
Lovastatin inhibits visceral allodynia and increased colonic permeability induced by lipopolysaccharide or repeated water avoidance stress in rats

Tsukasa Nozu, Saori Miyagishi, Shima Kumei, Rintaro Nozu, Kaoru Takakusaki, Toshikatsu Okumura
Lovastatin inhibits visceral allodynia and increased colonic permeability induced by lipopolysaccharide or repeated water avoidance stress in rats

Tsukasa Nozu 1, Saori Miyagishi 2, Shima Kumei 3, Rintaro Nozu 1, Kaoru Takakusaki 4, Toshikatsu Okumura 2, 3

1 Department of Regional Medicine and Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
2 Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
3 Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
4 Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan

Email: Tsukasa Nozu; tnozu@sea.plala.or.jp, Saori Miyagishi; miyagishi@asahikawa-med.ac.jp, Shima Kumei; kumei@asahikawa-med.ac.jp, Rintaro Nozu; rintaro.1500@gmail.com, Kaoru
Takakusaki: kusaki@asahikawa-med.ac.jp, Toshikatsu

Okumura: okumurat@asahikawa-med.ac.jp

Address for corresponding:

Tsukasa Nozu, MD, PhD, FACP, FJSIM

Department of Regional Medicine and Education, Asahikawa Medical University,

2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan

Ph: +81-166-68-2844

Fax: +81-166-68-2846

e-mail: tnozu@sea.plala.or.jp
Abstract

Statins have been reported to block inflammatory somatic pain and have an anti-cytokine property. Lipopolysaccharide (LPS) or repeated water avoidance stress (WAS) induces visceral hypersensitivity and increases gut permeability in rats, which are mediated through proinflammatory cytokine-dependent pathways. Since visceral hypersensitivity with increased gut permeability plays a crucial role in the pathophysiology of irritable bowel syndrome (IBS), these above animal models are considered to simulate IBS. We hypothesized that lovastatin improves symptoms in the patients with IBS by attenuating these visceral changes. The threshold of visceromotor response (VMR) induced by colonic balloon distention was measured for the assessment of visceral sensation in rats. Colonic permeability was determined in vivo by quantifying the absorbed Evans blue in colonic tissue for 15 min using a spectrophotometer. Subcutaneously (s.c.) injected LPS (1 mg/kg) reduced the threshold of VMR after 3 h. Pretreatment with lovastatin (20 mg/kg s.c. daily for 3 days) abolished this response by LPS. Repeated WAS (1 h daily for 3 days) induced visceral allodynia, which was also blocked by repeated injection of lovastatin before each stress session. The antinociceptive effect of lovastatin on the LPS-induced allodynia was reversed by mevalonolactone, N^G^-nitro-L-arginine methyl ester or naloxone. Lovastatin also blocked the LPS- or repeated WAS-induced increased gut permeability. These results indicate the possibility that lovastatin can be useful for treating IBS.
Key words: lovastatin, visceral pain, gut permeability, lipopolysaccharide, water avoidance

stress, irritable bowel syndrome
1. Introduction

Disturbed gut motility and altered visceral sensory function are considered to play an important role in the pathophysiology of irritable bowel syndrome (IBS) (Taché et al., 2009). Additionally, the importance of immune system activation has been also indicated (Bercik et al., 2005; Elsenbruch, 2011). There is evidence that increased levels of plasma proinflammatory cytokines and serum lipopolysaccharide (LPS) together with enhanced gut permeability are observed in IBS (Dlugosz et al., 2015; Ortiz-Lucas et al., 2010; Sinagra et al., 2016; Zhou and Verne, 2011). Moreover, LPS-induced stimulation of cytokines release from peripheral blood mononuclear cells is enhanced, and higher symptoms severity such as urgency, diarrhea, etc. are associated with higher cytokines response induced by LPS (Liebregts et al., 2007).

