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Abstract 

Background: There is considerable evidence that intestinal microbiota are involved in 

the development of metabolic syndromes and consequently with that of nonalcoholic 

fatty liver disease (NAFLD). Toll-like receptors (TLRs) are essential for the recognition 

of microbiota. However, the induction mechanism of TLR signals through the gut-liver 

axis for triggering the development of nonalcoholic steatohepatitis (NASH) or NAFLD 

remains unclear. In this study, we investigated the role of fatty acids in triggering the 

development of a pro-inflammatory state of  NAFLD. 

Methods: NAFLD was induced in mice fed a high fat diet. The mice were sacrificed 

and the expressions of TLRs, tumor necrosis factor (TNF), interleukin 1β (IL-1β), 
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CXCL2, and phospho-interleukin-1 receptor-associated kinase 1 in the liver and small 

intestine were assessed. In addition, Huh7 and THP-1 cells, both of which are 

representatives of hepatocytes and Kupffer cells, respectively, were treated with 

palmitic acid, and the direct effects of fatty acids on TLR induction by these cells were 

evaluated. 

Results: The expressions of inflammatory cytokines such as TNF, IL-1β, and TLRs-2, 

-4, -5, and -9 were increased in the liver, but decreased in the small intestine of high fat 

diet-fed mice in vivo. In addition, the expressions of TLRs in Huh7 and THP-1 cells 

were increased by treatment with fatty acids. 

Conclusion: In the development of the pro-inflammatory state of NAFLD, fatty acids 

trigger the expressions of TLRs, which contribute to the induction of inflammatory 

cytokines through TLR signals by the intestinal microbiota. 

 

Introduction 

Nonalcoholic fatty liver disease (NAFLD) is a form of steatosis with or without 

inflammation of the liver, and is not related to excessive alcohol intake. NAFLD 

includes both simple steatosis and nonalcoholic steatohepatitis (NASH), the latter 

developing further into cirrhosis and hepatocellular carcinoma (1). NAFLD is one of the 
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most common liver diseases worldwide and is considered to be related with obesity, 

insulin resistance, and metabolic syndrome (2).  

A two-hit theory has been proposed to explain the pathogenesis of NASH (3). 

First, simple steatosis is induced by obesity and insulin resistance. Second, NASH 

develops by several hits, including adipocytokines, iron, and bacterial 

endotoxins/lipopolysaccharide (LPS) derived from gram-negative bacteria (4, 5, 6).  

Toll-like receptors (TLRs) recognize pathogen and endogenous 

damage-associated molecular patterns and activate nuclear factor-κB (NF-κB), which 

induces pro-inflammatory cytokines/chemokines, type 1 interferon through 

phosphorylation of interleukin-1 receptor-associated kinase 1 (IRAK1) and IRAK4 (7); 

therefore, TLRs may play important roles in the activation of innate immunity. Among 

TLRs, TLR2, TLR4, TLR5, and TLR9 were identified as bacterial recognition receptors 

capable of recognizing lipopeptide, LPS, flagellin, and CpG-DNA, respectively (8). 

Recently it was reported that TLR signal pathways, the ligands of which are bacterial 

components, play an important role in the pathogenesis of alcoholic liver disease and 

NASH (9). In particular, the association between TLR4 signal pathways and the 

development of NASH was investigated (6, 10, 11). More recently, Miura et al. reported 

that decreased levels of steatohepatitis and liver fibrosis in TLR9 knockout mice 
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compared with wild-type mice in a choline-deficient amino acid-defined (CDAA) 

diet-induced NASH model (12). In contrast, in TLR2-deficient mice fed a methionine- 

and choline-deficient (MCD) diet, an increased level of liver injury was noted, 

suggesting a potential protective role of TLR2 in fatty liver (6).  

