に出現した発語停 止、発語遅延、意味性錯語、保続、理解困難を刺激に よる言語機能障害と定義した。

[fMRI と電気刺激マッピングの比較]

fMRIの賦活部位と電気刺激マッピングの結果を比較するために、電極留置後の3D-CT、電極留置前の3D-MRI、fMRI機能画像を融合して、検討した半球側面の3次元脳表画像を作成した(図2A)。

同一患者のすべての MRI 画像は、xy 座標上の中心 が揃えてあるため、fMRI機能画像と3D-MRI 解剖画像 はz軸上の座標を合わせることにより画像の位置合わ せを行った。また、3D-CTと 3D-MRI のボリュームデ ータの相互情報量を最大化することにより、両画像の 位置合わせを行った。このようにして位置合わせを行 った機能画像と3D-CTを3D-MRIのボリュームデータ に合わせてリスライスした。Dr View により 3D-MRI から半自動的抽出された脳表のボリュームデータと位 置合わせを行った 3D-CT、fMRI 機能画像は digital imaging and communications in medicine (DICOM) 形式 で RealIntage (KGT、日本) に取り込み、3D 融合画像 を作成した。我々は、仮想的な電極の直径(matching criteria) を 3mm、6mm として fMRI 賦活部位との一致 の有無を評価した。仮想電極内に賦活部位が存在すれ ば、その電極はfMRI(+)とした。仮想電極内に賦活 部位がなければその電極はfMRI(-)とした。全患者 の電極を、fMRI 賦活の有無 (fMRI (+)か fMRI (-)) (図2B)、電気刺激による言語障害の有無(ECS(+)か ECS (-)) (図2C) によって4群に分類し、各群の 電極数により感度、特異度を算出した。

各 Z 値に対して感度、特異度を算出することにより receiver-operating characteristics (ROC) 曲線を得た。3 種類の言語課題、2 つの matching criteria の組み合わせ により6 個の ROC 曲線を求め、感度・特異度の best tradeoff を与える条件を調べた。感度・特異度の合計か ら1を減じた値 (Youden Index) が最大になる ROC 曲

ECS (+)	ECS	(-)
-------	----	-----	-----

fMRI (+)	А	В	
fMRI (-)	С	D	
感 特異	度= A/(A 度= D/(B	(x + C) x100 (%) (x + D) x100 (%)	

線上の点を best tradeoff とした。これは、図の対角線 (感度と特異度の和が1になる直線) と ROC 曲線上の 点の最大距離に相当する。

[研究②の方法:HGA-BOLD coupling]

1. 対象

2006年12月~2015年9月に難治性てんかんの治療 を目的として頭蓋内電極を留置した23名の患者を対 象とした。13例(男性5例、女性8例)の検討を行っ た。表に検討した患者の詳細を示した。fMRIの susceptibility artifact の強い脳の底面は検討から除外 し、言語優位側である左半球外側面のみを検討の対象 とした。

2.言語 fMRI

研究①で記載した撮像条件、パラダイムを用いて fMRIを行った。最も多くの賦活が得られた読字判別 課題のみを解析の対象とした。

- 図2 3次元 MRI、fMRI および硬膜下電極の融合画像
- A. 読字判別課題による fMRI 賦活領域(Z > 2.24、 橙色)と硬膜下電極(緑)の融合画像。側頭葉と比 較して前頭葉により広範な賦活領域が観察された。
- B. 6mmの matching criteria を用いて電極ごとに fMRI 賦活の陽性(赤)、陰性(青)を判定した。
- C. 電極ごとに皮質電気刺激に対する応答(陽性:赤、 陰性:青)を示した。

得られた機能画像の解析は数値解析ソフトウェア である MATLAB (The Mathworks, Inc.、アメリカ) 上で動作する SPM8 (Wellcome Department of Imaging Neuroscience、イギリス)にて行った。れた画像パラメ ータから集団レベルでの統計画像を作成することが可 能である。SPM8 を用いて機能画像の位置補正を行 い、標準脳に合わせて座標変換を行った。更に半値幅 8mm のガウシアンフィルタにより平滑化処理を行っ た。3D 標準脳表画像の元となるボリュームデータは、 fMRI 機能画像と合わせて撮像した 3D-MRI ボリュー ムデータを SPM8 により標準化して作成した。本研究 では、電極と同じ位置に半径 10mmの ROI を設定した。 ROI 解析は Mars-Bar region of interest toolbox にて行っ た (図3)。