We previously showed that LPS induced visceral allodynia via interleukin (IL)-1 and IL-6 pathways (Nozu et al., 2017b). Furthermore, repeated water avoidance stress (WAS)-induced visceral allodynia, which is considered to be an experimental animal model for IBS (Larauche et al., 2012), was also mediated via IL-1 and IL-6 pathways, similar to LPS (Nozu et al., 2017c). In this context, LPS-cytokine system is considered to be associated with the altered gastrointestinal functions in IBS, and anti-inflammatory therapy by inhibiting LPS-cytokine signaling may be a promising approach for the treatment of this disease.

Statins inhibit the enzyme 3-hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase (Grundy, 1988), and reduce blood cholesterol level, leading to the prevention of
cardiovascular diseases (Kazi et al., 2017). However, the risk reduction of these diseases is observed even in the absence of a significant decrease of cholesterol level (Oesterle et al., 2017), and pleiotropic effects of statins such as inhibition of monocyte activation, the production of inflammatory cytokines, etc. (Inoue et al., 2000; Methe et al., 2005) could be involved with this phenomenon (Oesterle et al., 2017).

Besides, anti-inflammatory and anti-cytokine actions by statins are also showed in the various animal models, such as inflammatory arthritis (Leung et al., 2003), carrageenan-induced paw edema (Goncalves et al., 2011), among others, and the drugs are also known to suppress cytokine production in intestinal intraepithelial lymphocytes (Zhang et al., 2013) and exhibit antinociceptive action in several animal pain models (Garcia et al., 2011; Santodomingo-Garzon et al., 2006).

Therefore, we hypothesized that statins are beneficial for the treatment of IBS by attenuating visceral hypersensitivity through the anti-cytokine action. In this study, in order to examine the hypothesis, we attempted to determine the effects of lovastatin on visceral allodynia and increased gut permeability induced by LPS or repeated WAS in rats.

2. Materials and Methods

2.1. Animals

Adult male Sprague Dawley rats (Charles River Laboratory, Atsugi, Japan) weighing approximately 300 g were used. The animals were housed in groups (3 - 4
rats/cage) under controlled conditions of illumination (12-h light/dark cycle starting at 7 a.m.), and temperature was regulated at 23 - 25 °C with food (Solid rat chow, Oriental Yeast, Tokyo, Japan) and water available ad libitum.

2.2. Chemicals

LPS obtained from Escherichia coli with the serotype 055:B5 (Sigma-Aldrich, St. Louis, MO, USA); naloxone hydrochloride, an opioid receptor antagonist; N(G)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide (NO) synthesis inhibitor (Wako Pure Chemical Industries, Osaka, Japan) and mevalonolactone (Tokyo Chemical Industry, Tokyo, Japan) were dissolved in normal saline. Lovastatin (Tokyo Chemical Industry) was dissolved in dimethyl sulfoxide (Sigma-Aldrich). The chemical doses were determined according to previous studies (Mirhadi, 2011; Nozu et al., 2017a; Nozu et al., 2017b).

2.3. Measuring visceral sensation

Visceral sensation was assessed by colonic distention-induced abdominal muscle contractions (visceromotor response; VMR) using electromyogram (EMG) in conscious rats (Ness and Gebhart, 1988; Nozu et al., 2017b, c).

2.3.1. Implantaing electrodes and placing colonic distention balloon
Under brief ether anesthesia, the electrodes (Teflon-coated stainless steel, 0.05-mm diameter, MT Giken, Tokyo, Japan) were inserted approximately 2 mm into the left external oblique musculature though a small skin incision. They were fixed to the musculature by cyanoacrylate instant adhesive together with the incised skin, and the electrode leads were directly externalized through this closed incision. A distension balloon (6-Fr disposable silicon balloon urethral catheter, JU-SB0601; Terumo Corporation, Tokyo, Japan) was intra-anally inserted, with the distal end positioned 2 cm proximal to the anus.