An increasing proportion of the general population suffered from obesity, 

which with its related disorders such as metabolic syndrome, is an emerging global 

problem, and much recent evidence shows that microbiota are associated with these 

conditions (13-19). In the intestine, TLRs are typically expressed in the epithelial cells and 

are involved in the production of immunoglobulin A (IgA), maintenance of tight 

junctions, proliferation of epithelial cells, and the expression of antimicrobial peptides 

(20). TLR5, which specifically recognizes flagellin, is involved in promoting the 

pathophysiology of inflammatory bowel disease (21). While the above reports suggest 

that intestinal TLRs play an important role in innate immunity of the gut, the association 

between its role in the small intestine and that in the development of NASH remains 

unclear. 

In the present study, based on hypernutrition and obesity using a high-fat 

diet-induced NAFLD mouse model, the significance of TLRs and their signaling in the 

liver and small intestine was evaluated. In addition, a gut-sterilized mouse model treated 
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with antibiotics was used to confirm whether there is an association between intestinal 

microbiota and TLRs expression. 

 

Materials and Methods 

Animal studies 

In a high-fat diet group, eight-week old male C57BL/6J mice (Charles River 

Japan, Inc., Tokyo, Japan) were fed a high-fat diet containing 82.0% of calories as fat 

(F2HFD2; Oriental Yeast Company Ltd, Tokyo, Japan). Control mice were fed a normal 

diet containing 12% of calories as fat (MF; Oriental Yeast Company Ltd). All mice were 

maintained under controlled conditions (22°C; humidity, 50%–60%, 12-h light/dark 

cycle) with food and water ad libitum. Mice from both groups were sacrificed at 4, 8, 

and 16 weeks for blood and tissue collection. These animals were fasted for 10-h before 

blood and tissue collection. After each mouse was anesthetized with diethyl ether and 

weighed, blood was collected by a cardiac puncture and subsequently assayed for 

biochemical parameters. Liver and small intestine were dissected, weighed, and frozen 

in liquid nitrogen. Samples of the resected liver were used later for histological and 

polymerase chain reaction (PCR) analysis. All experiments were performed in 

accordance with the rules and guidelines of the Animal Experiment Committee of 
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Asahikawa Medical University.  

In vitro cultured human hepatocyte model 

As a hepatocyte model, Huh7 human hepatoma cells were cultured in 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with penicillin, 

streptomycin, and fetal bovine serum (FBS). Palmitic acid (PA) complexed with 1% 

bovine serum albumin (BSA) was added to the medium to attain a final concentration of 

100 μM over 24 h (22). 

In vitro cultued human Kupffer cell model 

 As a Kupffer cell model, THP-1 human acute monocytic leukemia cells were 

cultured in RPMI 1640 supplemented with penicillin, streptomycin, and 10% FBS. 

THP-1 cells were differentiated by 200 nM phorbol 12-myristate 13-acetate (PMA) 

(Calbiochem) for three days. After removal of PMA by washing, THP-1 cells were 

incubated in fresh RPMI 1640 for four days to enhance macrophage differentiation (23). 

PA with 1% BSA was then added to the medium to attain a final concentration of 100 

μM over 24 h. 

Biochemical analyses 

Serum alanine aminotransferase (ALT) and free fatty acids were measured 

using the Automatic Analyzer 7180 (Hitachi High-Technologies Corporation, Tokyo, 
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Japan).  

Histopathological evaluation 

Samples of remaining liver tissue were fixed in 10% formalin buffer, embedded 

in paraffin, cut, and stained with hematoxylin and eosin (H&E).  

RNA isolation and first strand cDNA synthesis  

Total RNA was isolated from the liver, small intestine, and Huh7 and THP-1 

cell lines using QIAGEN RNeasy Mini Kit (QIAGEN, Hilden, Germany). RNA was 

reverse-transcribed by RETROscript using Random decamers (Ambion, Inc., Austin, 

TX, USA). Detailed methods were performed according to the manufacturers’ 

instructions. 

