

Asahikawa Medical University Repository http://amcor.asahikawa-med.ac.jp/

Parasitology (2013.Jun.) 21巻:1~6.

Simple and reliable preparation of immunodiagnostic antigens for Taenia solium cysticercosis.

Sako Y, Itoh S, Okamoto M, Nakaya K, Ito A.

Simple and reliable preparation of immunodiagnostic antigens for Taenia solium cysticercosis

YASUHITO SAKO^{1*}, SONOYO ITOH¹, MUNEHIRO OKAMOTO², KAZUHIRO NAKAYA³ and AKIRA ITO¹

¹ Department of Parasitology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan ² Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan

³ Animal Laboratory for Medical Research, Center for Advanced Research and Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan

Running title: Simple preparation of immunodiagnostic antigens for Taenia solium cysticercosis

*Corresponding author: Yasuhito SAKO, Department of Parasitology, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510 Hokkaido, Japan. Tel +81-166-2422, FAX +81-166-68-2429, E-mail: yasusako@asahikawa-med.ac.jp

1 SUMMARY

2	Cysticercosis caused by infection with the larval stage of <i>Taenia solium</i> is an important cause of
3	neurological disease worldwide and immunodiagnosis is important for the control and elimination of
4	cysticercosis. In the present study, we established a simple and reliable preparation of
5	immunodiagnostic antigens, low-molecular-weight antigens (LMWAgs), from T. solium cyst fluids by
6	a cation-exchange chromatography. Banding patterns of prepared LMWAgs on SDS-PAGE were
7	different between those from Ecuador and China isolates. All cysticercosis patient sera and some
8	echinococcosis patient sera examined recognized both LMWAgs by enzyme-linked immunosorbent
9	assay, but none of sera from health persons became positive. There was no statistical difference in
10	immunodiagnostic performance of LMWAgs prepared from different geographical isolates. These
11	results indicated that this novel immunodiagnostic antigens preparation would contribute the control
12	and prevention of cysticercosis in endemic areas, especially developing countries.
13	
14	
15	Key words: Taenia solium, cysticercosis, immunodiagnostic antigens, low-molecular-weight antigens,
16	cation-exchange chromatography, simple preparation.
17	

19 INTRODUCTION

20	The larval stage of the pork tapeworm Taenia solium is responsible for cysticercosis. Humans are
21	accidentally infected with T. solium by ingestion of eggs excreted with the feces of individuals
22	harboring the adult tapeworm in the intestinal tract. The larvae migrate throughout the body, invade
23	skeletal muscle, subcutaneous tissue, or the central nervous system, the latter of which is known as
24	neurocysticercosis, and encyst to form cysticerci. This disease is one of the reemerging zoonoses
25	worldwide, and it is the major etiological agent of epileptic seizures in areas of endemicity, making it
26	a major public health problem in most developing counties (Mahanty and Garcia, 2010).
27	Diagnosis of neurocysticercosis has been reached by clinical criteria, computed tomography (CT),
28	nuclear magnetic resonance imaging (MRI) (Ito and Craig, 2003). The imaging techniques are useful
29	for diagnosis but have possibility to overlooking the infection when the number of parasites is low
30	and/or the figures are not clear or not typical. Moreover these techniques are not suitable for the
31	diagnosis of cysticercosis in areas where it is endemic because of the high cost. Therefore, the
32	development of an immunodiagnostic test that detects specific antibodies in either sera or
33	cerebrospinal fluid (CSF) is necessary because of its simplicity and reliability especially in serum.
34	Efforts have been directed toward identification and characterization of specific antigens, and
35	glycoproteins in cyst fluid of T. solium metacestodes have widely been accepted for serodignosis
36	purposes. Parkhouse and Harrison (1987), and Tsang et al. (1989) have demonstrated that lentil-lectin
37	affinity chromatography-purified Glycoproteins that showed seven bands around 15-30 kDa were