2.3.2. Colonic distention and measuring abdominal muscle contractions

After completing electrode implantation and balloon placement, the rats were placed in Bollmann cages and acclimated to experimental conditions for 30 min before measuring. The electrode leads were then connected to an EMG amplifier, and EMG signals were digitized by a PowerLab system (AD Instruments, Colorado Springs, CO, USA) and recorded by a computer software (LabChart 7; AD Instruments). Colonic distension was performed at 30 min after the surgery, as previously described (Nozu et al., 2017b, c). Namely, the ascending method of limits paradigm with phasic distensions was applied by manually inflating the balloon with water using a syringe, and the distention increased progressively in 0.1 ml steps for 5 sec until significant sustained abdominal muscle contractions, i.e., VMR, were detected (Fig. 1A). The VMR threshold was defined as the distended balloon volume (ml) inducing VMR. The threshold was measured twice (2-min interval), and the threshold mean was calculated as the data of the animals. The
percentage change threshold, i.e., the threshold value after drug administration divided by
the basal threshold value and multiplied by 100, was also calculated.

2.3.3. Experimental procedures

First, the basal VMR threshold was measured. The electrodes and distention balloon
were then removed, and either the vehicle or LPS at a 1-mg/kg dose was subcutaneously
(s.c.) injected. The rats were returned to their home cages, and after 2.5 h, they underwent
surgery for electrode implantation and balloon placement again. The second measurement
of threshold was performed 3 h after the injection. The vehicle or lovastatin (5, 20 or 50
mg/kg) was s.c. injected thrice at 48 h, 24 h and 30 min before injecting LPS or the vehicle
(Fig. 1B).

The effect of lovastatin on repeated WAS-induced allodynia was also evaluated.
First, the basal threshold was measured, and either lovastatin or the vehicle was injected.
Ten min later, either WAS or sham stress was applied for 1 h. These treatments such as
drug injection and 1-h daily stress session were implemented for 3 consecutive days. The
threshold was again measured at 24 h after undergoing the last stress session. Additionally,
the drug injection was also performed at 30 min before the second measurement (Fig. 1C).
We previously demonstrated that this repeated WAS protocol successfully induced visceral
allodynia in rats (Nozu et al., 2017c).

Next to explore the mechanisms of action of lovastatin on LPS-induced allodynia,
the effects of mevalonolactone [20 mg/kg intraperitoneally (i.p.)], L-NAME (10 mg/kg i.p.)
or naloxone (1 mg/kg s.c.) was examined. These drugs were administered thrice together with lovastatin or the vehicle.

2.4. Stress protocol

Exposure to WAS was performed as previously described (Martínez et al., 1997). Rats were individually placed on a plastic platform (height, 8 cm; length, 6 cm; width, 6 cm) positioned in the middle of a plastic cage filled with water up to 7 cm of the platform height. Control animals were also placed in the same plastic cage, but the cage was not filled with water (sham stress).

2.5. Measuring colonic permeability

Colonic permeability measurement was performed as previously described with minor modifications (Dai et al., 2012; Nozu et al., 2017a). The permeability was determined 5 h after injecting LPS or 24 h after undergoing the last stress session. The anesthetized rats were placed in a supine position on a heating pad, and laparotomy was performed. The colon was ligated at the junction with the cecum, and the small hole was made at the 1 cm from the ileocecal junction by 18 G needle. Later, an open-tipped catheter (3-Fr, 1 mm internal diameter, Atom, Tokyo, Japan) was inserted into the proximal colon though the hole and secured by a ligature. The colon was gently flushed with phosphate-buffered saline (PBS) using a catheter until all stools were washed out. Next, another
ligation was added on the colon at approximately 4 cm from the junction with the cecum, and 1 ml of 1.5 % Evans blue in PBS was instilled into the colon through a catheter. After 15 min, the rats were killed, and the colons were excised and washed with PBS and 1 ml of 6 mM N-acetyl-cysteine. Then, the colons were opened and placed in 2 ml of N,N-dimethylformamide for 12 h. Permeability was calculated by measuring the Evans blue concentration in the supernatant using a spectrophotometer at 610 nm.