Primer pairs of TLR-related molecules 

Mouse 18srRNA was used as an endogenous amplification control.  The use 

of this universally expressed housekeeping gene allows for correction of variation in the 

efficiency of RNA extraction and reverse transcription. Specific primer pairs were used 

on TLR2, TLR4, TLR5, TLR9, tumor necrosis factor (TNF), IL-1β, IL-8, CXCL2 (IL-8 

mouse homolog), and 18srRNA. 

Quantitative real-time PCR 

The expressions of TLR2, TLR4, TLR5, TLR9, IL-1β, TNF, CXCL2, and IL-8 
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in mouse liver, small intestine, and THP-1 and Huh7 cells were evaluated by 

quantitative real-time PCR (7300 Real-time PCR system; Applied Biosystems). In this 

method, all reactions were run in 96-well plates with a total volume of 20 μl. The 

reaction mixture consisted of 10 μl TaqMan Universal PCR Master mix, 1 μl 18srRNA, 

1 μl primer, 5 μl RNAase free water, and 3 μl cDNA. The PCR reaction involved the 

following steps: (1) 50°C for 2 min to prevent carryover of DNA; (2) 95°C for 10 min 

to activate polymerase; (3) 40 cycles each of 95°C for 15 s, 60°C for 15 s, and 72°C for 

45 s. 

Immunohistochemistry 

Immunohistochemistry using F4/80 as a macrophage marker was performed on 

cryostatically sectioned liver, and staining was performed by immunofluorescence. The 

sections were fixed in 2 % paraformaldehyde for 10 min and washed three times with 

PBS for 5 min. Further, sections for F4/80 were blocked with 3% BSA/PBS for 1 h at 

room temperature, followed by incubation with monoclonal antibody against F4/80 

(abcam) 1:100 diluted in 3% BSA/PBS for 1 h at room temperature. After washing, 

F4/80 slides were incubated with 1:200 diluted Alexa Fluor 488 goat anti- rat IgG 

(Invitrogen) for 1 h at room temperature and washed.  

Western blotting analysis 
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Protein expression of phospho-interleukin-1 receptor-associated kinase1 

(pIRAK1), the key mediator in the TLR signaling pathway, (24) was studied by western 

blot analysis in the liver (30 μg), small intestine (30 μg), and TPH-1 treated with PA (30 

μg). Protein concentrations were measured by the Bradford method using the Pierce 

BCA Protein Assay kit (Thermo Scientific, Rockford, IL, USA) following the 

manufacturer’s suggested procedure. Separation of 30 μg of protein was then performed 

by 12% Mini PROTEAN® TGXTM Precast Gels (BIO-RAD). After electrophoresis, 

proteins were transferred to nitrocellulose membranes (Amersham LIFE SCIENCE), 

blocked in 5% skim milk, 0.2% Tween20 in PBS (PBS-T) for 1 h at room temperature, 

reacted with rabbit polyclonal anti-pIRAK1 (abcam) or β-actin (BD Biosciences) as a 

control overnight at 4°C, washed with 0.2% PBS-T, reacted with secondary antibody 

horseradish peroxidase-conjugated anti-rabbit IgG and anti-mouse IgG (RD, 

Minneapolis, MN, USA) for 1 h, and washed with PBS-T. After reaction with 

horseradish peroxidase-conjugated anti-rabbit and anti-mouse IgG immune complexes 

were visualized by super signal west Pico Chemoluminescent substrate (Thermo 

SCIENTIFIC) following the manufacturer’s suggested procedure. pIRAK1 was 

analyzed by Image J under the area, which compensated for β-actin. 

Statistical analysis 
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 The results were expressed as mean ± SE. The two groups were assessed by 

Student’s t-test. Data sets involving more than two groups were assessed by ANOVA. 

P-values of <0.05 were considered statistically significant. 