38	highly specific to cysticercosis on immunoblot. These glycoproteins have been shown not to be
39	suitable for ELISA antigens because of a cross reactivity. We have developed a simple method to
40	purify diagnostic antigens also known as low-molecular-weight antigens (LMWAgs) by preparative
41	isoelectric focusing electrophoresis (IEFE) from cyst fluid available for both immunoblot and ELISA
42	(Ito et al. 1998). However, as this method requires sophisticated and expensive equipments it is
43	difficult to apply it in endemic areas. As another way, we have reported an affinity-purification
44	method of them using polyclonal and monoclonal antibodies (Sato et al. 2006), but this method was
45	lacking in general use because it needs a specific antibody. Recombinant proteins or synthetic peptide
46	of them are also available for immunodiagnosis purpose (Chung et al. 1999; Greene et al. 2000; Sako
47	et al. 2000; Hancock et al. 2003), it is, however, confined to a small number of laboratories. Therefore
48	a simple and low-cost method to prepare immunodiagnostic antigens, especially ELISA antigens,
49	must be established urgently, because it is a key point for epidemiological studies and serodiagnosis in
50	endemic areas. In this study, we report a novel and reliable preparation of immunodiagnostic antigens,
51	LMWAgs, from cyst fluids using a cation-exchange chromatography, and the evaluation of LMWAgs
52	as ELISA antigens.
53	
54	
55	MATERIALS AND METHODS

56 Parasite materials

57	All cysts were collected from naturally infected pigs in China and Ecuador. Fluid from <i>T. solium</i> cysts
58	was centrifuged at 10,000xg for 30 min at 4 °C, the supernatant was recovered and kept at -80 °C until
59	use.
60	
61	Preparation of LMWAgs from cyst fluids
62	Cyst fluid from Taenia solium larva was dialyzed against 10 mM HEPES
63	(4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid) buffer (pH 8.0) containing 0.5 mM EDTA.
64	After adding CHAPS (3-[(3-Cholamidopropyl)dimethylammonio]propanesulfonate) to the dialysate
65	to a final concentration of 2%, it was directly loaded on a HiTrap SP XL cation-exchange column (GE
66	healthcare, Japan) pre-equilibrated with a start buffer (10 mM HEPES buffer, pH 8.0, containing 0.5
67	mM EDTA) and proteins were eluted with a gradient between 0 and 1.0 M NaCl in the start buffer or
68	with 1.0 M NaCl in the start buffer by using Fast Protein Liquid Chromatography system (ÄKTA
69	FPLC system, GE Healthcare, Japan). Or proteins bound to cation-exchange resins were recovered by
70	a stepwise elution with the start buffer containing 1.0 M NaCl manually. The elutant was boiled for 20
71	min to precipitate the contaminants, then the supernatant was collected and kept at -20 °C.
72	
73	Serum samples
74	A total of 60 serum samples from patients with cysticercosis, 30 serum samples from patients with

alveolar echinococcosis (AE), 25 serum samples from patients with cystic echinococcosis (CE), and

76	30 serum samples from healthy persons were examined. Each diagnosis of cysticercosis, AE and CE
77	had been carried out by imaging techniques, clinical findings, histological observations (if feasible)
78	and/or serology. All cysticercosis patient sera were confirmed to be seropositive to LMWAgs purified
79	by IEFE that has already been reported to be reliable (Ito et al. 1998). Both AE and CE patient sera
80	showed strong reaction to each immunodiagnostic antigens, recombinant Em18 (Sako et al. 2002) and
81	recombinant Antigen B (Mamuti et al. 2004), respectively.
82	
83	SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot analysis
84	Proteins were treated with a SDS sample buffer (62.5 mM Tris-HCl, pH 6.8, 2.0% SDS, 50 mM
85	dithiothreitol and 10.0% glycerol) at 100 $^{\circ}\mathrm{C}$ for 5 min and separated in a 12.5 or 15.0 %
86	polyacrylamide gel. For immunoblot analysis, the separated proteins were transferred onto a
87	polyvinylidene difluoride (PVDF) membrane sheet (Millipore). The sheet was blocked with blocking
88	solution (20 mM Tris-HCl, pH 7.6, 150 mM NaCl, 1.0% casein, 0.1% Tween 20) and probed with
89	LMWAgs-immunized rabbit sera or cysticercosis-patient sera followed by alkaline
90	phosphatase-conjugated anti-rabbit IgG antibody (Novagen, USA) or peroxidase-conjugated
91	recombinant protein G (Invitrogen, USA). Nitroblue tetrazolium/5-bromo-4-chloro-3-indoyl
92	phosphate (KPL, USA) for alkaline phosphatase and 3,3',5,5'-tetramethyl-benzidene (KPL, USA) for
93	horseradish peroxidase were used for color development.

