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ABSTRACT

Intestinal epithelial cells form a tight barrier to act as selective physical barriers, repelling hostile substances. Tumor
necrosis factor-o. (TNF-a) is a well characterized pro-inflammatory cytokine which can compromise intestinal
barrier function and the suppression of TNF-o, function is important for treatment of inflammatory bowel disease
(IBD). In this study, we investigated the contribution of G-protein-coupled receptor (GPCR)-induced signalling
pathways to the maintenance of epithelial barrier function. We first demonstrated the existence of functional
muscarinic M3 and histamine HI receptors in colonic epithelial cell HT-29/B6. As we previously reported,
muscarinic M3 receptor prevented TNF-u-induced barrier disruption through acceleration of TNF receptor (TNFR)
shedding which is carried out by TNF-a converting enzyme (TACE). M3 receptor-mediated suppression of TNF-a
function depends on Gag; protein, however, histamine H1 receptor could not ameliorate TNF-o function, while
which could induce Gagy; dependent intracellular Ca®" mobilization. We found that p38 MAPK was predominantly
phosphorylated by M3 receptor through Go,; protein, whereas H1 receptor barely upregulated the phosphdrylation.
Inhibition of p38 MAPK abolished M3 receptor-mediated TNFR shedding and suppression of TNF-o-induced
NF-kB signalling. The p38 MAPK was also involved in TACE- mediated EGFR transactivation followed by
ERK1/2 phosphorylation. These results indicate that not H1 but M3 receptor-induced activation of p38 MAPK
might contribute to the maintenance of epithelial barrier function through down-regulation of TNF-a signalling and

activation of EGFR.
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ABSTRACT

Intestinal epithelial cells form a tight barrier to act as selective physical barriers, repelling hostile substances. Tumor
necrosis factor-o. (TNF-0) is a well characterized pro-inflammatory cytokine which can compromise intestinal
barrier function and the suppression of TNF-o, function is important for treatment of inflammatory bowel disease
(IBD). In this study, we investigated the contribution of G-protein-coupled receptor (GPCR)-induced signalling
pathways to the maintenance of epithelial barrier function. We first demonstrated the existence of functional
muscarinic M3 and histamine H1 receptors in colonic epithelial cell HT-29/B6. As we previously reported,
muscarinic M3 receptor prevented TNF-a-induced barrier disruption through acceleration of TNF receptor (TNFR)
shedding which is carried out by TNF-a. converting enzyme (TACE). M3 receptor-mediated suppression of TNF-a.
function depends on Gag; protein, however, histamine H1 receptor could not ameliorate TNF-a function, while
which could induce Goy;; dependent intracellular Ca”* mobilization. We found that p38 MAPK was predominantly
phosphorylated by M3 receptor through Ga protein, whereas H1 receptor barely upregulated the phosphorylation.
Inhibition of p38 MAPK abolished M3 receptor-mediated TNFR shedding and suppression of TNF-a-induced
NF-«B signalling. The p38 MAPK was also involved in TACE- mediated EGFR transactivation followed by
ERK1/2 phosphorylation. These results indicate that not H1 but M3 receptor-induced activation of p38 MAPK
might contribute to the maintenance of epithelial barrier function through down-regulation of TNF-a signalling and

activation of EGFR.
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1. Introduction

Intestinal epithelial cells form barrier to act as selective physical barriers, maintaining bacteria and maintain
intestinal homeostasis. Disruption of barrier function of intestinal epithelium is one of the pathological features of
inflammatory bowel disease (IBD) [1, 2].

Tumor necrosis factor-o (TNF-0) is a well characterized pro-inflammatory cytokine which could induce
dysregulation of intestinal barrier function. TNF-a. is secreted from monocytes and macrophages, which could bind
to epithelial TNF receptors (TNFRs) and drive inflammatory signalling pathways. Activation of TNF-o, signalling
could induce epithelial barrier disruption in intestinal mucosal tissue and cultured epithelial monolayers [3, 4].
Expression level of TNF-a is upregulated in IBD patients, and suppression of TNF-o, action is focused as the clinical
target for IBD [5]. In fact, anti-TNF agents were developed and applied for the treatment of IBD (e.g. infliximab) [6].
Nuclear factor kB (NF-kB) is a main signalling mediator of TNF-o. NF-«kB upregulates expression of various
inflammation-related genes including inflammatory factors, cytoskeletal proteins and apoptotic factors to accelerate
dysregulation of intestinal epithelial integrity [7-9]. The NF-«B family consists of five members, p65, RelB, c-Rel,
p30 and p52, and forms homo- or heterodimer to regulate transcription [10]. Among them, p65/p50 dimer is
essential for TNF-a-induced dysregulation of intestinal epithelial barrier function [11, 12].