Gut sterilization 

 Mice were treated with ampicillin (1 g/l; Sigma-Aldrich), neomycin (1 g/l; 

Sigma), metronidazole (1 g/l; Sigma), and vancomycin (500 mg/l; Sigma) in drinking 

water for 8 weeks (25). This treatment was followed by feeding a high-fat diet for further 

8 weeks. 

 

Results 

Fatty liver in mice fed a high-fat diet 

At 16 weeks, body weight (BW) and serum ALT were significantly higher in 

mice fed a high-fat diet (F) than in those fed the control diet (C) (BW: C, 41.6 g; F, 51.0 

g; serum ALT: C, 34 IU/L; F, 180 IU/L; Figure 1a, b). Histopathological findings in 

livers from group F demonstrated the absence of fat droplets until 4 weeks (Figure 1c, 

d), but at 8 weeks, the deposition of micronodular fat droplets in the centrilobular zone 

(Figure 1e) was observed, and at 16 weeks macronodular fat droplets and ballooning 

degeneration (Figure 1f) were observed, however, no obvious infiltration of 
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inflammatory cells was noted. F4/80 staining for macrophage markers did not 

demonstrate increased numbers of Kupffer cells (Figure 1g, h). 

Upregulation of cytokines in fatty liver of mice fed a high-fat diet 

Histopathological examination of group F livers demonstrated no obvious 

infiltration of inflammatory cells, while mRNA levels of the inflammatory 

cytokines/chemokines TNF, IL-1β, and CXCL2 were significantly higher at 16 weeks 

(Figure 2a, b, c). 

Upregulation of Toll-like receptors in fatty liver of mice fed a high-fat diet 

To confirm whether the expression of TLRs contribute to the induction of the 

above mentioned cytokines/chemokines, we analyzed the mRNA of TLR2, TLR4, 

TLR5, and TLR9 that recognize bacterial components in the liver. The expression of 

these TLRs in the liver was not different between the two groups at 4 and 8 weeks, but 

at 16 weeks, this was significantly higher in the F group than in the C group (Figure 2d, 

e, f, g). Western blot analysis also demonstrated that expression of pIRAK1 in the liver 

was significantly upregulated in the F group compared with the C group (Figure 2h). 

These findings suggest that upregulation of TLR contributes to the induction of 

cytokines/chemokines, and the TLR signal pathway is genetically enhanced in simple 

steatosis without inflammation. 
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Downregulation of TLRs and cytokines in the small intestine of mice fed a high-fat 

diet 

The expression of TLRs that recognize bacterial components was significantly 

upregulated in the NAFLD liver. Because liver injury has a connection with exposure to 

bacterial components of intestinal origin, we then examined the small intestine of 

NAFLD model mice. The mRNA expression of small intestinal TLR2, TLR4, TLR5, 

and TLR9 was not significantly different between the two groups at 4 and 8 weeks. 

Histopathological examination of the small intestine revealed no difference between the 

groups at 16 weeks, however, mRNA expression of all four TLRs was significantly 

lower in the F group than in C group at 16 weeks (Figure 3a, b, c, d). Expressions of 

IL-1β, TNF, and CXCL2 were also downregulated at 16 weeks (Figure 3e, f, g). 

Moreover, pIRAK1 expression was also significantly decreased in the F group 

compared with the C group (Figure 3h). These findings indicate that the TLR signal 

pathway is genetically attenuated in the NAFLD small intestine. 

Antibiotic treatment improved steatosis and TLRs expression in the liver 

 Small intestinal bacterial overgrowth (SIBO) was reported to coexist with 

NASH (14, 26), and some of the following factors can predispose to SIBO; morbid obesity 

(27), aging (28), concurrent use of proton pump inhibitors (29), and abnormal small 
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intestinal motility (30). Therefore, we hypothesized that attenuation of TLR signal 

pathways might induce immunotolerance, altered levels of microbiota, and bacterial 

overgrowth in the NAFLD small intestine. To investigate whether intestinal microbiota 

contribute to TLR expression, we eliminated them by treatment with nonabsorbable, 

broad-spectrum antibiotics (25). 

