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Abstract 

 

Increased concentrations and activity of plasma cytokines produced by monocytes, 

macrophages, and hepatocytes in patients with alcoholic liver diseases, correlate with the 

clinical course of liver diseases and are of prognostic value. Especially, high levels of 

circulating tumor necrosis factor (TNF)-D have been found to correlate with increased 

mortality in alcoholic hepatitis. Moreover, hepatic RANTES was increased in patients with 

alcoholic hepatitis. Thus, TNF-D-induced RANTES expression may have a critical role in 

cell-mediated liver injury associated with alcoholic hepatitis. Fibrates are widely used in 

the treatment of hyperlipidemia and lower triglyceride levels in patients with 

hyperlipidemia. Recently, several groups reported that bezafibrate, one of fibrates, is 

effective in primary biliary cirrhosis treatment. Additionally, it is reported that bezafibrate 

is effective in the treatment not only of primary biliary cirrhosis but also of chronic 

hepatitis C and tamoxifen-induced non-alcoholic steatohepatitis. We, here, presented that 

bezafibrate and fenofibrate repressed TNF-D-induced protein production and mRNA 

expression of RANTES in human hepatocyte-derived cells. Luciferase assay showed that 

bezafibrate and fenofibrate inhibited RANTES gene expression in response to TNF-D. 

Moreover, bezafibrate repressed TNF-D-induced DNA-binding activity of NF-NB. Thus, 

fibrates reduced TNF-D-induced NF-NB activation and RANTES expression, possibly 

suggesting that fibrates might be inhibitory agents of migration of inflammatory cells by 

RANTES to the liver in patients with alcoholic liver diseases. In line of these results, it 

might be possible that fibrates are therapeutic agents in alcoholic liver diseases. 
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1. Introduction 

 

 Alcoholic liver diseases are the dominant precursor lesion in those subjects 

consuming excessive quantities of alcohol who eventually develop from fatty liver to 

cirrhosis [1-4]. Increased concentrations and activity of plasma cytokines produced by 

monocytes, macrophages, and hepatocytes in patients with alcoholic liver disease, correlate 

with the clinical course of liver disease and are of prognostic value [5-8]. Especially, high 

levels of circulating tumor necrosis factor (TNF)-D have been found to correlate with 

increased mortality in alcoholic hepatitis [6, 9-11]. Moreover, Rowell et al reported that 

hepatic RANTES was increased in patients with alcoholic hepatitis [12]. In experimental 

alcoholic liver disease in rats, RANTES was elevated in hepatocytes [13]. RANTES mainly 

migrates T lymphocytes to inflamed tissues [14,15] and is produced by fibroblasts, T 

lymphocytes, monocytes, and endothelial cells [16]. In addition to those cells, we have 

found that bile acids transcriptionally induced RANTES expression in human hepatoma 

cells [17]. Thereafter, it is reported that RANTES is induced by TNF-D in T lymphocytes, 

pulmonary vascular endothelial cells, bronchial epithelial cells, and granuloma cells from 

human preovulatory follicle [18-21]. Collectively, several evidences suggest that 

TNF-D-induced RANTES expression may have a critical role in cell-mediated liver injury 

associated with alcoholic hepatitis. In fact, immunohistochemical studies of alcoholic 

cirrhotic livers have indicated that both CD4 and CD8 T lymphocytes can be detected in 

expanded portal tracts and in periseptal areas associated with interface hepatitis and 

progressive fibrosis [22].  

 Fibrates are widely used in the treatment of hyperlipidemia and lower triglyceride 

levels in patients with hyperlipidemia [23,24]. Recently, several groups reported that 

bezafibrate, one of fibrates, is effective in primary biliary cirrhosis treatment [25-29]. In 

their reports, bezafibrate is more profitable than ursodeoxycholic acid in patients with 

primary biliary cirrhosis. Additionally, it is reported that bezafibrate is effective in the 
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treatment not only of primary biliary cirrhosis but also of chronic hepatitis C and 

tamoxifen-induced non-alcoholic steatohepatitis [30,31]. These fibrates promote 

E-oxidation and suppress acetyl CoA carboxylase activity in the liver [32]. In addition to 

these pharmacological effects, fibrates activate the peroxisome proliferator-activated 

receptor (PPAR) D, a member of the nuclear hormone receptor superfamily [33]. These 

PPARD are reported to be involved in cell proliferation and inflammatory response as well 

as lipid metabolism [34,35]. We have also reported that fibrates transcriptionally reduced 

bile acid-induced RANTES expression in human hepatoma cells, at least in part through 

inhibition of both DNA-binding activity and transcriptional activation of NF-NB [36]. 