2.6. Statistical analysis

Data are expressed as means ± standard error. Multiple comparisons were performed by one- or two-way analysis of variance followed by Tukey’s honestly significant difference test. Comparisons between two groups were performed using Student’s t- or paired t-test. The SYSTAT 13 software (Systat Software, Chicago, IL, USA) was used for the study.

2.7. Ethical considerations

Approval by the Research and Development and Animal Care Committees at the Asahikawa Medical University (#15132, approved on April 1, 2015) was obtained for all studies.
3. Results

3.1. Lovastatin abolished LPS-induced visceral allodynia

Lovastatin per se did not induce any effect on the basal threshold (ml), i.e., before injection of LPS or the vehicle (0.57 ± 0.022 for lovastatin at 50 mg/kg, n = 10 vs. 0.58 ± 0.015 for vehicle, n = 21, P > 0.05).

LPS significantly reduced the threshold of VMR, while the vehicle did not alter it (Fig. 2A). Lovastatin (50 mg/kg) per se did not modify the threshold, but it blocked the LPS-induced reduced threshold. Lovastatin at 20 mg/kg also abolished the response, but LPS still evoked the nociceptive effect at 5 mg/kg-dose of lovastatin.

After calculating the percentage change threshold, lovastatin reversed the LPS-induced reduced threshold in a dose-responsive manner (F = 8.6, P < 0.05, Fig. 2B). Lovastatin at 5 mg/kg did not alter the LPS response significantly, while the drug at 20 or 50 mg/kg completely reversed the LPS-induced response. Since 20 mg-dose of lovastatin was enough to abolish the LPS response, this dose of lovastatin was used for the following experiments.

3.2. Lovastatin blocked repeated WAS-induced visceral allodynia

Repeated WAS reduced the threshold significantly, and lovastatin blocked this response without affecting the threshold change in sham-stressed rats (effect of WAS: F =
3.3. Mevalonolactone reversed the antinociceptive effect of lovastatin on LPS-induced visceral allodynia

Repeated intraperitoneal injection of mevalonolactone (20 mg/kg, thrice at 48, 24 h and 30 min prior to injection of LPS or the vehicle) did not alter the basal threshold (ml; 0.57 ± 0.020 for mevalonolactone, n = 10 vs. 0.57 ± 0.013 for vehicle, n = 10; P > 0.05). Moreover, it did not alter the response to LPS (effect of mevalonolactone: F = 0.004, P > 0.05; effect of LPS: F = 20.7, P < 0.05; interaction between mevalonolactone and LPS: F = 0.016, P > 0.05; % change 67.2 ± 5.0 for vehicle + LPS, n = 5 vs. 68.5 ± 3.3 for mevalonolactone + LPS, n = 5; P > 0.05).

Next we determined the effect of mevalonolactone on the antinociceptive effect of lovastatin on LPS-induced visceral allodynia, and the drug blocked it (effect of mevalonolactone: F = 12.2, P < 0.05; effect of lovastatin: F = 12.3, P < 0.05; interaction between mevalonolactone and lovastatin: F = 17.3, P < 0.05, Fig. 4).

3.4. L-NAME reversed the antinociceptive effect of lovastatin

L-NAME (10 mg/kg thrice) neither changed the basal threshold (ml; 0.56 ± 0.020 for L-NAME, n = 11 vs. 0.56 ± 0.022 for vehicle, n = 12; P > 0.05) nor the response to LPS...
Next, we assessed the effect of L-NAME on the antinociceptive effect of lovastatin, and it blocked the effect (effect of L-NAME: $F = 8.39$, $P < 0.05$; effect of lovastatin: $F = 5.86$, $P < 0.05$; interaction of L-NAME and lovastatin: $F = 5.92$, $P < 0.05$, Fig. 5).