BW, serum ALT, and serum free fatty acids were significantly decreased in 

mice fed the high-fat diet and administrated antibiotics (FA) than in those fed the 

high-fat diet and water only (FC) (BW: control diet and water only (CC), 28.9 g; control 

diet and antibiotics (CA), 28.6 g; FA, 34.7 g; FC, 51.9 g; serum ALT: CC, 19.5 IU/L; 

CA, 23.4 IU/L; FA, 34.7 IU/L; FC, 147.6 IU/L; serum free fatty acids; CC, 677.1 μEq/l; 

CA, 818.7 μEq/l; FA, 635.6 μEq/l; FC, 962.7 μEq/l; Figure 4a, f, g). Histopathological 

findings from the livers of FC mice demonstrated the deposition of macronodular fat 

droplets in the centrilobular area and ballooning degeneration of hepatocytes. In contrast, 

FA mice showed a marked reduction in steatosis compared with FC (Figure 4b, c, d, e). 

The expression of TLRs (Figure 5a, b, c, d) and inflammatory cytokines/chemokines 

(Figure 5e, f, g) was also significantly lower in the liver of FA mice than in that of FC 

mice. These data indicate associations among intestinal microbiota, TLR expression, 

and fatty acid metabolism. 
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Palmitic acid upregulated TLR2, TLR4, and TLR5 expressions in a human Kupffer 

cell model: THP-1 cells 

Because both serum free fatty acids and TLR expression were coincidentally 

suppressed in the intestinal bacterial eradication model, we examined whether fatty 

acids would alter TLR expression. Firstly, we investigated TLR expression in THP-1 

cells in a human Kupffer cell model. To differentiate THP-1 cells into macrophages, we 

added PMA to the cultured medium. Flow cytometry demonstrated that macrophage 

markers CD14, CD11b, and CD11c increased in PMA-treated THP-1 cells compared 

with control THP-1 cells, which suggests that the THP-1 cells so treated differentiated 

into Kupffer-like cells (Figure 6a, b).  

To determine the effect of fatty acids on TLR expression in Kupffer cells, PA 

was added to differentiate THP-1 cells, where it induced the deposition of fat droplets 

(Figure 6c). The mRNA expression of TLR2, TLR4, and TLR5 was significantly higher 

in differentiated THP-1 cells treated with 100 μM PA than in control cells, but the 

expression of TLR9 was not different (Figure 6d). Western blot analysis demonstrated 

that the expression of pIRAK1 was upregulated in differentiated THP-1 cells treated 

with 100 μM PA compared with controls (Figure 6e). mRNA expression of TNF was 

also significantly higher in differentiated THP-1 cells exposed to 100 μM PA for 24 h 
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than in controls, but expression of IL-1b and IL-8 was not significantly different (Figure 

6f, g, h). These findings indicate that PA may enhance the TLR signal pathway in 

Kupffer cells. 

Palmitic acid upregulated TLR5 expression in a human hepatocyte model: Huh7 cells  

Secondarily, we examined expression of TLR in Huh7 cells in a hepatocyte 

model, where PA induced the deposition of fat droplets in these cells (Figure 7a, b). The 

mRNA expression of TLR5 was significantly upregulated in Huh7 cells treated with 100 

μM PA, but not that of TLR2, TLR4, and TLR9 (Figure 7c, d, e, f). The expression of 

IL-8 was significantly upregulated in Huh7 cells treated with 100 μM PA for 24 h but 

not that of TNF and IL-1β (Figure 7g, h, i). These findings suggest that fatty acids can, 

at least in part, enhance TLR signal pathways in hepatocytes. 