96	ELISA plates (Nunc-ImmunoTM plate MaxiSorpTM Surface, Nalge Nunc International, Japan) were
97	coated with 100 μ l of 1 μ g/ml LMWAgs in PBS overnight at 4°C. The wells were blocked with 300 μ l
98	of blocking solution (20 mM Tris-HCl, pH 7.6, 150 mM NaCl, 1.0% casein, 0.1% Tween 20) at 37°C
99	for 1~2 hr. After the wells were rinsed twice with PBS containing 0.1% Tween 20 (PBST), 100 μ l of
100	serum samples diluted 1:100 in blocking solution were added and incubated at 37°C for 1 hr. The
101	wells were washed five times with PBST, incubated with 100 μ l of recombinant protein G conjugated
102	with peroxidase (Invitrogen) at 37°C for 1hr, washed five times with PBST and then rinsed PBS once.
103	After incubation with 100 μ l of substrate (0.4 μ M 2,2'-azino-di-[3-ethyl-benzthiazoline sulfonate] in
104	0.2 M citric acid buffer, pH 4.7) for 30 min at room temperature, the absorbance at 405 nm of each
105	well was determined using ELISA plate reader (Immuno Mini NJ-2300, Biotec, Japan). ROC curve
106	analyses with ELISA data of sera from cysticercosis patients and healthy persons were performed to
107	determine optimal cutoff values.
108	
109	Statistical analysis
110	The data of diagnostic performances obtained were tested by the Cochran's Q test and post hoc
111	analyses were conducted with McNemar's test.

112

114 RESULTS AND DISCUSSION

115 Preparation of LMWAgs

116	Because immunodiagnostic LMWAgs in the cyst fluid have a pI value of around 9.4 (Ito et al. 1999),
117	we performed a cation-exchange chromatography (CEC) under pH 8.0 to purify them and a single
118	sharp peak was resolved (Fig. 1A). Immunoblot analyses with sera from cysticercosis patients and
119	from a rabbit immunized with LMWAgs revealed that resin-bound fractions (fractions 2-5) included
120	LMWAgs (data not shown). There were no differences in between chromatographic profiles obtained
121	from cyst fluids form Ecuador and China isolates (data not shown). By a single chromatographic
122	procedure we could prepare LMWAgs sufficiently, but some contaminations with high molecular size
123	were sometimes observed although it depended on the batch of cyst fluid used for preparation (Fig.
124	1B). From the fact that Echinococcus Antigen B family to which LMWAgs belong is thermostable
125	(Oriol et al. 1971), we speculated that LMWAgs also had the thermostability and that, if the
126	contaminated proteins were non-heat-resistance, the contaminants could be removed by
127	heat-denatured precipitation and LMWAgs would be recovered in the supernatant. As expected, the
128	heat-treatment precipitated contaminated proteins but not LMWAgs (Fig. 1B). The CEC-prepared
129	LMWAgs were migrated as a broad band between 10 to 25 kDa (Fig. 1C). There were critical
130	differences in banding pattern between those from Ecuador and China isolates. Previously, we have
131	demonstrated that: (1) T. solium could be divided into 2 genotypes, African/American and Asian, on
132	the basis of mitochondrial DNA analyses (Nakao et al. 2002); (2) each LMWAgs purified from cyst