Intestinal epithelial cells express several G protein-coupled receptors (GPCRs) including receptors for gastrin,
short-chain fatty acids, histamine and acetylcholine [13-17]. Muscarinic acetylcholine receptors have five subtypes,
which consisted with Gagy; protein-coupled M1, M3 and M5 receptors and Go; protein-coupled M2 and M4
receptors. M3 receptor is a major muscarinic subtype expressed in human intestinal epithelium [13, 18]. Muscarinic
stimulation induces seyeral important functions including intestinal ion secretion and epithelial cell proliferation.
M3 receptors are coupled to phospholipase C (PLC) via Ga; protein, leading to hydrolysis of phosphatidylinositol
bisphosphate and produce diacylglycerol and inositol 1,4,5-trisphosphate, which activate protein kinase C (PKC)
and mobilization of intracellular Ca®*, respectively. Recently, it has been reported that Go,y; signalling has a pivotal
role to maintain intestinal epithelial homeostasis [19]. Consistent with this, accumulating evidences had shown that
M3 receptors could promote protection of epithelial barrier function and prevent colitis development [18, 20, 21].
Histamine H1 receptor is also a Gagi-coupled receptor, which is expressed in intestinal epithelial cells and can
induce chloride ion secretion [16, 22]. However, the role of epithelial H1 receptors in intestinal epithelial
homeostasis remains unknown. Several GPCRs are known to transactivate EGF receptor (EGFR) through release of
EGFR ligands or phosphorylation by non-receptor tyrosine kinases [23-26]. In several epithelial cell lines,
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transactivation of EGFR is essential for muscarinic stimulation-mediated activation of ERKI1/2 and cell
proliferation [27-29]. Furthermore, M3 receptor-mediated activation of EGFR is important to protect intestinal
function through the optimal regulation of ion secretion in colon epithelium [30]. Therefore, it is important to
elucidate the mechanism of EGFR transactivation for the understanding of M3 receptor-mediated maintenance of
intestinal homeostasis.

Previously, we reported that muscarinic stimulation suppressed TNF-a-induced NF-«B signalling and barrier
disruption through the shedding of TNFR catalyzed by TNF-o converting enzyme (TACE/ADAMI17) [18].
However, it remains unclear what mechanism is involved in M3 receptor-mediated shedding of TNFR and
maintenance of epithelial homeostasis. In this study, we showed the functional expression of two Gagi-coupled
GPCR, muscarinic M3 and histamine H1 receptors, in HT-29/B6 colonic epithelial cells. Among these receptors,
only muscarinic M3 receptor suppressed TNF-a-induced barrier disruption. This protective effect of M3 receptor
was mediated by activation of p38 mitogen activating protein kinase (MAPK). Activation of p38 MAPK was also
involved in transactivation of EGFR. These results provide the molecular mechanism of M3 receptor-mediated

maintenance of intestinal homeostasis.

2. Materials and methods

2.1. Material

Carbachol (CCh) and chlorpheniramine from Sigma Aldrich (MO, USA), fetal bovine serum (FBS) from
Invitrogen (CA, USA), recombinant human TNF-a from PEPROTECH (NJ, USA), TNF-a protease inhibitor-0
(TAPI-0) and muscarinic toxin 7 (MT-7) from Peptide Institute (Osaka, Japan). Fura 2-AM from Dojindo
(Kumamoto, Japan), AG1478, cimetidine, histamine and YM254890 from Wako pure chemical (Osaka, Japan),
darifenacin from Ono Pharmaceutical (Osaka, Japan), SB203580 from AdooQ BioScience (Irvine, CA),

recombinant mouse EGF from R&D Systems (Abingdon, UK).

2.2. Cell culture

HT-29/B6 cells are selected from the human colon cancer derived HT-29 cells [31]. HT-29/B6 cells were grown

4
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as highly differentiated polarized epithelial monolayers in a humidified atmosphere with 5% CO?2 at 37°C in RPMI
1640 medium supplemented with 2 mM glutamine, 15 mM HEPES (pH 7.2), 10% FBS, 100 U/ml penicillin and
100 pg/ml streptomycin. Culture medium was changed every 2 days. For the knockdown experiments, siRNA for
TACE gene (HSS110434, Invitrogen) or control siRNA were introduced to the HT-29/B6 cells. Each
oligonucleotide was transiently transfected at a final concentration of 10 nM using ScreenFect siRNA (Wako),
according to the manufacturer's instruction, and then cells were cultured for 3 days.