 

Discussion 

Mice fed the MCD diet demonstrated steatosis, macrophages accumulation, 

and clustering of neutrophils in the liver. Consequently, the expression of TLR4 and 

TNFα were increased but destruction of Kupffer cells prevented increase in TLR4 

expression (10), indicating that increased levels of their expression had contributed to 

infiltration of inflammatory cells. It has been reported that fatty liver in NASH results in 
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increased liver injury and inflammation by intraperitoneal LPS injection in a MCD 

diet-induced NASH mouse model, suggesting that the MCD diet-induced NASH liver is 

sensitive to the TLR4 ligand LPS (6). In our present model, mice fed the high-fat diet for 

16 weeks developed steatosis with no histological evidence of inflammation and fibrosis, 

which is known as simple steatosis. However, the expressions of inflammatory 

cytokines/chemokines were upregulated, and our findings established that this is the 

mechanism by which TLR signal pathways are upregulated in the NAFLD liver prior to 

the development of steatohepatitis. Moreover, F4/80 staining revealed that this 

upregulation was not affected by altered numbers of Kupffer cells, but by changes in 

their activity in regard to inflammatory cytokine production levels. Our findings 

revealed that simple steatosis prior to NASH already demonstrated upregulation of TLR 

signal pathways and may be more sensitive to the ligands of intestinal microbial 

components. Bertola et al. reported that the expressions of TLRs, and certain 

cytokines/chemokines in genes were upregulated in biopsy specimens of morbidly 

obese patients with histologically normal liver or severe steatosis with or without 

NASH (31), and our findings from this animal study concur with this. 

Though many studies have examined the association between TLR signal 

pathways and the pathogenesis of NASH, these reports focused mainly on hepatocytes, 
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Kupffer cells, and hepatic stellate cells (6, 10, 12, 32). However, small intestinal microbiota 

are the cause of liver damage in NASH, and this is the first report to investigate the 

expression of intestinal TLR signal pathways in an NAFLD model and to reveal a 

discrepancy in TLRs expression in the gut-liver axis. The microbial TLR signal pathway 

and downstream cytokines/chemokines were downregulated in the small intestine of an 

NAFLD model. This downregulation may contribute the alternation of immune system 

and balance, and consequently, may alter microflora component ratio and induce SIBO 

with NAFLD. 

We used a gut-sterilized mouse model with antibiotics to confirm whether there 

is an association between gut microbiota and TLR expression in NAFLD. In our model, 

oral caloric intake was not significantly different between FA and FC mice, however, 

BW, serum ALT, and serum free fatty acids were significantly suppressed in the FA 

mice and histopathological findings showed a marked reduction in steatosis in this 

group. Interestingly, the expressions of TLRs and downstream cytokines/chemokines 

were suppressed in FA mice as compared with FC mice. In contrast, in an 

EtOH-induced liver injury model, liver TLR expression was found to be independ of gut 

microbiota despite a reduction in fatty liver and liver injury by antibiotic administration 

(9). Our findings suggest that, directly or indirectly, gut microbiota contribute to TLR 
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expression in the liver of a NAFLD model. Because antibiotics administration also 

reduced serum free fatty acids in FA mice, we focused on the association between fatty 

acid metabolism and gut microbiota. There are three reasons why serum fatty acids were 

suppressed in FA mice. The first reason is a reduction in adipocytes accompanied by 

suppression of increasing BW. This may be explained by the fact that obesity-associated 

microbiota, which increase the capacity to harvest energy from the diet, were eradicated 

by antibiotics (13). We investigated 16s rRNA based analysis of fecal microbiota by the 

terminal restriction fragment length polymorphism (T-RFLP) method and confirmed the 

alternation in FA mice fecal microbiota compared with that of FC mice (data not shown). 