3. ECoG 記録

ベッド上に座った患者の100cm前方にモニターを 設置した。視覚刺激は、ノート PC 型刺激装置(Stimuli Output Sequencer、NoruPro Light Systems Inc.、日本) によってモニター上に提示された。ECoG は、128 チ ャンネルの脳波計(BMSI 6000、Nicolet Biomedical Inc.、アメリカ)を使用してサンプリング周波数 400Hz、アナログフィルター 0.55 ~ 150Hz で記録し た。課題のトリガーとして刺激開始と同時に刺激装置 から矩形波が出力され、脳波計の空きチャンネルに記 録されるようにした。基準電極は頭皮上 Cz(国際1020システム)の位置に刺入した針電極とした。

4. ECoG 解析

ECoG データの解析は、Matlab 上で作成したプログ ラムを用いて行った。刺激開始をゼロとして、背景脳 活動を示す baseline を-600 ~-100 ミリ秒、課題中の脳 活動を示す task periodを0~750 ミリ秒と定義した。 ウィンドウ毎の PSD を平均し、データエポック全体の PSD を得た(図4A)。本研究では、刺激開始前後 750 ミリ秒からなる 1500 ミリ秒のデータエポックから算 出した PSD を用いて、baseline および task periodの PSD の正規化を行った(図4B)。この方法により、スペク トルの形状が平坦化し、正規化されたパワーの周波数 帯域内の平均値をとることができた。Baseline と task period の high gamma 帯域(60~120Hz)における正 規化されたパワーの平均値を算出し、両者の差分を High gamma 帯域のパワー変化(high gamma power change; HGPC)と定義した(図4C)。

5. 統計解析

BOLD と HGA の相関について検証した。すべての HGA(+)の電極について BOLD-SC と HGPC を算出 した。線形回帰モデル(Y = XB + U)を適用し、Ftest で検定を行った(P < 0.05)。ここで、Y:BOLD-SC、X:HGPC、B:回帰係数、U:残差とした。

6. 電極の標準脳への表示

標準化電極をモデル脳の表面に表示するために、モ

図3 Mars-Bar による ROI 解析

図4 スペクトル密度解析の例

左上側頭回の1電極について周波数解析を行った。淡灰色の領域は60-120Hzのhigh gamma帯域を示す。

- A. task period (赤) と baseline (青)のスペクトル密 度関数。task periodのスペクトル密度は high gamma 帯域において上昇を示した。
- B. 正規化したスペクトル密度関数(task period:赤、 baseline:青)。色つき部分は平均の標準誤差を示す。
- C. task period と baseline の正規化スペクトル密度の
 差。色つき部分は平均の標準誤差を示す。

デル脳と標準化された電極のボリュームデータを EMSE(Source Signal Imaging, San Diego, CA、アメリ カ)に取り込んだ。EMSE は脳波・MEG データの解析 コンポーネントと脳画像処理コンポーネントからなる 汎用性の高い脳機能画像解析ソフトウェアで、解析結 果を脳表に投影し時空間的脳機能動態を動画として表 示することも可能である。頭蓋内電極をデジタル化 し、対応する ECoG データを脳表に投影する機能を搭 載している。各シート状電極は、数個の電極位置を指 定するだけで、予め定義された電極の template に合わ せてデジタル化される(図5)。

7. 時間周波数解析

HGA の時空間的動態を前頭葉と側頭葉で比較する ために、時間周波数解析を行った 9-10。刺激開始を 0 として、-500 ミリ秒から 1500 ミリ秒を解析対象とし た。HGA の時間変化を定量化するために、60~ 120Hz における有意な周波数成分の割合を時間成分毎 にカウントし、high gamma broadband index (HGBI) と 定義した。HGBI をプロットすることにより、その電 極における HGA の時間変化を知ることができる。

【結果】

研究①の結果:fMRIの信頼度

1. fMRI の結果

動詞想起課題と物品呼称課題は3例において優位側 言語半球において優位な賦活を示さなかった。一方 で、読字判別課題は全例において優位側言語半球でよ り広い賦活部位が観察され、その傾向は特に前頭葉で 顕著であった。和田テストで両側性の言語機能が見ら れた1例においては、読字判別課題で両側前頭葉が側

図5 電極のデジタル化 シート上に配列された電極のうち3点を選択することにより脳の曲率に合わせて変形した template が適用される。 頭葉より広く賦活された。側頭葉、頭頂葉は、どの言 語課題によっても前頭葉より賦活される部位が少ない 傾向が見られた。読字判別課題と比較して動詞想起課 題と物品呼称課題は賦活部位が少ない傾向が見られた ため、検討に使用したZ値は、読字判別課題では1.96、 2.24、2.58、動詞想起課題、物品呼称課題では1.65、 1.96、2.24 とした。