3.5. Naloxone reversed the antinociceptive effect of lovastatin

Naloxone (1 mg/kg thrice) did not alter the basal threshold (ml; 0.55 ± 0.032 for naloxone, $n = 11$ vs. 0.55 ± 0.018 for vehicle, $n = 13$; $P > 0.05$). Moreover, it did not modify the response to LPS (effect of naloxone: $F = 0.032$, $P > 0.05$; effect of LPS: $F = 63.3$, $P < 0.05$; interaction between naloxone and LPS: $F = 0.069$, $P > 0.05$; % change 69.7 ± 4.6 for vehicle + LPS, $n = 7$ vs. 68.0 ± 4.1 for naloxone + LPS, $n = 6$; $P > 0.05$).

In the following experiment, the impact of naloxone on the antinociceptive effect of lovastatin was explored, and naloxone blocked it (effect of naloxone: $F = 10.5$, $P < 0.05$; effect of lovastatin: $F = 11.4$, $P < 0.05$; interaction of naloxone and lovastatin: $F = 11.1$, $P < 0.05$, Fig. 6).

3.6. Lovastatin abolished LPS- or repeated WAS-induced increased colonic permeability
LPS increased colonic permeability and lovastatin blocked this response to LPS without affecting the basal permeability (effect of LPS: $F = 10.1, P < 0.05$; effect of lovastatin: $F = 5.95, P < 0.05$; interaction of LPS and lovastatin: $F = 8.48, P < 0.05$, Fig. 7A).

Additionally, repeated WAS induced increased colonic permeability, and lovastatin abolished this response (effect of WAS: $F = 7.24, P < 0.05$; effect of lovastatin: $F = 11.1, P < 0.05$; interaction WAS and lovastatin: $F = 11.1, P < 0.05$, Fig. 7B).

4. Discussion

Statins exhibit antinociceptive effect on somatic pain animal models (Ghaisas et al., 2010; Santodomingo-Garzon et al., 2006). However, none of the studies has demonstrated this effect on visceral pain. This study clearly showed for the first time that lovastatin abolished visceral allodynia induced by LPS or repeated WAS, which was IL-1 and IL-6-dependent response (Nozu et al., 2017b, c).

Toll-like receptor 4 (TLR4) detects LPS and stimulates nuclear factor-kappa B (NF-κB) pathways resulting in the production of proinflammatory cytokines such as IL-1, IL-6 and tumor necrosis factor-α (Dauphinee and Karsan, 2006). Moreover, WAS elevates the expression of TLR4 in gut (Nebot-Vivinus et al., 2014), and psychological stress activates NF-κB signaling (Topol and Kamyszny, 2013). In this context, LPS- or WAS-induced visceral hypersensitivity is considered to be mediated through TLR4-NF-κB pathways.
Statins inhibit NF-κB activity, thereby reducing the production of proinflammatory cytokines (Ortego et al., 1999). Moreover, the drugs were also demonstrated to decrease TLR4 expression and downstream signaling in human monocytes (Methe et al., 2005). Therefore, lovastatin may inhibit TLR4-NF-κB signaling, leading to blocking visceral hypersensitivity.

We also showed that mevalonolactone reversed the antinociceptive effect, indicating that the action by lovastatin was elicited from specific inhibition of HMG-CoA reductase and affecting the level of mevalonic acid. Previous study showed that the compounds such as isoprenoids arising from mevalonic acid is crucial for the regulation of inflammation-induced production of cytokines (Diomede et al., 2001), which may further support the notion above.

Incidentally, the action of lovastatin was also blocked by L-NAME. It was previously reported that atorvastatin evoked antinociceptive effect on mechanical hypernociception in mouse paws induced by intraplantar injection of LPS, which was blocked by L-NAME but not by selective inhibition of inducible NO synthase (Santodomingo-Garzon et al., 2006). These results suggested that the antinociceptive action by statins was considered to be a NO-dependent response, possibly through activating constitutive NO synthase activity on both visceral and somatic pain. Statins increase endothelial NO production by upregulating endothelial NO synthase (Laufs et al., 1998), through inhibition of isoprenoids production (Laufs, 2003). Besides, it is well known that NO exerts an antinociceptive effect (Chung et al., 2006; Durate et al., 1990), and the
mechanism is thought to be that NO induces cyclic guanosine monophosphate generation to open ATP-sensitive K⁺ channels, leading to hyperpolarizing nociceptive neurons (Cury et al., 2011).