The second reason is a reduction in the release of free fatty acids from adipocytes. In 

obese individuals, it has been reported that gut microbiota might suppress the 

expression of fasting-induced adipose factor (Fiaf), which increases the activity of 

lipoprotein lipase, leading to the production of triglyceride storage in adipocyte and an 

increased supply of fatty acids (33). The expression of intestinal Fiaf was significantly 

upregulated in FA mice compared with FC mice in our experiment (data not shown), 

indicating that gut-sterilization may contribute to a reduction in the release of serum 

free fatty acids from adipocytes through increased intestinal Fiaf expression. The third 

is a reduction in de novo liver lipogenesis. It is reported that microbiota might increase 
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hepatic lipogenesis through the expression of sterol response element binding protein 1 

(SREBP1) and carbohydrate response element binding protein (ChREBP) (34). The 

expressions of SREBP1 and ChREBP were significantly suppressed in FA mice 

compared with FC mice in our experiment (data not shown), indicating that the 

suppression of serum free fatty acids, at least in part, contributes to reduction in hepatic 

de novo lipogenesis through the suppression of SREBP1 and ChREBP. Our findings 

suggest both alternation of microflora and reduction of de novo lipogenesis in the liver 

of the gut-sterilized model, but it is unknown whether the release of fatty acids from 

adipocytes decreases. 

Next, we hypothesized that fatty acids could alter the expression of TLRs in the 

liver. In one in vitro study, it was reported that the unsaturated fatty acids, 

eicosapentaenoic acid and docosahexaenoic acid, downregulated LPS-induced 

activation of NFκB via the PPAR-γ-dependent pathway (35), whereas saturated fatty 

acids conversely stimulated NFκB promoter activity through activation of TLR signal 

pathway (36, 37). However, another recent in vivo mouse model study suggested that 

dietary saturated fat plays a protective role against MCD diet-induced NASH (32). 

Therefore, the effects of saturated and unsaturated fatty acids on inflammation and the 

pathogenesis of NAFLD/NASH remain unclear, and it is unknown whether fatty acids 
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enhance the expression of TLRs. In regard to the above- mentioned in vitro experiment, 

the expression of TLR5 and downstream chemokine IL-8 was upregulated in Huh7 cells 

treated with PA. In contrast, the expressions of TLR2, TLR4, TLR5, and TNF were 

significantly higher in THP-1 cells treated with PA than in control cells. These findings 

suggest that hepatocytes and Kupffer cells are susceptible to bacterial components via 

upregulation of TLRs by free fatty acids in the pro-inflammatory state of NAFLD. 

In conclusion, the expression of TLRs was downregulated in the NAFLD small 

intestine, and this may contribute to an increase in fatty acids through alteration of gut 

microbiota. In contrast, the hepatic TLR signal pathway was upregulated and 

susceptible to microbial components by increased fatty acids in the pro-inflammatory 

state of NAFLD. Our findings suggest that discrepancy in TLR signals in the gut-liver 

axis may be associated with the pathogenesis of progression to NASH through an 

increase in free fatty acids. Because there is no specific treatment for human NASH, 

early intervention in the pro-inflammatory state may be important in the prevention of 

its development from simple steatosis. As fatty acids play an important role in 

development to pro-inflammatory state of NAFLD, we thus considere that both fatty 

acid metabolism and gut microbiota in the pro-inflammatory state might be useful 

targets with preventive treatment for development to NASH. 
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Figure legends 

Figure 1. Body weight, serum ALT, and histopathological findings in high-fat diet 

fed and control mice. 

Body weight (a) and serum ALT (b) were significantly higher in mice that were fed a 

high-fat diet (F) than in controls at 16 weeks. Histopathological liver findings in F mice 

at 4, 8, and 16 weeks with H&E staining (×400) [control (c); 4 weeks (d); 8 weeks (e); 

16 weeks (f)]. Micronodular fat droplets deposited in hepatocytes in the centrilobular 

zone at 8 weeks (e). Macronodular fat droplets and ballooning degeneration were 

marked at 16 weeks, but no obvious infiltration of inflammatory cells was observed (f). 

F4/80 staining for macrophage markers did not demonstrate any increase in Kupffer 

cells [control (g); 16 weeks (h); white arrows indicate Kupffer cells] (* p < 0.05). 