133	fluids of two genotypes by antibody-affinity chromatography showed differences in banding patterns
134	(Sato et al. 2006); (3) such differences were disappeared by glycan removal with PNGase F (Sato et al.
135	2006). In other words, glycoforms with different masses or a different number of N-linked
136	oligosaccharides are the putative cause of the different banding pattern of Glycoproteins from Asian,
137	African, or American geographical origin. Therefore, the difference in banding pattern of the
138	CEC-prepared LMWAgs between two genotypes might be caused by post translational modification.
139	Further analysis on post translational modification of the CEC-prepared LMWAgs has to be
140	performed, in addition to confirmation of producibility of preparation by using cyst fluids from
141	several geographical different isolates.
142	
143	Evaluation of the CEC-prepared LMWAgs by ELISA
144	Evaluations of the CEC-prepared LMWAgs as ELISA antigens were carried out with serum samples
145	from 60 cysticercosis patients, 30 alveolar echinococcosis patients, 30 cystic echinococcosis patients,
146	and 41 healthy persons (Fig. 2. and Table 1). When crude CF antigens were used, more than half of
147	echinococcosis patient sera and one health person serum resulted in seropositive and one cysticercosis
148	case was negative. In contrast, all sera from cysticercosis cases showed positive reactions to both the
149	CEC-prepared LMWAgs of Ecuador- and China-isolates, and some sera from alveolar and cystic
150	echinococcosis patients showed weak cross reactions, almost close to the cut-off borderline, to both
151	antigens. The overall specificities of crude CF antigen and the CEC-prepared LMWAgs from Ecuador

152	and China isolates were 66.3%, 92.1% and 93.1%, respectively. There was no statistically significant
153	difference in immunodiagnostic performance between the CEC-prepared LMWAgs from Ecuador and
154	China isolates. In this study, we used only cysticercosis patient sera positive to IEFE-purified
155	LMWAgs and echinococcosis patient sera with strong reactions to each homologous
156	immunodiagnostic antigen for evaluation, which indicated sera used were under some biases and
157	sensitivities and specificities based on the result of ELISA did not reflect real cysticercosis and
158	echinococcosis patient populations. Therefore, we need further evaluation with more sera from
159	cysticercosis and echinococcosis patients, and also patients with other parasitic infections to reveal
160	immunodiagnostic performance quality of the CEC-prepared LMWAgs.
161	We previously have reported that the origin of the fluid from T. solium cysts may have affected the
162	antigenicity of LMWAgs (Sato et al. 2006). As mentioned earlier, the mitochondrial analyses revealed
163	that T. solium is able to be divided into two genotypes, African/American and Asian genotypes (Nakao
164	et al. 2002). Furthermore, the purified LMWAgs could be differentiated two banding patterns
165	corresponded to two genotypes. Although there were no differences in diagnostic sensitivities between
166	LMWAgs from two genotypes, reactivities of sera from American patients to African/American
167	LMWAgs were higher than those of Asian patients, and the inverse phenomenon was observed (Sato
168	et al. 2003). This suggested that immunodiagnostic test in each endemic area should be performed by
169	using LMWAgs prepared from T. solium cysts collected in each own endemic area. Therefore,
170	establishment of a useful preparation of LMWAgs capable to easily apply in endemic area is urgently