\

2.3. Measurement of intracellular calcium concentration (J[Ca’* 1)

HT-29/B6 cells were detached by Pack’s D1 solution (5.5 mM glucose, 58.4 mM sucrose, 138 mM NaCl, 5.4
mM KClI, 0.17 mM Na,HPOy,, and 0.22 mM KH,PO,). Then, cells were loaded with 5 UM Fura-2 AM (sonicated
and solubilized in 10% Pluronic F-127 just before use) in the growth medium containing 0.7 mM probenecid for 25
min, washed, and then resuspended in Ca** assay buffer (140 mM NaCl, 5.4 mM KClI, 1.2 mM MgCl,, 2.0 mM
CaCl,, 10 mM glucose, and 10 mM HEPES, pH 7.4) with 1 % FBS. [Ca®"]; was measured by fura-2
ratiofluorometry using a fluorescence spectrophotometer (Hitachi F-4500; Hitachi, Tokyo, Japan). During the
measurements, cells were continuously stirred and kept suspended at 37 °C. For inhibitor studies, darifenacin (10
nM), chlorpheniramine (1 M) or YM254890 (1 uM) were added 3 min before the stimulation of carbachol (100
UM) or histamine (100 pM). The [Ca®']; concentration was calculated as previously described [32]. The basal level
of [Ca®']; was approximately 100 nM, and the net increases in [Ca>']; evoked by the drugs were estimated by

subtracting [Ca”*]; of 5-10 sec before drug stimulation from maximum responses.
2.4. Immunoblotting

Cells were stimulated with 100 ng/ml TNF-a for 5 min with or without the pretreatment of vcarbachol or
histamine for 5 min. To check the phosphorylation of MAPKs, cells were maintained in serum ﬁeé medium for 2 h.
Then, cells were stimulated with carbachol, histamine or EGF for 5 min. YM254890, darifenacin, MT-7,
chlorpheniramine, cimetidine, SB203580, AG1478 or TAPI-0 was added 15 minutes prior to the stimulation by
carbachol. At the end of reaction, the medium was removed and the cells were washed with ice-cold PBS twice.
Cells were then lysed by adding a SDS sample buffer (50 mM Tris-HCI, pH 6.8, 10% glycerol, 1% SDS, 1%
B-mercaptoethanol, 0.1% bromophenol blue). Cell lysates were collected into tubes and heated for 10 minutes at

5
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96°C. Proteins were separ.ated by SDS-PAGE and transferred to polyvinylidene fluoride membranes (Millipore,
Bedford, MA). Membranes were probed with appropriate concentrations of primary antibody against NF-kB p65
(#4764), phospho-NF-«B p65 (Ser536, #3033), IkBa (#4814), phospho-IxBa (Ser32, #2859), p38 MAPK (#9212),
phospho-p38 MAPK (Thr180/Tyr182, #4511), ERK1/2 (#4695), phospho-ERK1/2 (Thr202/Tyr204, #4370) (Cell
Signaliﬂg Technology., MA, USA), B-actin (clone AC-74, Sigma Aldrich, MO, USA) and TACE (ab2051, abcam,
MA, USA). The immuno.reactive proteins were detected by horseradish-peroxidase-labeled secondary antibody
with Clarity Western ECL substrate (BioRad, Hercules, CA). The signal intensity was calculated using Image J )

software. The phosphorylated levels of NF-kB, IxBa, p38 MAPK and ERK1/2 were normalized to the total levels of

- NF-«B, B-actin, p38 MAPK and ERK1/2, respectively.

