"Hot" vertebra on (18)F–FDG PET scan: a case of vertebral hemangioma

Nakayama M, Okizaki A, Ishitoya S, Aburano T
"Hot" vertebra on 18F-FDG PET scan: A case of vertebral hemangioma.

Michihiro Nakayama, M.D.
Atsutaka Okizaki, M.D., Ph.D.
Shunta Ishitoya, M.D.
Tamio Aburano, M.D., Ph.D.

Department of Radiology, Asahikawa Medical University, Asahikawa, Japan

Address correspondence:
Michihiro Nakayama, M.D.
Department of Radiology, Asahikawa Medical University
2-1-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan.
Phone: +81-166-68-2572
Fax: +81-166-68-2579
E-mail: m-naka@asahikawa-med.ac.jp
Abstract

An 18F-FDG-PET with CT scan was performed to stage a tongue cancer, revealing the hypermetabolic region in the thoracic vertebra. This corresponded to a benign lesion seen on MRIs and CT.

Although these findings suggested a vertebral hemangioma, “hot” vertebra in FDG-PET was atypical. The final diagnosis was confirmed capillary hemangioma by the scopic biopsy and this lesion was no change at 1 year later. Careful interpretation of metabolic (FDG-PET) and anatomic (CT and MRI) images should be performed to accurately characterize the foci of increased FDG uptake.

Key Words: Vertebral Hemangioma; Positron Emission Tomography; CD31

References

4. Han BK, Ryu JS, Moon DH, et al: Bone SPECT imaging of vertebral hemangioma correlation

Figure Legend

Figure 1: These Figures show FDG-PET/CT scans of a 36-year-old male with squamous cell carcinoma of the tongue examined with FDG-PET/CT scanning to stage the disease.

FDG-PET/CT scan was performed at 50 min after intravenous injection of 3.7 MBq/kg of 18F-FDG. Each figure is maximum intensity projection (MIP) of the PET image (A) and PET/CT fusion image (B). The FDG-PET scan shows increased metabolism at the Th8 vertebral body (arrow). The maximum standardized uptake value (maxSUV) was 5.5, but non-fused axial CT (C) image depicted an expansile lesion of Th8 vertebral body with trabecular thickening.

Some authors reported vertebral hemangiomas have been described as cold on FDG-PET or bone scans [1-5]. On the other hand, an internal hemorrhage accompany by inflammation occurs frequently in hemangioma [6]. Consequently, there is a possibility that high FDG uptake is observed on FDG-PET.

Figure 2: A MRI of the spine obtained as part of metastatic work-up supposed a hemangioma at Th8 (arrows). Precontrast sagittal T1 weighted image (A) depicting an initially hypointense soft tissue mass which enhances greatly as seen on postcontrast fat-suppressed sagittal T1 weighted image (B). Sagittal T2 weighted image (C) demonstrated this lesion with iso-high intensity [7]. These appearance may resemble a metastatic lesion, however, compatible with hemangioma, because of some hemangiomas contain less fat and more vascular stroma thereby producing a low MR signal on
T1 weighted images [8-10].

Figure3: Histology was from biopsy of this lesion. Thin-walled blood vessels of capillary size filled with blood and serous fluid extend through the bony trabecular of the vertebral body on Hematoxylin and eosin stain (A; magnification x200). Immunohistochemical staining revealed that the endothelial cells were positive for CD31 (B; magnification x200); consistent with capillary hemangioma [11]. There were no evidence of malignancy or inflammation.