171	required. Recently, a simple enrichment of 120- and 150-kDa immunodiagnostic antigen complexes
172	of <i>T. solium</i> cyst fluids by trichroroacetic acid/acetone mixture precipitation has been reported (Lee <i>et</i>
173	al. 2010). The antigens purified this method showed immunodiagnostic sensitivity and specificity of
174	97.7% and 98.7% against active neurocysticercosis. However, this method requires the hazardous
175	reagent, which suggested that it was difficult to apply in general. In contrast, the CEC method does
176	not need such reagent and, moreover, can be performed with a syringe manually without expensive
177	equipments (data not shown). This feature would make easy to apply the CEC method in endemic
178	area, especially in developing counties.
179	The CEC-prepared LMWAgs could be utilized to detect <i>T. solium</i> infections in pigs by immunoblot
180	analysis and ELISA (data not shown). For this purpose, we need to consider the cross reaction with
181	sera from pigs infected with other infective agents, especially Taenia hydatigena. Previously, no cross
182	reactions to LMWAgs have been demonstrated in pigs infected with T. hydatigena by ELISA (Sato et
183	al. 2003). However, the number of serum examined seems to be not enough to conclude that there
184	were no cross-reactions. Therefore, a large scale evaluation in pigs must also be performed.
185	Interestingly, the CEC method is applicable to purify LMWAgs family proteins from Taenia
186	saginata- and Taenia asiatica-cyst fluids (data not shown). And also, ELISA using sera from bovines
187	experimentally infected with T. saginata and LMWAgs antigens prepared from T. saginata cyst fluids
188	revealed that those antigens have high values to detect T. saginata infections with dramatic decreasing
189	of background absorbance values obtained using crude cyst fluids (our unpublished data). More

190	detailed characterization of the CEC-prepared LMWAgs from T. saginata and T. asiatica cyst fluids
191	must be performed using more sera from animals with cysticercosis and other parasitic infections.
192	In conclusion, we have established a simple and reliable preparation of LMWAgs with high
193	immunodiagnostic performance from T. solium cyst fluids by the combination of the CEC and
194	heat-treatment. The CEC-prepared LMWAgs is highly specific to cysticercosis, but analyses on the
195	B-cell epitopes must be carried out to eliminate cross-reactivity with echinococcosis patient sera. The
196	preparation method established would contribute to the successful control of cysticercosis in endemic
197	areas.
198	
199	
200	ACKNOWLEDGEMENTS
201	We are grateful to W. Benitez-Ortiz (Ecuador) and T. Ikejima (China) for providing confirmed serum
202	samples and <i>T. solium</i> cyst fluids.
203	
204	
205	FINANCIAL SUPPORT
206	This work was supported by the Grant-in-Aid for Scientific Research (A) (21256003, 24256002) to AI
207	and (B) (21406009, 24406011) to MO, from the Japan Society for the Promotion of Science (JSPS); a
208	grant from the Japan–China Medical Association (2012) to YS and by JSPS-Asia/Africa Scientific

209	Platform Fund (2006–2011) and the Special Coordination Fund for Promoting Science and Technology
210	from the Ministry of Education, Culture, Sports, Science & Technology in Japan (MEXT) (2003-2005,
211	2010-2012) to AI.
212	
213	
214	REFERENCES
215	Chung, J.Y., Bahk, Y.Y., Huh, S., Kang, S.Y., Kong, Y. and Cho, S.Y. (1999). A recombinant
216	10-kDa protein of Taenia solium metacestodes specific to active neurocysticercosis. Journal of
217	Infectious Diseases 180, 1307-1315.
218	Greene, R.M., Hancock, K., Wilkins, P.P. and Tsang, V.C. (2000). Taenia solium: molecular
219	cloning and serologic evaluation of 14- and 18-kDa related, diagnostic antigens. Journal of
220	Parasitology 86, 1001-1007.
221	Hancock, K., Khan, A., Williams, F.B., Yushak, M.L., Pattabhi, S., Noh, J. and Tsang, V.C.
222	(2003). Characterization of the 8-kilodalton antigens of <i>Taenia solium</i> metacestodes and evaluation of
223	their use in an enzyme-linked immunosorbent assay for serodiagnosis. Journal of Clinical
224	<i>Microbiology</i> 41 , 2577-2586.
225	Ito, A. and Craig, P.S. (2003). Immunodiagnostic and molecular approaches for the detection of
226	taeniid cestode infections. Trends in Parasitology 19, 377-381.
227	Ito, A., Nakao, M., Ito, Y., Yuzawa, I., Morishima, H., Kawano, N. and Fujii, K. (1999).