2.5. Enzyme-linked immunosorbent asédy (ELIS4)

Cells were cultured onto 12-mm Millicell-PCF (Millicell-PCF, 0.4 pm pore size, Millipore, Cork, Ireland) for
9-11 days. After 10 min incubation with fresh medium with or without SB203580, cells were stimulated with

carbachol or histamine.for 30 min. Then, basolateral medium was collected and assayed by using human sTNFR1

" Quantikine ELISA Kit (R&D Systems, Abingdon, UK). Absorbance was measured at 450 nm using a

spectrophotometer (SpectraMax PLUS; Molecular Devices, Orleans, CA). STNFR1 concentration of culture

medium without cells was also measured and subtracted. Each value was normalized to the non-stimulated control.
2.6. Measurements of transepithelial resistance (TER)

HT-29/B6 cells weré cultured onto 12-mm Millicell-PCF for 9-11 days. TER across the cell monolayers.was
ﬁneasured using a Millicell ERS-2 epitheﬁal volt-ohm meter (Millipore, Darmstédt, Germany). The values (Qxcm?)
were obtained by subtracting the resistance of blank filters without cells from the resistance of filters with cells
multipiied by the effective meﬁlbrane area of the filter iinsel“c. ‘Inserts having TER of at least 600 Qxcm? was used for
the experiments. Carbachol or ﬁistamine were added 5 min before the addition of TNF-¢.. TER wés measured at 8,

12 and 24 h after TNF-o, treatment. TER at each time was normalized to the initial (0 h) TER.
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3. Results
3.1. M3 and H1I receptors stimulate Gogn dependent Ca* response

Recently, we showed that muscarinic M3 receptor can suppress TNF-a-induced barrier disruption in intestinal
epithelium and human colonic epithelial cell line HT-29/B6 cells [18]. Intestinal mucosal tissue and HT-29 cells also
express histamine H1 receptors [16]. Both M3 and H1 receptors can evoke intrécellular Ca®" response through
Guag protein. First, we examined the existence of functional form of M3 and H1 receptors on the cell surface of
HT-29/B6 celis through intracellular Ca®* response. Intracellular concentration of Ca®* was measured by
fluorometry of Ca®" indicator Fura-2. Just after treatment of carbachol (an acetylcholine analog) or histamine,

HT-29/B6 cells showed increase of intracellular Ca®* concentration in a dose-dependent manner (Fig. 1A and B).

“ Each response was suppressed by M3-selective antagonist darifenacin or H1-selective antagonist chlorpheniramine,

respectively (Fig. 1C). Furthermore, Gog protein inhibitor YM253890 abolished both carbachol- and
histamine-induced increases of Ca* concentration (Fig. 1C). Thus, both M3 and H1 receptors elicit Gog;-mediated

Ca®" response in HT-29/B6 cells.

" 3.2. M3 but not HI receptor suppresses TNF-o, signalling through Gog pf'otein

We next examined the role of Go,; protein in the suppression of TNF-a-induced NF-«B signalling. NF-xB
p50/p65 dimer is essential for TNF:a-induced barrier disruption iﬁ intestinal epithelial cells [11, 12]. TNF-a induces
IxB kinase (IKK)-dependent phosphorylation and proteasomal degradation of IkB. NF-kB p65/p50 dimer,
dissociated from IxkB complex, translocates into nucleus for the transcription of inflammatory factors. In addition,
p65 subunit is phosphorylated for the optimal transcriptional activity [33]. Previously, we reported that
TNF-o-induced upregulation of NF-«B transcriptional activity, which was ameliorated by muscarinic stimulation
[18]. Activation of M3 receptor inhibits TNF-o-induced phosphorylation of IxB and NF-kB inv HT-29/B6 cells.
Inhibition of Go,; protein abolished these M3 receptor-mediated inhibitory effects (Fig. 2A). Thus, Gog1; protein
activation is essential for suppression of TNF-o, signalling by M3 receptor. Next, we checked the effect of histamine
stimulation on TNF-q, signalling, because H1 ;eceptor also can evoke Go,y; protein activafion in HT-29/B6 cells.
Interestingly, histamine stimulation could not ameliorate TNF-0. induced NF-xB signalling (Fig. 2B). Because
NF-«B activation is required for the TNF-a-induced barrier disruption, TNF-o-induced reduction of TER was

i
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examined with or without muscarinic or histamine stimulation. As shown in Fig. 2C, TNF-o-induced barrier
disruption was prevented by muscarinic stimulation but not by histamine. Thus, M3 but not H1 receptor suppresses

TNF-a signalling through Gog; proteins.
3.3. M3 receptor activates p38 MAPK more effectively than HI receptor