However, nobody investigated the effects of fibrates on TNF-D-induced RANTES 

expression in hepatocytes. We, here, presented that bezafibrate and fenofibrate repressed 

TNF-D-induced RANTES expression in human hepatocyte-derived cells, possibly 

suggesting that fibrates might be inhibitory agents of migration of inflammatory cells by 

RANTES to the liver in patients with alcoholic liver diseases. 

 

 

2. Materials and Methods 

 

2.1. Cell culture and Chemical Reagents 

 

Human hepatoma cell line HLE was provided by Japanese Cancer Research 

Resources Bank [37]. Cells were cultured in the minimum essential medium supplemented 

with 20% fetal calf serum (FCS), 100 µg/ml penicillin, and 100 U/ml streptomycin at 37 oC, 

in a humidified atmosphere of 5% CO2 in air. Human primary hepatocyte cells were 

purchased from Applied Cell Biology Research Institute (Kirkland, WC, USA) and 

cultured in the CS-C Serum-Free Medium Kit (Applied Cell Biology Research Institute). 

Recombinant human TNF-D was purchased from Boehringer Mannheim Corporation 
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(Indianapolis, IN, USA) and dissolved in distilled water. Bezafibrate and fenofibrate were 

kindly gifted from Kissei (Tokyo, Japan) and Kaken pharmaceutical Co. Ltd (Tokyo, 

Japan), respectively and dissolved in dimethyl sulfoxide.  

 

2.2. Enzyme-linked immunoassay (ELISA) for RANTES 

 

HLE cells were grown to confluence in 60 mm collagen-coated culture dishes and 

treated with two fibrates in presence or absence of TNF-D. The supernatants were collected 

and analyzed for RANTES content. Levels of RANTES were measured using an RANTES 

monoclonal antibody sandwich ELISA employing two anti-RANTES antibodies 

recognizing different, non-competing determinants according to the instructions delivered 

with the Quantikine Human RANTES Immunoassay (R&D systems, Minneapolis, MN, 

USA). 

 

2.3. RNA extraction and reverse transcriptase-polymerase chain reaction (RT-PCR) 

analysis 

 

Total RNA was extracted from HLE cells according to the method of 

Chomczynski and Sacchi [38], which includes a single step of acid guanidium thiocyanate 

and phenol/chloroform extraction. RNA was quantified spectrophotometrically. Synthesis 

of the first strand of cDNA and PCR analysis were performed according to instructions 

delivered with the RNA PCR Kit (AMV) Ver.2 (TaKaRa, Tokyo, Japan) as described 

previously [17]. In brief, 500 nanograms of total RNA were subjected to first-strand cDNA 

synthesis in a 20 µl reaction containing 10 mM Tris-HCl (pH. 8.3), 50 mM KCl, 5 mM 

MgCl2, 1 µM of each dNTP, in presence of 2.5 µM random 9 mer nucleotides, 20 U RNase 

inhibitor and 5 U avian myeloblastosis virus reverse transcriptase. After completion of 

first-strand cDNA synthesis, the reaction was stopped by heat inactivation (5 min, 99oC). 
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For RT-PCR analysis, cDNA amounts equivalent to 500 ng of total RNA were subjected to 

PCR amplification in a 50 µl reaction containing 10 mM Tris-HCl (pH. 8.3), 50 mM KCl, 5 

mM MgCl2, 200 µM of each dNTP, 20 µM of each primer, and 2.5 U of TaKaRa Taq DNA 

polymerase. For RANTES mRNA, samples from HLE cells were amplified at 94oC for 5 

min, at 56oC for 90 seconds and at 72oC for 120 seconds, followed by 28 cycles at 94oC for 

30 seconds, at 56oC for 90 seconds, and at 72oC for 120 seconds. The following primers 

were used for RANTES, sense 5’-GCTGTCATCCTCATTGCTAC-3’, antisense 

5’-TCCATCCTAGCTCATCTCCA-3’. For GAPDH mRNA, samples from HLE cells were 

amplified at 94oC for 5 min, at 56oC for 90 seconds and at 72oC for 120 seconds, followed 

by 23 cycles at 94oC for 30 seconds, at 56oC for 90 seconds, and at 72oC for 120 seconds. 