- 228 Neurocysticercosis case with a single cyst in the brain showing dramatic drop in specific antibody
- titers within 1 year after curative surgical resection. *Parasitology International* **48**, 95-99.
- 230 Ito, A., Plancarte, A., Ma, L., Kong, Y., Flisser, A., Cho, S.Y., Liu, Y.H., Kamhawi, S.,
- 231 Lightowlers, M.W. and Schantz, P.M. (1998). Novel antigens for neurocysticercosis: simple method
- for preparation and evaluation for serodiagnosis. *American Journal of Tropical Medicine and Hygiene*59, 291-294.
- Lee, E.G., Bae, Y.A., Kim, S.H., Diaz-Camacho, S.P., Nawa, Y. and Kong, Y. (2010).
- 235 Serodiagnostic reliability of single-step enriched low-molecular weight proteins of *Taenia solium*
- 236 metacestode of American and Asian isolates. Transactions of the Royal Society of Tropical Medicine
- 237 *and Hygiene* **104**, 676-683.
- 238 Mahanty, S. and Garcia, H.H. (2010). Cysticercosis and neurocysticercosis as pathogens affecting
- the nervous system. *Progress in Neurobiology* **91**, 172-184.
- 240 Mamuti, W., Yamasaki, H., Sako, Y., Nakao, M., Xiao, N., Nakaya, K., Sato, N., Vuitton, D.A.,
- Piarroux, R., Lightowlers, M.W., Craig, P.S. and Ito, A. (2004). Molecular cloning, expression,
- and serological evaluation of an 8-kilodalton subunit of antigen B from *Echinococcus multilocularis*.
- *Journal of Clinical Microbiology* **42**, 1082-1088.
- Nakao, M., Okamoto, M., Sako, Y., Yamasaki, H., Nakaya, K. and Ito, A. (2002). A phylogenetic
- 245 hypothesis for the distribution of two genotypes of the pig tapeworm *Taenia solium* worldwide.
- 246 *Parasitology* **124**, 657-662.

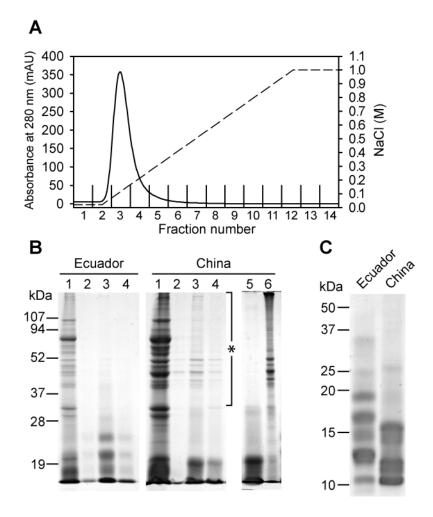
- Oriol, R., Williams, J.F., Perez, Esandi M.V. and Oriol, C. (1971). Purification of lipoprotein
- 248 antigens of Echinococcus granulosus from sheep hydatid fluid. American Journal of Tropical
- 249 *Medicine and Hygiene* **20**, 569-574.
- 250 Parkhouse, R.M. and Harrison, L.J. (1987). Cyst fluid and surface associated glycoprotein antigens
- 251 of *Taenia* sp. metacestodes. *Parasite Immunology* **9**, 263-268.
- 252 Sako, Y., Nakao, M., Ikejima, T., Piao, X.Z., Nakaya, K. and Ito, A. (2000). Molecular
- 253 characterization and diagnostic value of *Taenia solium* low-molecular-weight antigen genes. *Journal*
- 254 *of Clinical Microbiology* **38**, 4439-4444.
- 255 Sako, Y., Nakao, M., Nakaya, K., Yamasaki, H., Gottstein, B., Lightowers, M.W., Schantz, P.M.
- and Ito, A. (2002). Alveolar echinococcosis: characterization of diagnostic antigen Em18 and
- serological evaluation of recombinant Em18. *Journal of Clinical Microbiology* **40**, 2760-2765.
- 258 Sato, M.O., Sako, Y., Nakao, M., Yamasaki, H., Nakaya, K. and Ito, A. (2006). Evaluation of
- 259 purified *Taenia solium* glycoproteins and recombinant antigens in the serologic detection of human
- and swine cysticercosis. *Journal of Infectious Diseases* **194**, 1783-1790.
- 261 Sato, M.O., Yamasaki, H., Sako, Y., Nakao, M., Nakaya, K., Plancarte, A., Kassuku, A.A.,
- 262 Dorny, P., Geerts, S., Benitez-Ortiz, W., Hashiguchi, Y. and Ito, A. (2003). Evaluation of tongue
- 263 inspection and serology for diagnosis of *Taenia solium* cysticercosis in swine: usefulness of ELISA
- using purified glycoproteins and recombinant antigen. *Vet Parasitology* **111**, 309-322.
- 265 Tsang, V.C., Brand, J.A. and Boyer, A.E. (1989). An enzyme-linked immunoelectrotransfer blot