This study also showed that the antinociceptive effect of lovastatin was reversed by naloxone, indicating that it was mediated via opioid receptors. Although there is no direct evidence showing that statins activate opioid receptors, several researchers reported that NO stimulated neuronal release of endogenous opioids to stimulate opioid receptors in brain and spinal cord (Cahill et al., 2000; Chung et al., 2006). Therefore, lovastatin may facilitate the production of NO leading to activation of opioid receptors, thereby evoking antinociceptive effect.

There is ample evidence that compromised gut barrier function manifested by increased gut permeability is observed in the patients with IBS (Taché et al., 2009). Repeated WAS or injection of LPS was also demonstrated to increase gut permeability (Bein et al., 2016; Xu et al., 2014). Impaired gut permeability induces bacterial translocation and mucosal inflammation with increased production of proinflammatory cytokines (Moriez et al., 2005). These changes are considered to be an important aspect of pathophysiology of IBS and associated visceral hypersensitivity (Taché et al., 2009).

In the present study, lovastatin inhibited increased colonic permeability induced by LPS or repeated WAS. Sasaki et al. (Sasaki et al., 2003) showed that pravastatin improved gut permeability in dextran-sulfate-induced colitis, which is consistent with our data. Recent studies demonstrated that LPS increased gut permeability through TLR4-dependent
pathways (Guo et al., 2015). It is also known that proinflammatory cytokines released by
activation of TLR4-NF-κB signaling increase the colonic permeability (Bruewer et al.,
2003; Dhawan et al., 2015; Suzuki et al., 2011). Since psychological stress was known to
activate TLR4-NF-κB signaling (Nebot-Vivinus et al., 2014; Topol and Kamyshny, 2013),
this pathway is considered to contribute to LPS- or WAS-induced increased gut
permeability. Therefore, we speculated that lovastatin improved gut permeability by
inhibiting TLR4-NF-κB signaling, which may be similar to the mechanism of
antinociceptive action.

We did not show the direct evidence that lovastatin inhibited the production of
cytokines, which was a limitation of the present study. Since the colonic mucosal levels of
IL-1β and IL-6 were not significantly elevated in the animal models tested in this study
(data were not shown), we could not explore the expected action. In addition, although the
antinociceptive effect of lovastatin was blocked by L-NAME, we did not directly show that
NO synthesis was increased by the drug. Further studies are needed to determine the
precise mechanisms of action in molecular and cellular levels.

Despite the above limitations, our results suggest that lovastatin is a promising tool
for treating IBS. Since LPS-cytokine system may be involved in the pathophysiology of
IBS (Dlugosz et al., 2015; Liebregts et al., 2007; Nozu et al., 2017b, c; Ortiz-Lucas et al.,
2010), blocking the system is considered to be novel approach for the treatment. However,
biopharmaceutical agents suppressing proinflammatory cytokine cannot be used for the
treatment, because they may not have a benefit outweighing their side effects and cost in
the present circumstances. Since statins are some of the most widely prescribed drugs worldwide, their application to IBS treatment seems not to be difficult. Large scale clinical trials to explore the effectiveness of statins in the patients with IBS should be conducted in future.

5. Conclusions

Lovastatin blocked LPS- or repeated WAS-induced visceral hypersensitivity and increased gut permeability in rats. The antinociceptive effect by the drug probably resulted from the inhibition of HMG-CoA reductase, and may be a NO- and opioid receptors-dependent response. Lovastatin may be useful for IBS treatment.

Conflict of interest statement

The authors declare no conflict of interest.