The following primers were used for GAPDH, sense 

5’-ACATCGCTCAGACACCATGG-3’, antisense 

5’-GTAGTTGAGGTCAATGAAGGG-3’. Samples of 10 µl of the PCR products were 

electrophoresed through 1.5% agarose gels and visualized by ethidium bromide. Then, PCR 

was performed at different cycle numbers for each primer set to ensure that the assay was in 

the linear range for each molecule tested. 

 

2.4. Reporter plasmid and luciferase enzyme assays  

 

RANTES promoter-luciferase reporter plasmid was a kind gift from Dr. A. M. 

Krensky (Stanford University School of Medicine) and described previously [17]. HLE 

cells were plated in 6-well plastic dishes (IWAKI Glass, Funabashi, Japan) and washed 

three times with PBS, then medium was replaced with Opti-MEM medium (Life 

Technologies, Inc., Grand Island, NY). Plasmid mixtures were mixed with 4 µl of Trans-IT 

lipofection reagent (Life Technologies, Inc.) and added to the culture. After 6 h, the 

medium was replaced with fresh medium supplemented with 10% FCS and cells were 

treated with TNF-D and fibrates for 24 h. After normalization of transfection efficiency by 
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E-galactosidase expression, luciferase enzyme activity was determined by Lumat LB9501 

(Berthold Japan, Tokyo, Japan). 

 

2.5. Preparation of whole cell extracts and electrophoretic mobility shift assay (EMSA) 

 

Whole cell extracts were prepared as described previously [39]. Briefly, HLE and 

human primary hepatocyte cells were washed twice with PBS and incubated in 20 mM 

HEPES (pH. 7.9), 350 mM NaCl, 1 mM MgCl2, 0.5 mM EDTA, 0.1 mM EGTA, 1% 

Nonidet P-40, 0.5 mM dithiothreitol (DTT), and 0.4 mM 4-(2-amino-ethyl)benzenesulfonyl 

fluoride hydrochloride (Boehringer Mannheim) on ice at 15 min. After centrifugation at 

10,000 g for 20 min, the supernatant was used as a whole cell extract. Equal amounts of 

whole cell extracts (10 µg of protein) were incubated with 30,000 cpm of 32P-labeled H2k 

oligonucleotide probe for binding NF-NB. Reactions were performed in 20 µl of binding 

buffer containing 20 mM HEPES (pH. 8.4), 60 mM KCl, 4% Ficoll, 5 mM DTT, 1 µg of 

bovine serum albumin, and 2 µg of poly(dI-dC), for 20 min at 30 oC. The reaction mixture 

was loaded on a 4% polyacrylamide gel and run in 1X Tris-borate-EDTA buffer. The gel 

was dried and subjected to autoradiography. 

 

2.6. Statistical analysis 

 

Levels of significance for comparisons between samples were determined using 

Student's-t test distribution. Results were expressed as mean ± SE. 

 

 

3. Results 

 

3.1. Fibrates inhibited TNF-D-induced RANTES production in HLE cells  



F. Hirano, et al.  page 8 

 

To exam effects of fibrates on TNF-D-induced RANTES production in HLE cells, 

we used two fibrates, bezafibrate and fenofibrate. For the measurement of antigenic 

RANTES protein, conditioned media were collected from cells treated with bezafibrate or 

fenofibrate in addition to TNF-D. As shown in Fig. 1A, no remarkable changes of RANTES 

protein production were shown by 100 µM of bezafibrate or fenofibrate alone for 48 h (lane 

2, 3). By contrast, TNF-D significantly increased RANTES protein production in a 

dose-dependent manner (Fig.1A, lane 4 – 6 compared with lane 1). Moreover, 

TNF-D-induced RANTES proteins in conditioned media were clearly decreased by 100 µM 

of either bezafibrate or fenofibrate (Fig. 1A, lane 7, 8). In addition, inhibitory effects of 

bezafibrate and fenofibrate on TNF-D-induced RANTES production were in a 

dose-dependent manner, and the IC50 values were 12 µM and 9 µM, respectively (Fig. 1B). 

Cell viability was intact in the medium containing indicated concentrations of TNF-D (data 

not shown). In contrast, cell viability was completely intact in the medium containing 300 

µM of bezafibrate and fenofibrate (data not shown). Thus, we thought that the TC50 values 

for bezafibrate and fenofibrate were more than 300 µM. Next, to examine effects of fibrates 

on TNF-D-induced RANTES mRNA expression, RT-PCR was performed. 100 µM of two 

fibrates, bezafibrate and fenofibrate, failed to change RANTES mRNA expression in 

absence of TNF-D (data not shown). By contrast, TNF-D up-regulated RANTES mRNA 

expression (Fig. 2, lane 2). Additionally, 100 µM of bezafibrate or fenofibrate clearly 

reduced TNF-D-induced RANTES mRNA (Fig. 2, lane 3, 4). Thus, we might show that 

fibrates diminished TNF-D-induced RANTES production. 