2. ECS の結果

9個の大脳半球に留置された107個の電極について 解析した。半球あたりの電極数は12±3.3(平均±標準 偏差)であった。ECS(+)の電極は44個(41%) あり、そのうち、物品呼称と自発語で陽性であったも のは、それぞれ40個(91%)と30個(68%)であ った。これらの課題は、読字および図形理解と比較し て言語関連部位の検出率が高かった。時間的制約によ り、部位によっては読字および図形理解を省略した。 読字および図形理解が特異的に障害される部位は認め なかった。

3. fMRIとECSの比較

異なる Z 値で、言語課題および matching criteria 毎の 感度、特異度を算出した(**表 2**)。

横軸を偽陽性率(1-特異度)、縦軸を感度として、 すべての結果をプロットし、各条件に対応する6個の ROC曲線を得た(図6)。

読字判別課題は他の2つの課題と比較して一貫して 感度、特異度が高く、ECS(+)を最も効率よく検出 した。一方で、いずれの課題においても2つの matching criteria に対応する ROC 曲線は、ほぼ同一の曲 線上に位置しており、この範囲で matching criteria を変 えることは、fMRI の信頼度に大きく寄与しなった。 Youden Index の最大値 0.44 は、読字判別課題におい て、Z 値を 2.24、matching criteria を 3mm としたとき に得られ、このときの感度は 83%、特異度は 61% であ った。

研究②の結果:HGA-BOLD coupling

1. HGA と BOLD 反応の分布の概略

合計 478 個の電極について解析を行った。図7Aに モデル脳の左半球外側面上に配置した電極を示した。 その内 39 個が HGA(+) であった(図11B)。

BOLD-SCはHGA(+)では0.39、HGA(-)では 0.21で、両者に有意差は認めなかった。

2. HGA と BOLD の相関

BOLD - SCとHGPCの回帰分析の結果、両者の間に は有意な相関を認め(P = 0.0002)、相関係数は 0.57 であった(図8)。

3. 前頭葉と側頭葉における HGA と BOLD の関係

HGA(+)の電極は、下前頭回、上・中側頭回、中 心前回(運動前野と顔運動野)等に群を成して分布し た(図7B)。各部位には、複数の患者に由来する電極 が含まれていた。fMRIの集団レベル解析の結果を図 7Cに示した。図7Bにおいて群を成した電極および 図7Cを重ね合わせたものが図9である。

	Matching criterion = 3mm			Matching criterion $= 6$ mm				
	Z score			Z score				
	1.65	1.96	2.24	2.58	1.65	1.96	2.24	2.58
読字判別課題								
Sensitivity (%)		90	83	76		100	93	86
Specificity (%)		52	61	68		31	47	56
動詞想起課題								
Sensitivity (%)	64	39	33		76	55	42	
Specificity (%)	19	38	53		16	19	41	
物品呼称課題								
Sensitivity (%)	70	60	55		90	75	65	
Specificity (%)	41	53	53		26	44	47	

表2 患者情報の詳細

4. 前頭葉と側頭葉における HGA の動態解析

時間周波数解析を用いて前頭葉と側頭葉における HGAの時間変化を調べた。HGA(+)の電極が複数 集まって群を形成している部位に注目した。下前頭 回、中心前回(運動前野と顔運動野)、中・後部上側 頭回、後部中側頭回の6部位を選択し、それぞれに含 まれる電極の HGBI の平均をプロットした。各部位 は、特徴的な HGA の時間変化を示した(図9)。側頭 葉の3部位では、HGBI は短い潜時で立ち上がり、持続 時間が短く500 ミリ秒以降急速な減弱を示した。一 方、前頭葉の3部位では HGBI は立ち上がりがやや遅 れるものの、500 ミリ秒以降も活動が遷延する傾向を

図6 Receiver-operating characteristic (ROC) 曲線

3つの言語課題(WI:読字判別課題、VG:動詞想起課題、PN:物品呼称課題)と2つの matching criteria (d = 3mm、6mm)の組み合わせからなる6つの ROC 曲線を示した。ROC 曲線は縦軸に感度を、横軸に偽陽性率(1-特異度)をプロットすることにより得られる。読字判別課題を用いて、matching criteria3mm、Z値2.24としたとき感度と特異度の best tradeoff が成立した(矢印)。尚、ここで感度、特異度を少数で表示した。