Different effects of M3 and H1 receptors against TNF-a signalling indicate distinct signalling pathways might be
activated by each receptor under Go; proteins. We recently reported that shedding of TNFR by TACE is required
for M3 receptor-mediated suppression of TNF-o. signalling [18]. Because p38 MAPK is known to directly
upregulate TACE activity, we evaluated p38 MAPK activation by M3 and H1 receptors [34]. Carbachol activated
p38 MAPK, which was prevented by darifenacin but not by M1 specific antagonist MT-7 (Fig. 3A). Histamine
barely activated p38 MAPK through H1 receptor, although the low phosphorylation was observed (Fig. 3B). The
activations of p38 MAPK were completely abolished with YM254890 (Fig. 3C). However, inhibition of Gog;
downstream effector, PKC (10 uM bisindolylmaleimide, BIM), Ca** response (20 pM BAPTA-AM and 5 mM
EGTA) and PLCf (10 uM U73122) did not affect M3 receptor-mediated p38 MAPK phosphorylation (data not
shown). Next, p38 MAPK activation property of M3 and H1 receptors was compared. As shown in Fig. 3D, Hl
receptor, compared with M3 receptor, was hardly able to activate p38 MAPK. Thus, M3 receptor but not Hl

receptor can effectively activate p38 MAPK through Gag; protein.
3.4. p38 MAPK activation is crucial for M3 receptor-mediated TNF-a signalling suppression

Because M3 receptor activates p38 MAPK effectively, the role of p38 MAPK on M3 receptor-mediated
suppression of TNF-a signalling was examined. As shown in Fig. 4A, the downregulation of TNF-a
induced-activation of NF-«kB signalling through M3 receptors was ameliorated by p38 MAPK inhibitor SB203580.
Previously, we showed the contribution of M3 receptor-induced enhancement of TNF receptor (TNFR) shedding to
suppress TNF-o signalling. Carbachol but not histamine stimulation increased the release of soluble TNFR1
(sTNFR1) to the medium. SB203580 suppressed the upregulation of sSTNFR1 induced by carbachol (Fig. 4B). Thﬁs,
p38 MAPK activation is crucial for M3 receptor-mediated TNFR shedding followed by suppression of TNF-o.

signalling.
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3.5. ERK1/2 activation of M3 receptor is through TACE-mediated EGFR transactivation

M3 receptor can activate MAPK pathways through transactivation of EGFR [29]. EGFR can be activated by
GPCR through release of EGFR ligands or phosphorylation of EGFR by src-like kinases. Activation of TACE leads
to processing of pro-EGFR ligands including TGF-a, amphiregulin (AR), and heparin-binding EGF (HB-EGF) [35].
As shown in Fig. 5A, M3 receptor-mediated ERK1/2 phosphorylation was abolished by treatment of EGFR
inhibitor AG1478. AG1478 showed only partial inhibition of p38 MAPK phosphorylation even in the high
concentration. Pharmacological inhibition or siRNA knock-down of TACE also reduced M3 receptor-mediated
phosphorylation of ERK1/2, but not that of p38 MAPK (Fig. 5B, 5C). Thus, activation of TACE by M3 receptor
also induced ERK1/2 phosphorylation through EGFR transactivation. Transactivation of EGFR was not involved in
suppression of TNF-a effects, because inhibition of EGFR did not affect to TNF-o-induced activation of NF-xB

signalling (Fig. 5D).

3.6. ERK1/2 activation by M3 receptor is through p38 MAPK activation

Finally, we examined whether M3 receptor-mediated phosphorylation of ERK1/2 was downstream signalling of
p38 MAPK activation. Time course of ERK1/2 and p38 MAPK phosphorylation was compared in Fig. 6A.
Phosphorylation of ERK1/2 was observed from 2 min after muscarinic stimulation and peaked at 5 min. In contrast,
that of p38 MAPK was initiated at 1 min and peaked at 3 min. Thus, phosphorylation of p38 MAPK preceded that of
ERK1/2. Next, the effect of p38 MAPK inhibition on ERK1/2 phosphorylation was examined. ERK1/2
phosphorylation by EGF was not affected by SB203580 treatment. On the other hand, SB203580 effectively
reduced muscarinic stimulation-induced ERK1/2 phosphorylation in a concentration-dependent manner (Fig. 6B).
Phosphorylation of p38 MAPK itself was also inhibited by SB203580. Taken together, these results indicate that
p38 MAPK activation by muscarinic stimulation contributes not only to suppression of TNF-o, signalling but also to

phosphorylation of ERK1/2 through EGFR transactivation.
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4. Discussion

In this paper, we demonstrated the existence of M3 and H1 receptors in colonic epithelial cells HT29/B6,
however M3 receptor dominantly contributes to the suppression of TNF-a-induced barrier disruption through p38
MAPK activation. p38 MAPK was also involved in TACE-mediated EGFR transactivation followed by ERK1/2
phosphorylation.