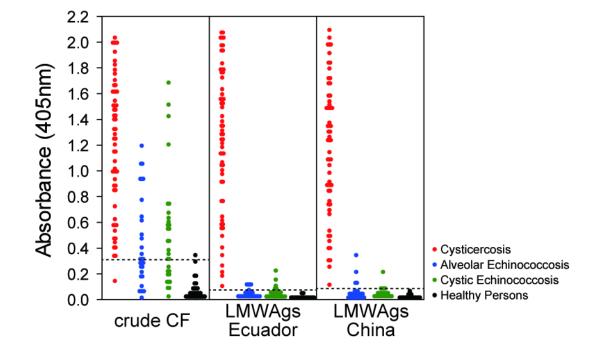
assay and glycoprotein antigens for diagnosing human cysticercosis (*Taenia solium*). Journal of

267 Infectious Diseases 159, 50-59.

268

270 Table


Table 1. Results of ELISA using crude CF from Ecuador isolate, LMWAgs from Ecuador isolate and LMWAgs from China isolate


Disease category	No. of exam	No. of positive (%)			Mean absorbance ± SD (Range: max-min)		
		crude CF Ecuador	LMWAgs Ecuador	LMWAgs China	crude CF Ecuador	LMWAgs Ecuador	LMWAgs China
Cysticercosis	60	59 (98.3)	60 (100)	60 (100)	$\begin{array}{c} 1.202 \pm 0.517 \\ (2.030 \hbox{-} 0.140) \end{array}$	$\begin{array}{c} 1.240 \pm 0.555 \\ (2.07 \text{-} 0.100) \end{array}$	$\begin{array}{c} 1.177 \pm 0.520 \\ (2.090 \hbox{-} 0.110) \end{array}$
Alveolar Echinococcosis	30	15 (50.0)	4 (13.3)	4 (13.3)	$\begin{array}{c} 0.434 \pm 0.347 \\ (1.190 \hbox{-} 0.010) \end{array}$	$\begin{array}{c} 0.040 \pm 0.033 \\ (0.120 \hbox{-} 0.010) \end{array}$	$\begin{array}{c} 0.051 \pm 0.070 \\ (0.340 \text{-} 0.000) \end{array}$
Cystic Echinococcosis	30	18 (60.0)	4 (13.3)	3 (10.0)	$\begin{array}{c} 0.511 \pm 0.433 \\ (1.680 \hbox{-} 0.020) \end{array}$	$\begin{array}{c} 0.045 \pm 0.046 \\ (0.220 \hbox{-} 0.010) \end{array}$	$\begin{array}{c} 0.043 \pm 0.038 \\ (0.210 \hbox{-} 0.010) \end{array}$
Healthy persons	41	1 (2.4)	0	0	$\begin{array}{c} 0.059 \pm 0.072 \\ (0.340 \text{-} 0.010) \end{array}$	$\begin{array}{c} 0.010 \pm 0.011 \\ (0.050 \hbox{-} 0.000) \end{array}$	$\begin{array}{c} 0.012 \pm 0.012 \\ (0.060 \hbox{-} 0.000) \end{array}$