図7 high gamma activity (HGA) と BOLD 反応のモデル脳における比較

A. 検討したすべての電極(緑)をモデル脳上に表示した。電極は左前頭葉と側頭葉の外側面に広く分布した。

- B. 有意な HGA をモデル脳上に表示した。同じ電極の色は同一患者由来の電極であることを示す。HGA は下前 頭回、上・中側頭回、中心前回(運動前野、顔運動野)に群を成して分布した。
- C. fMRIの集団レベル解析による T 統計画像をモデル脳上に表示した。BOLD 反応は下前頭回や中心前回を中 心とした前頭葉で広く観察された。電極が留置されなかった下側頭回後方でも BOLD 反応が見られた。

図8 BOLD信号変化に対する high gamma power change の散布図

回帰分析により正の相関が得られた(R = 0.57、 P = 0.0002)。

図9 high gamma activity (HGA) と BOLD 反応のモ デル脳における重畳表示

図7Bにおいて群を形成した電極とfMRI集団レベル解析のT統計画像をモデル脳上に表示した。前 頭葉ではHGAとBOLD反応の分布は概ね一致した。 しかし側頭葉では両者の分布は異なっていた。

図9 前頭葉および側頭葉における high gamma activity (HGA)の時間変化

有意な HGA を示した電極が、下前頭回、中心前回(運動前野、顔運動野)、上側頭回中部・後部、中側頭回 後部で形成した群ごとに high gamma broadband index (HGBI)の平均値を時間に対してプロットした。前頭葉 の各群における HGBI は 500 ~ 1000 ミリ秒以降も遷延した活動を示したが、側頭葉の各群におおける HGBI は 500 ミリ秒以降急速な下降を示した。電極の色と HGBI のプロットの色を対応させて示した。

示した。

【考察】

本研究では、硬膜下電極を用いた電気刺激マッピン グを基準として使用した。これにより、患者はより生 理的な言語応答が可能な条件下で、複数の言語課題に よるマッピングを行うことが可能となった。更に、 3TMRI 装置は 1.5T 装置と比べて BOLD 反応の信号雑 音比が高いとされる11.12)。そのため、より多くの言語 関連部位を検出できるが、不適切なカットオフ値を設 定することにより特異度を損なう恐れがある。我々 は、ROC 曲線から適切なカットオフ値を求め、特異度 を大きく損なうことなく、高い感度を得た。fMRIは、 機能部位の賦活法という性質上、少なくとも単純化さ れた言語課題を遂行する上では必ずしも必要でない部 位も検出される。本研究における一貫した高い感度 は、このような理論的考察ともよく一致している。し たがって、fMRI で賦活されなかった部位は、皮質電気 刺激を行っても言語障害が出現しない可能性が高く、 刺激を行う優先順位を下げることの有力な根拠とな る。皮質電気刺激の回数を減らすことは患者の検査に おける負担を減らし、より重要な機能部位を詳細に調 べることを可能とする。その意味で、最も重要な言語 中枢である後部下前頭回において、感度 91%、特異度 59%という良好な信頼度が得られた意義は大きい。 しかし一方で、fMRI の特異度は、最も高い脳回でも 70%に留まった。脳回毎に検討したとしても、皮質電 気刺激マッピングを省略し、fMRIの結果のみに依存 した手術を行うことは許容されない。

脳における語彙の認知を示す電気生理学的応答は、 刺激が提示されてから 400-600 ミリ秒をピークとし て観察される^{13)~16)}。したがって、単語レベルの言語処 理は概ね1秒以内に完結すると考えられる。この間に 生じる、脳内に広く分布する言語関連領野のダイナミ ックな電気的活動を、時間分解能が 20 秒程度である box-car design の fMRI で分別することは難しいと考え られる。fMRI は脳活動の複雑な時空間的パターンを 時間的に圧縮した静止画像として提供する。したがっ て fMRI の時間分解能を高めることができれば、刻々 と変化する空間的特異性の高い脳機能部位を画像化し 得る。Event-related design を用いることにより時間分 解能は 3 ~ 4 秒まで改善することが可能である。

【結論】

本研究は、電気生理学的手法を用いて fMRI の信頼 度の検証と背景神経活動の詳細な検討を行った。

皮質電気刺激マッピングと比較することにより、読 字判別課題を用いた fMRIの信頼度が最も高く、感度 83%、特異度 61%であることを示した。更に後部下 前頭回で感度 91%、特異度 59%と最も高い信頼度が 得られることを示した。fMRI は現状では皮質電気刺 激マッピングの代替とはなり得ないが、電気刺激の効 率化に寄与すると考えられる。

HGA と BOLD は有意な正の相関を示す一方で、側 頭葉における空間的解離が見られた。側頭葉の HGA が前頭葉と比べ早く減衰することが空間的解離に寄与 している可能性が示された。HGA と fMRIの関係が広 い言語関連領野で明らかにされ、言語課題を用いた fMRI により側頭葉が賦活されにくい理由にもひとつ の可能性が示された。