First, we demonstrated the existence of functional muscarinic M3 and histamine H1 receptors in HT-29/B6 cells
by measurement of intracellular Ca>* response (Fig. 1). Accumulating evidence from in vivo and in vitro studies has
shown that protective role of M3 muscarinic receptors against inflammation in intestinal epithelium [20, 21]. We
previously showed that M3 receptors suppress TNF-a-induced barrier disruption through the shedding of TNFR
[18]. Wang et al. reported that H1 receptor also induced TNFR shedding in vascular endothelial cells [36]. Both M3
and HI receptors coupled with Gagy; proteins and can induce PLCB-dependent increase of intracellular Ca*
concentration and activation of PKC. Suppression of TNF-a-induced NF-«B signalling by muscarinic stimulation
was Gag/; protein dependent (Fig. 2A). However, histamine stimulation did not show sufficient reduction of TNF-o.
signalling and barrier disruption (Fig. 2B, 2C). These results indicate that there is a distinct signalling pathway
which is activated particularly by M3 receptors. Concordant with this, p38 MAPK activation was predominantly
observed under the muscarinic stimulation (Fig. 3D). Furthermore, inhibition of p38 MAPK with SB203580
abolished M3 receptor-mediated suppression of TNF-a signalling (Fig. 4). Thus, p38 MAPK is crucial to prevent
TNF-a-induced barrier disruption by muscarinic stimulation.

It remains unclear how M3, but not H1 receptors, effectively activate p38 MAPK. Signalling pathways evoked
by GPCR activation are mainly defined by the G protein coupling specificity. Each GPCR, however, can exert
unique signaling pathways, which depends on the environment surrounding the receptors. For instance, oxytocin
receptor shows different temporal pattern of EGFR and ERK1/2 activation depending on the localization in caveolar
microdomains [37]. AT1 angiotensin II receptor facilitates JAK/STAT signalling through the interaction with
JAK2/SHP-2 complex [38]. Likewise, different results of M3 and H1 receptors activation might be ascribed to the
distinct microdomains localization or the unique interaction partners. M3 receptor-induced p38 MAPK activation
was completely inhibited by specific Gag; protein inhibitor YM254890. However, inhibition of prototypical Gog;
protein dependent events, PLCB and PKC activation, and Ca®* response did not influence p38 MAPK
phosphorylation (data not shown). Rho-specific guanine nucleotide exchange factor (RhoGEF), p63 RhoGEF and
Trio might be candidates of the downstream mediators of Gog; protein, which could be activated by direct binding

10
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to Goq protein [39]. Contribution of Rho family GTPases to p38 MAPK activation has been already reported [40].
Interestingly, p38 MAPK inhibitor SB203580 significantly suppressed phosphorylation of p38 MAPK itself (Fig.
6B). p38a. MAPK could be activated by autophosphorylation promoted by Tab1, which is independent of MAPKK
[41]. Hence, M3 but not HI receptor-induced Gay; protein activation might associate with p38 MAPK
autophosphorylation machinery.

In this study, we showed that the increase of TACE activity by the M3 receptor-mediated p38 MAPK activation.
TACE is responsible protease to produce mature form of TNF-q. In addition, TACE also could suppress TNF-a
action through the shedding of TNFR. The shedding of TNFR reduces receptor density and the shedded soluble
TNFR intercepts TNF-a, resulting in the attenuation of TNF-a signalling. TACE inhibition in colonic epithelial cells
accelerates TNF-a-induced barrier disruption [42]. TACE is known to be activated by various signalling factors,
including ROS, NO, PKC and MAPK [43-46]. Previous report had shown that M1 and M3 muscarinic receptors
activate TACE and induce prion protein through a PKC dependent fashion [47]. However, our results showed that
PKC was not involved in TACE-mediated suppression of TNF-a signalling, because pan-PKC inhibitor BIM
showed no effect on this process (data not shown). It has been reported that p38 MAPK directly phosphorylates
TACE to activate and induce the surface expression [34, 48]. In this study, we showed that p38 MAPK was a
responsive factor for muscarinic stimulation-induced TNFR shedding and TNF-a signalling suppression mediated
by TACE. Therefore, p38 MAPK might contribute to protect epithelial cells from TNF-a-induced inflammation. At
the same time, p38 MAPK might also induce inflammation through the release of TNF-o from monocytes and
macrophages, because, as originally reported, TACE is involved in shedding of pro-TNF-a and release of matured
TNF-a [49, 50]. Actually, p38 MAPK can upregulate TACE activity in monocytes [51]. Interestingly, knock-out
study indicated that myeloid cell specific deletion of p38a MAPK improved colitis, while intestinal epithelial cells
specific deletion of p38a MAPK increased susceptibility to colitis in mouse models of IBD [52]. The differential
role of p38o-induced TACE activation, downregulation of TNFR or release of TNF-a, might explain the cell-type
dependent role of p38a. to the inflammation.