279	Fig. 1. Preparation of LMWAgs from <i>T. solium</i> cyst fluid. (A) Chromatographic profile of <i>T. solium</i>
280	cyst fluid from Ecuador isolate by FPLC system. Plain line, absorbance at 280 nm; dash line, linear
281	gradient of NaCl. (B) Each fraction by a cation-exchange chromatography, and the supernatant and
282	the precipitate after heat-treatment were subjected to 12.5% SDS-PAGE and stained with Coomassie
283	blue. Lane 1, crude CF; lane 2, fraction 2 from the CEC; lane 3, fraction 3 from the CEC, lane 4,
284	fraction 4 from the CEC; lane 5, the supernatant after heat-denatured treatment; lane 6, the precipitate
285	after heat-denatured treatment. The contaminants part detected depending on the batch of cyst fluids is
286	indicated by an asterisk. (C) 15.0% SDSPAGE analysis of LMWAgs prepared from Ecuador and
287	China isolates.
288	
288 289	Fig. 2. Evaluations of three different antigens, crude CF from Ecuador isolate, LMWAgs from
	Fig. 2. Evaluations of three different antigens, crude CF from Ecuador isolate, LMWAgs from Ecuador isolate and LMWAgs from China isolate by ELISA. Sere from 60 patients with cysticercosis
289	
289 290	Ecuador isolate and LMWAgs from China isolate by ELISA. Sere from 60 patients with cysticercosis
289 290 291	Ecuador isolate and LMWAgs from China isolate by ELISA. Sere from 60 patients with cysticercosis (red closed circle), 30 with alveolar echinococcosis (blue closed circle), 30 with cystic echinococcosis

Disease category	No. of exam	No. of positive (%)			Mean absorbance ± SD (Range: max-min)		
		crude CF Ecuador	LMWAgs Ecuador	LMWAgs China	crude CF Ecuador	LMWAgs Ecuador	LMWAgs China
Cysticercosis	60	59 (98.3)	60 (100)	60 (100)	$\begin{array}{c} 1.202 \pm 0.517 \\ (2.030 \hbox{-} 0.140) \end{array}$	$\begin{array}{c} 1.240 \pm 0.555 \\ (2.07 \hbox{-} 0.100) \end{array}$	$\begin{array}{c} 1.177 \pm 0.520 \\ (2.090 \hbox{-} 0.110) \end{array}$
Alveolar Echinococcosis	30	15 (50.0)	4 (13.3)	4 (13.3)	$\begin{array}{c} 0.434 \pm 0.347 \\ (1.190 \text{-} 0.010) \end{array}$	$\begin{array}{c} 0.040 \pm 0.033 \\ (0.120 \hbox{-} 0.010) \end{array}$	$\begin{array}{c} 0.051 \pm 0.070 \\ (0.340 \text{-} 0.000) \end{array}$
Cystic Echinococcosis	30	18 (60.0)	4 (13.3)	3 (10.0)	$\begin{array}{c} 0.511 \pm 0.433 \\ (1.680 \hbox{-} 0.020) \end{array}$	$\begin{array}{c} 0.045 \pm 0.046 \\ (0.220 \hbox{-} 0.010) \end{array}$	$\begin{array}{c} 0.043 \pm 0.038 \\ (0.210 \text{-} 0.010) \end{array}$
Healthy persons	41	1 (2.4)	0	0	$\begin{array}{c} 0.059 \pm 0.072 \\ (0.340 \text{-} 0.010) \end{array}$	$\begin{array}{c} 0.010 \pm 0.011 \\ (0.050 \text{-} 0.000) \end{array}$	$\begin{array}{c} 0.012 \pm 0.012 \\ (0.060 \hbox{-} 0.000) \end{array}$

Table 1. Results of ELISA using crude CF from Ecuador isolate, LMWAgs from Ecuador isolate and LMWAgs from China isolate