Acknowledgments

This work was partially supported by Japan Society for the Promotion of Science KAKENHI, Grant-in-Aid for Scientific Research (C) [26460287 (TN) and 26460955 (TO)] and Scientific Research on Innovative Areas [26120012 (KT)].
References

Figure legends

Figure 1

A The threshold of visceromotor response (VMR) was determined by the distended balloon volume (ml) inducing apparent sustained abdominal muscle contractions. Demonstrable EMG recording is depicted. The threshold was 0.4 ml in this animal. B Schematic representation of the experimental protocol. The basal VMR threshold was measured at 30 min after the surgery for implanting EMG electrodes and placing the balloon, and LPS (1 mg/kg) or the vehicle was administered. Later, the surgery and balloon placement were performed again, and the threshold was measured at 3 h after the injection. Lovastatin (5, 20 or 50 mg/kg) or the vehicle was injected thrice at 48 h, 24 h and 30 min before injection of LPS. C The basal threshold was measured, and the rats were subjected to either water avoidance or sham stress for 1 h daily for 3 consecutive days. The second threshold measurement was performed at 24 h after the last stress session. Lovastatin or the vehicle was injected 4 times, i.e., at 10 min before each stress session and 30 min before the second measurement.

Figure 2

A Effect of lovastatin (Lova) on LPS-induced visceral allodynia. LPS significantly reduced the threshold of visceromotor response (VMR), and lovastatin at 20 and 50 mg/kg abolished this response. Lovastatin per se did not alter the threshold. * P < 0.05 vs. basal threshold by paired t-test. B Percentage change threshold of VMR was significantly
reduced in the vehicle + LPS, and lovastatin dose-dependently reversed this response by LPS. * P < 0.05 vs. vehicle + vehicle, # P < 0.05 vs. vehicle + LPS by one-way analysis of variance followed by Tukey’s honestly significant difference test. Each column represents the mean ± standard error. The number of rats examined is shown in parentheses.

Figure 3

Effect of lovastatin (Lova) on repeated water avoidance stress (WAS)-induced visceral allodynia. Repeated WAS significantly reduced the threshold, and lovastatin abolished this response. Sham; sham stress. * P < 0.05 vs. vehicle + sham, # P < 0.05 vs. vehicle + WAS by two-way analysis of variance followed by Tukey’s honestly significant difference test. Each column represents the mean ± standard error. The number of rats examined is shown in parentheses.

Figure 4

Mevalonolactone reversed the antinociceptive effect of lovastatin (Lova) on LPS-induced visceral allodynia. * P < 0.05 vs. vehicle + vehicle + LPS, # P < 0.05 vs. vehicle + Lova + LPS by two-way analysis of variance followed by Tukey’s honestly significant difference test. Each column represents the mean ± standard error. The number of rats examined is shown in parentheses.
L-NAME abolished the antinociceptive effect of lovastatin (Lova) on LPS-induced visceral allodynia. * P < 0.05 vs. vehicle + vehicle + LPS, # P < 0.05 vs. vehicle + Lova + LPS by two-way analysis of variance followed by Tukey’s honestly significant difference test. Each column represents the mean ± standard error. The number of rats examined is shown in parentheses.

Naloxone blocked the antinociceptive effect by lovastatin (Lova) on LPS-induced visceral allodynia. * P < 0.05 vs. vehicle + vehicle + LPS, # P < 0.05 vs. vehicle + Lova + LPS by two-way analysis of variance followed by Tukey’s honestly significant difference test. Each column represents the mean ± standard error. The number of rats examined is shown in parentheses.

Effect of lovastatin (Lova) on colonic permeability. A LPS increased the permeability, which was blocked by lovastatin. B Repeated water avoidance stress (WAS) increased the permeability, and lovastatin abolished this response. Sham; sham stress. * P < 0.05 vs. vehicle + vehicle or vehicle + sham, # P < 0.05 vs. vehicle + LPS or vehicle + WAS by two-way analysis of variance followed by Tukey’s honestly significant difference test. Each
column represents the mean ± standard error. The number of rats examined is shown in parentheses.