 

Figure 2. mRNA expressions of inflammatory cytokines and Toll-like receptors in 

liver of high-fat diet fed and control mice. 

 mRNA expression of TNF (a), IL-1β (b), and CXCL2 (c) was significantly higher in 

the liver of mice that were fed a high-fat diet (F) than in that of controls (C) at 16 weeks. 

The expression of TLR2 (d), TLR4 (e), TLR5 (f), and TLR9 mRNA (g) was 
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significantly higher in F than C livers at 16 weeks. Western blot analysis demonstrated a 

higher expression of pIRAK1 in F than C livers (h) (*p < 0.05, **p < 0.01) 

 

Figure 3. mRNA expressions of inflammatory cytokines and Toll-like receptors in 

small intestine of high-fat-diet fed and control mice. 

mRNA expression of TLR2 (a), TLR4 (b), TLR5 (c), and TLR9 (d) in the small 

intestine was significantly lower in mice that were fed a high-fat diet (F) than control 

diet (C) at 16 weeks. mRNA expression of TNF (e), IL-1β (f), and CXCL2 (g) in the 

small intestine was also lower in F than C at 16 weeks. Western blot analysis 

demonstrated a lower expression of pIRAK in F than C (h) (*p < 0.05, **p < 0.01)  

 

Figure 4. Body weight, serum ALT, serum free fatty acids, and histopathological 

findings in high-fat diet fed and control mice with or without antibiotics.  

CC, control diet and water only; CA, control diet and antibiotics; FC, high-fat diet and 

water only; FA, high-fat diet and antibiotics. Body weight was significantly higher in 

FC mice than in FA mice (a). Histopathological liver findings for CC (b), CA (c), FC (d), 

and FA (e) with H&E staining (×100) demonstrated macronodular fat droplets and 

ballooning degeneration in FC mice liver, but steatosis was obviously suppressed in FA. 
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Serum ALT (f) and serum free fatty acids (g) were also suppressed in FA in comparison 

with FC (*p < 0.05, **p < 0.01) 

 

Figure 5. mRNA expressions of Toll-like receptors and inflammatory cytokines in 

liver of high-fat diet fed and control mice with or without antibiotics.  

Expression of TLR 2 (a), TLR4 (b), TLR5 (c), and TL9 (d) was suppressed more in the 

livers of FA mice as compared with FC mice. Expression of TNF (e), IL-1β (f), and 

CXCL2 (g) was also suppressed. (*p < 0.05, **p < 0.01) 

 

Figure 6. The expressions of Toll-like receptors and inflammatory cytokines in 

THP-1 cells treated with palmitic acid. 

 Flow cytometry of THP-1 cells treated with phorbol 12-myristate 13-acetate (PMA, a) 

and controls (b). Palmitic acid (PA)-induced deposition of fat droplets in THP-1 cells (c). 

The expression of TLR2, TLR4, and TLR5 was significantly higher in THP-1 cells 

treated with 100 μM PA for 24 h (d). Western blot analysis demonstrated that the 

expression of pIRAK was upregulated in THP-1 cells treated with 100 μM PA as 

compared with control cells (e). TNF expression was significantly higher in THP-1 cells 

treated with PA [TNF (f); IL-1β (g); IL-8 (h)] (*p < 0.05, **p < 0.01)  
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Figure 7. The expressions of Toll-like receptors and inflammatory cytokines in 

Huh7 cells treated with palmitic acid. 

Palmitic acid (PA, 100 μM)-induced deposition of fat droplets in Huh7 cells (a) and 

controls (b). The expression of TLR5 mRNA was significantly upregulated in Huh7 

cells treated with 100 μM PA (TLR2 (c); TLR4 (d); TLR5 (e); TLR9 (f)). Expression of 

IL-8 was significantly higher in Huh7 cells treated with PA [TNF (g); IL-1β (h); IL-8 

(i)] (*p < 0.05, **p < 0.01)  
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