 

3.2. Fibrates down-regulated TNF-D-induced RANTES gene expression in HLE cells 

 

To test effects of fibrates on RANTES gene expression induced by TNF-D, 

luciferase enzyme assay was performed using the reporter plasmid. As shown in Fig. 3, 
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bezafibrate or fenofibrate did not change the basal levels of RANTES gene expression (lane 

2-5). However, TNF-D-induced RANTES gene expression was significantly 

down-regulated by bezafibrate in a dose-dependent manner (Fig. 3 lane 6-9). In addition, 

100 µM of fenofibrate also reduced RANTES gene expression at the basal level (Fig. 3, 

lane 10 compared with lane 6). These results might indicate that fibrates down-regulated 

TNF-D-induced RANTES production at the transcriptional level.  

 

3.3. Fibrates decreased TNF-D-induced DNA-binding activity of NF-NB in human primary 

hepatocyte and HLE cells 

 

To study effects of fibrates on TNF-D-induced DNA-binding activity of NF-NB in 

human primary hepatocyte and HLE cells, EMSA was performed. As shown in Fig. 4A, 

100 µM of bezafibrate inhibited DNA-binding activity of NF-NB induced by 10 ng/ml of 

TNF-D for 1 h in human primary hepatocyte cells (lanes 1 - 3). In contrast, bezafibrate 

alone did not influence NF-NB activation in human primary hepatocyte cells (Fig. 4A, lane 

4). Thereafter, 100 µM of fenofibrate also repressed DNA-binding activity of NF-NB in 

HLE cells (data not shown). These results might infer that fibrates inhibited both NF-NB 

activation and RANTES production in response to TNF-D. Next, to identify the Rel 

proteins associated with TNF-D-induced NF-NB-DNA complex, competition and supershift 

analyses were performed. We used whole cell extracts from human primary hepatocyte 

cells activated by 10 ng/ml of TNF-D for 1 h. Upper and lower bands were successfully 

competed using unlabeled NF-NB probe (Fig. 4B, lane 2 compared with lane 1), whereas an 

unrelated oligonucleotide was ineffective (Fig. 4B, lane 3). Moreover, upper band was 

clearly supershifted by anti-p65 and p50 antibodies, and lower band was supershifted by 

anti-p50 antibody but not by anti-p65 antibody (Fig. 4B, lanes 4, 5 compared with lane 1). 

In contrast, anti-c-Rel antibody did not supershifted both bands (Fig. 4B, lane 6). Therefore, 

TNF-D-induced NF-NB-DNA complexes consisted of p65 and p50 heterodimer.  
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4. Discussion 

 

In the present study, we found that fibrates inhibited TNF-D-induced RANTES production 

and NF-NB activation in human hepatocyte-derived cells, possibly suggesting that this 

pharmacological effect of fibrates might be a therapeutic basis in patients with alcoholic 

liver diseases. Nelson et al demonstrated that multiple cis-acting elements interspersed 

within the RANTES promoter sequence contribute to promoter activity upon cell activation 

[40]. The upstream sequence of the RANTES gene contains a number of putative cis-acting 

elements for transcription factors such as activator protein (AP)-1, NF-interleukin 6, and 

NF-NB [40]. In addition, we have presented that NF-NB is a potent inducer of RANTES 

expression in response to bile acids in hepatocytes [17]. Several investigators also showed 

that TNF-D induction of RANTES was associated with activation of NF-NB in human 

pancreatic cancer cells and astrocytic cells [18, 41-43]. However, Ammit et al reported that 

TNF-D-induced RANTES gene expression is mediated via activation of AP-1 and NF-AT 

[44,45]. In hepatocytes, we showed that fibrates inhibited DNA-binding activity of NF-NB. 