Multiple studies have shown the contribution of EGFR for mucosal homeostasis, which promoted by various
effect of EGFR including increase of cell proliferation, suppression of cell extrusion and regulation of ion secretion
[53-55]. EGFR can be transactivated by various GPCRs through release of EGFR ligands or phosphorylation by
non-receptor tyrosine kinases [23-26]. McCole et al. reported that muscarinic stimulation induced EGFR activation
through release of TGF-a and intracellular Src activation in colonic epithelial T84 cells [30]. Our results showed
that p38 MAPK activation by muscarinic stimulation induced transactivation of EGFR through TACE activity.
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Activation of TACE leads to processing of pro-EGFR ligands including TGF-a, AR, and HB-EGF [35]. Genetic
reduction of TACE expression shows increased susceptibility to inflammation in DSS-induced colitis and defective
regeneration of epithelial cells, because of impaired shedding of EGFR ligands [56]. Therefore, EGFR
transactivation by M3 receptors-mediated TACE activation might also contribute to maintain intestinal epithelial
integrity.

In conclusion, our data show muscarinic M3 receptors, but not histamine H1 receptors prevent TNF-a-induced
barrier injury through p38 MAPK dependent shedding of TNFR by TACE. p38 MAPK and TACE could be a
clinical target for IBD. However, intestinal tissue consisted with variety of cell types including epithelium and
myeloid cells. Non-cell specific inhibition of p38 MAPK and TACE might lead to unexpected results, because each
factor has cell-dependent role as indicated by several works [52, 56, 57]. Epithelial cell specific regulation of p38
MAPK and TACE through GPCRs, including M3 muscarinic receptors as shown in this study, might provide a

practical approach to improve the pharmacological treatment of IBD.
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Figure legends

Fig. 1. M3 and H1 receptors stimulate Gayy; dependent Ca®* response.

(A) Representative traces of the increases in [Ca®']; from the basal level, in response to carbachol (100 uM) or
histamine (100 pM) in HT-29/B6 cells. Each agonist was administrated at 20 s as indicated by the arrow. (B)
HT-29/B6 cells were treated with different concentration of carbachol or histamine. The maximal increases in
[Ca®*]; from the basal level were plotted. n=3-6 for each condition. (C) The histogram shows the maximal increases
in [Ca®"]; from the basal level. Carbachol or histamine (100 pM each) was administrated in the absence or presence
of muscarinic M3 receptor selective antagonist darifenacin (10 nM), histamine H1 selective antagonist
chlorpheniramine (1 pM) or Gag; inhibitor YM254890 (1 pM). *p < 0.05, **p < 0.01, when compared with
carbachol or histamine alone (one-way ANOVA with Dunnett’s post hoc test). Values represent the means + S.E.M.

(n=3-4 for each condition).

Fig. 2. M3 but not H1 receptor suppresses TNF-a signalling through Gag; protein.

(A) (B) HT-29/B6 cells were treated with TNF-a. for 5 minutes with or without the pretreatment of carbachol (CCh,
100 pM) and YM254890 (1 uM) (A) or indicated concentration of carbachol and histamine (B). Cell lysates were
subjected to immunoblot by using phosphorylated NF-kB, NF-kB, phosphorylated IxB, IxB, and p-actin antibodies.
The ratio of intensities of signals was quantified by densitometry (right). (A) *p < 0.05, **p < 0.01, ***p < 0.001
(one-way ANOVA with Tukey’s post hoc test). Values represent the means + S.E.M. of 4 independent experiments.
(B) **p <0.01, ***p < 0.001 when compared with TNF-o. alone (one-way ANOVA with Dunnett’s post hoc test).
n.s., not significantly different. Values represent the means + S.E.M. of 4 independent experiments. (C) TER was
measured at 8, 12 and 24 h after TNF-o treatment with or without carbachol or histamine. TER at each time was
normalized to the initial (Oh) TER. *p <0.05, **p <0.01, ***p <0.001 when compared with TNF-o. alone (one-way

ANOVA with Dunnett’s post hoc test). Values represent the means + S.E.M. of 4 independent experiments.