広範囲に留置された過去最大級の数の電極を空間 的に標準化し、言語課題による HGA の時空間動態を 明らかにした。fMRI の背景となる脳活動の時間的変 化は課題により特異的なパターンを示した。fMRI の 背景脳活動の時空間動態を明らかにするとともに、機 能情報をテンプレート化、脳領域別の電気生理学的な ダイナミクスの違いを明らかにすることができた。機 能テンプレートを用いた効率的な脳機能読み取り技術 は今後コミュニケーションデバイスの発展に寄与する ものと期待できる。

【引用文献】

- Kamada K, Todo T, Masutani Y, et al. Combined use of tractography-integrated functional neuronavigation and direct fiber stimulation. *J Neurosurg.* Apr 2005; 102 (4): 664-672.
- 2) Kamada K, Sawamura Y, Takeuchi F, et al. Expressive and receptive language areas determined by a noninvasive reliable method using functional magnetic resonance imaging and magnetoencephalography. *Neurosurgery.* Feb 2007; 60 (2): 296-305; discussion 305-296.
- 3) Kunii N, Kamada K, Ota T, Kawai K, Saito N. A detailed analysis of functional magnetic resonance

imaging in the frontal language area: a comparative study with extraoperative electrocortical stimulation. *Neurosurgery.* Sep 2011;69 (3):590-596; discussion 596-597.

- 4) Kunii N, Kamada K, Ota T, Greenblatt RE, Kawai K, Saito N. The dynamics of language-related highgamma activity assessed on a spatially-normalized brain. *Clin Neurophysiol.* Jan 2013;124 (1):91-100.
- 5) Kamada K, Ogawa H, Saito M, et al. Novel techniques of real-time blood flow and functional mapping: technical note. *Neurol Med Chir (Tokyo)*. 2014; 54 (10): 775-785.
- 6) Kunii N, Kamada K, Ota T, Kawai K, Saito N. Characteristic profiles of high gamma activity and blood oxygenation level-dependent responses in various language areas. *Neuroimage*. Jan 15 2013; 65: 242-249.
- 7) Ojemann G, Ojemann J, Lettich E, Berger M. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. *J Neurosurg.* Sep 1989; 71 (3) : 316-326.
- 8) Ossadtchi A, Greenblatt RE, Towle VL, Kohrman MH, Kamada K. Inferring spatiotemporal network patterns from intracranial EEG data. *Clin Neurophysiol.* Jun 2010; 121 (6): 823-835.
- 9) Zygierewicz J, Durka PJ, Klekowicz H, Franaszczuk PJ, Crone NE. Computationally efficient approaches to calculating significant ERD/ERS changes in the time-frequency plane. *J Neurosci Methods*. Jun 30 2005; 145 (1-2): 267-276.
- 10) Makeig S. Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones.

Electroencephalogr Clin Neurophysiol. Apr 1993; 86 (4): 283-293.

- Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. *Proc Natl Acad Sci U S A*. Dec 1990; 87 (24): 9868-9872.
- Scarabino T, Giannatempo GM, Popolizio T, et al. 3.0-T functional brain imaging: a 5-year experience. *Radiol Med.* Feb 2007 ; 112 (1) : 97-112.
- Vartiainen J, Parviainen T, Salmelin R. Spatiotemporal convergence of semantic processing in reading and speech perception. *J Neurosci.* Jul 22 2009;29(29): 9271-9280.
- 14) Halgren E, Dhond RP, Christensen N, et al. N400-like magnetoencephalography responses modulated by semantic context, word frequency, and lexical class in sentences. *Neuroimage*. Nov 2002; 17 (3): 1101-1116.
- Salmelin R, Hari R, Lounasmaa OV, Sams M.
 Dynamics of brain activation during picture naming.
 Nature. Mar 31 1994 ; 368 (6470) : 463-465.
- 16) Kutas M, Hillyard SA. Reading senseless sentences: brain potentials reflect semantic incongruity. *Science*. Jan 11 1980 ; 207 (4427) : 203-205.
- 17) Ogawa H, Kamada K, Kapeller C, Hiroshima S, Prueckl R, Guger C. Rapid and minimum invasive functional brain mapping by real-time visualization of high gamma activity during awake craniotomy. *World Neurosurg.* Nov 2014 ; 82 (5) : 912 e911-910.
- 18) Buxton RB, Uludag K, Dubowitz DJ, Liu TT. Modeling the hemodynamic response to brain activation. *Neuroimage*. 2004; 23 Suppl 1: S220-233.