Thus, it is possible that fibrates inhibited TNF-D-induced protein production and mRNA of 

RANTES via NF-NB activation. In fact, our previous data revealed that PPARD 

overexpression inhibited NF-NB -driven RANTES gene transcription [36]. Moreover, 

Delerive et al. have reported that PPARD physically interacts with p65 via its Rel 

homology domain which mediates homo- and heterodimerization and interaction with 

inhibitor of NF-NB in human aortic smooth muscle cells [46]. Alternatively, inhibitory 

effects might occur through competitive binding of transcriptional coactivators by PPARD 

or by PPARD-induced transcription factors. Moreover, longer exposure to fibrates was 

found to induce INBD mRNA and protein expression in primary smooth muscle cells and 

hepatocytes [47]. Future study should investigate these inhibitory effects of fibrates via 
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PPARD on TNF-D-induced RANTES expression in human hepatocytes. 

 Specific genetic polymorphisms have been detected in patients with alcoholic liver 

disease, most notably mutations in the TNF promoter and mutations in 

alcohol-metabolizing enzyme systems [48]. Under these condition, it is suggested that 

TNF-D production by peripheral blood monocytes and Kupffer cells in patients with 

alcoholic hepatitis is easily increased, suggesting that such patients may have a lower 

threshold for TNF release in the presence of endotoxin [49]. Additionally, alcohol-induced 

TNF-D is related to hepatocyte-apoptosis and has an important role in toxic- and 

cell-mediated hepatic injury [50,51].  

 In summary, we indicate that fibrates decreased TNF-D-induced RANTES gene 

expression in human hepatocyte-derived cells, possibly at least in part, through inhibition 

of NF-NB activation, suggesting that fibrates are inhibitory agents of migration of 

inflammatory cells by RANTES to the liver in patients with alcoholic liver diseases. 
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Legend for Figures  

 

Fig. 1 

Effect of fibrates on TNF-D-induced RANTES protein in HLE cells. ELISA was performed 

using conditioned media as described in Materials and methods. Conditioned media were 

collected after treatment with the indicated concentration of TNF-D and/or of bezafibrate 

and fenofibrate for 48 h. Experiments were performed quadruplicately. Results were 

presented as mean ± SE of three independent experiments. A: Effects of fibrates. *, p < 

0.05 v. s. lane 1 and †, p < 0.05 v. s. lane 6. B: Dose-dependency. *, p < 0.05 v. s. 0 µM of 

bezafibrate or fenofibrate.  

 

Fig. 2  

Effect of fibrates on TNF-D-induced RANTES mRNA expression. RT-PCR analysis was 

performed using total RNA in HLE cells as described in Materials and methods. Cells were 

treated with 10 ng/ml of TNF-D and 100 µM of bezafibrate or fenofibrate for 24 h. GAPDH 

was used as an internal control. (Bottom) Densitometric quantification of RANTES mRNA 

/ GAPDH mRNA ratio. RANTES mRNA / GAPDH mRNA ratio in unstimulated cells was 

taken as 1.0. 

 

Fig. 3 

Effects of bezafibrate and fenofibrate on TNF-D-induced RANTES gene expression. Cells 

were transfected by lipofection with 1 µg of a reporter plasmid containing the RANTES 

promoter. After transfection, cells were co-incubated with 10 ng/ml of TNF-D and/or the 

indicated concentration of bezafibrate and 100 µM of fenofibrate. After 24 h, cellular 

extracts were prepared for luciferase enzyme assay. Experiments were performed 

quadruplicately. Levels of luciferase activity of a reporter plasmid alone in unstimulated 

cells were taken as 1.0 (lane 1). Results were mean ± SE of three independent experiments. 
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*, p < 0.05 v. s. lane 6. 

 

Fig. 4 

Effect of bezafibrate on TNF-D-induced DNA-binding activity of NF-NB in human primary 

hepatocyte cells. A: Effect of bezafibrate on TNF-D-induced NF-NB activation. Cells were 

treated with 10 ng/ml of TNF-D and/or 100 µM of bezafibrate for 1 h. After preparation of 

whole cell extract, EMSA was performed using H2k oligonucleotides for a probe as 

described in Materials and methods. Specific NF-NB bands and free DNA were shown as 

closed and open triangles, respectively. Data was representative of three similar 

experiments. B: Competition and supershift analysis. For competition (comp), EMSA was 

performed using specific (SC) unlabelled NF-NB probe or nonspecific (NC) 

oligonucleotides on extracts obtained following 1 h of 10 ng/ml of TNF-D. For supershift 

analysis, EMSA was performed using anti-p65, p50 or c-Rel antibody (Ab) on extracts 

obtained following 1 h of 10 ng/ml of TNF-D. Specific NF-NB band (p65/p50 or p50/p50) 

and free DNA are shown as closed and open triangles, respectively. Data is representative 

of three similar experiments. 

 