Fig. 3. M3 receptor activates p38 MAPK more effectively tﬁan H1 receptor.

(A) HT-29/B6 cells were treated with carbachol (100 pM) for 5 minutes with or without the pretreatment of M1
specific antagonist MT-7 (100 nM) or indicated concentration of darifenacin. Cell lysates were subjected to
immunoblot by using phosphorylated p38 MAPK and p38 MAPK antibodies. (B) HT-29/B6 cells were treated with
histamine (100 pM) for 5 minutes with or without the pretreatment of indicated concentration of chlorpheniramine
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or histamine H2 receptor blocker cimetidine. (C) HT-29/B6 cells were treated with carbachol (100 pM) or histamine
(100 pM) with or without YM254890 (1 uM). (D) HT-29/B6 cells were treated with the indicated concentration of
carbachol or histamine. The ratio of intensities of signal was quantified by densitometry (bellow). Values represent

the means + S.E.M. of 3 independent experiments.

Fig. 4. p38 MAPK activation is crucial for M3 receptor-mediated TNF-o, signalling suppression.

(A) HT-29/B6 cells were treated with TNF-a. for 5 minutes with or without the pretreatment of carbachol (CCh, 100
uM) and SB203580 (1 uM). The ratio of intensities of signal was quantified by densitometry (right). *p < 0.05, **p
<0.01, ***p < 0.001 (one-way ANOVA with Tukey’s post hoc test). Values represent the means + S.E.M. of 5
independent experiments. (B) HT-29/B6 cell monolayers were treated with carbachol (10, 100 uM), histamine (100
uM) and SB203580 (1 pM). After 30 min incubation, the basolateral medium was collected and applied to ELISA
kit for sSTNFR1. Each value was normalized to control. *p < 0.05, ***p < 0.001, when compared with control

(one-way ANOVA with Dunnett’s post hoc test). n = 3-9 for each condition. Values represent the means + S.E.M.

Fig. 5. ERK1/2 activation of M3 receptor is through TACE-mediated EGFR transactivation.

(A) (B) HT-29/B6 cells were treated with carbachol (100 uM) for 5 minutes with or without the pretreatment of the
indicated concentration of EGFR tyrosine kinase inhibitor AG1478 (A) or TACE inhibitor TAPI-0 (B). Cell lysates
were subjected to immunoblot by using phosphorylated ERK1/2, ERK1/2, phosphorylated p38 MAPK and p38
MAPK antibodies. (C) HT-29/B6 cells were incubated with TACE-targeted siRNA for 3 days. Then cells were
stimulated with carbachol (100 pM) for 5 min. The ratio of intensities of signal was quantified by densitometry
(right). **%p < 0.001 (Student’s t test). n.s., not significantly different. Values represent the means + S.E.M. of 3
independent experiments. (D) HT-29/B6 cells were treated with TNF-a for 5 minutes with or without the
pretreatment of carbachol (CCh, 100 pM) and AG1478 (300 nM). The ratio of intensities of signal was quantified by
densitometry (right). **p <0.01, ***p <0.001 (one-way ANOVA with Tukey’s post hoc test). n.s., not significantly

different. Values represent the means + S.E.M. of 4 independent experiments.

Fig. 6. ERK1/2 activation of M3 receptor is through p38 MAPK activation.

(A) HT-29/B6 cells were treated with carbachol (100 pM) for the indicated periods. Time courses of ERK1/2 and
p38 MAPK phosphorylation were plotted on the bellow graph. (B) HT-29/B6 cells were treated with carbachol (100
uM) or EGF (20 ng/ml) with or without the indicated concentration of SB203580. The ratio of quantified
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phosphorylated ERK1/2 signals was represented in a graph. *p < 0.05, ***p < 0,001 when compared with carbachol
alone (one-way ANOVA with Dunnett’s post hoc test). n.s., not significantly different (Student’s t test). Values

represent the means + S.E.M. of 4 independent experiments.
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