

Asahikawa Medical University Repository http://amcor.asahikawa-med.ac.jp/

Clinica Chimica Acta (2011.11) 412巻23-24号:2261~2266.

Interference of deferasirox with assays for serum iron and serum unsaturated iron binding capacity during iron chelating therapy

Ikuta K, Ito S, Tanaka H, Sasaki K, Torimoto Y, Fujiya M, Kohgo Y

1	Interference of deferasirox with assays for serum iron and serum	
2	unsaturated iron binding capacity during iron chelating therapy	
3		
4	Katsuya Ikuta ¹ , Satoshi Ito ¹ , Hiroki Tanaka ² , Katsunori Sasaki ² , Yoshihiro Torimoto ³ ,	
5	Mikihiro Fujiya ¹ , Yutaka Kohgo ¹	
6		
7	¹ Division of Gastroenterology and Hematology/Oncology, Department of Medicine,	
8	Asahikawa Medical University, Asahikawa, Hokkaido, Japan	
9	² Department of Gastrointestinal Immunology and Regenerative Medicine, Asahikawa	
10	Medical University Asahikawa, Hokkaido, Japan	
11	³ Oncology Center, Asahikawa Medical University Hospital, Asahikawa, Hokkaido,	
12	Japan	
13		
14	Running head: Interference of deferasirox with measurement of iron markers	
15		
16	Key words: Deferasirox, serum iron, unsaturated iron binding capacity (UIBC), iron	
17	chelation	
18		
19	Address correspondence to this author at:	
20	Katsuya Ikuta	
21	Division of Gastroenterology and Hematology/Oncology	
22	Department of Medicine, Asahikawa Medical University	

23	2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan	
24	Tel: +81-166-68-2462	
25	Fax: +81-166-68-2469	
26	E-mail: <u>ikuta@asahikawa-med.ac.jp</u>	
27		
28	Nonstandard abbreviations: DFX, deferasirox; sFe, serum iron; UIBC, unsaturated iron	
29	binding capacity; DFX-Fe, DFX-iron complex; NTBI, non-transferrin-bound iron; Tf,	
30	transferrin; CPBA, competitive protein-binding analysis; Abs, absorbance	

31 Introduction

32 Deferasirox (DFX) is a newly developed iron chelator that can be orally 33 administered once a day, and is now used worldwide for the treatment of patients with 34 iron overload, with high efficiency [1-6]. DFX is absorbed from the gastrointestinal 35 tract with high bioavailability and then mainly binds to albumin in the serum. 36 Although this mechanism has not yet been elucidated yet, DFX is considered to enter 37 cells and to chelate iron within the cells in various organs with iron overload such as the 38 heart and liver; this DFX-Fe complex then re-enters the systemic circulation where it is 39 absorbed and finally taken up by hepatocytes in the liver. In the hepatocytes, the 40 DFX-Fe complex is excreted into the bile; more than 80% of DFX is excreted in the 41 feces. 42 Serum iron (sFe) and unsaturated iron binding capacity (UIBC) have been 43 widely used as useful diagnostic markers in patients with various diseases in which iron 44 homeostasis is dysregulated, and for monitoring the therapeutic progress of such 45 patients. However, we have experienced an unexplainable increase in sFe or UIBC in 46 some patients. We also encountered a patient who showed unexplainable changes in 47 serum markers for iron. The patient was diagnosed with myelodysplastic syndrome 48 and required frequent transfusions of concentrated red blood cells because of 49 progressive anemia. At the time when the total transfusion exceeded 40 units, serum 50 ferritin value reached 2969.6 ng/mL, and therefore, administration of DFX was started. 51 As a result, serum ferritin, non-transferrin-bound iron (NTBI) and the density of the 52 liver determined by computed tomography gradually decreased, indicating that iron

53	overload was improving. However, we found abnormally high sFe and UIBC values		
54	after starting administration of DFX (Supplemental Data Figure 1). Firstly, we		
55	speculated that iron chelation might induce transferrin (Tf) production in the liver;		
56	however, the direct measurement of Tf concentration was unexpectedly low. Besides,		
57	UIBC value determined by competitive protein-binding analysis (CPBA) was also low.		
58	The assay principles of the sFe and UIBC measuring systems used widely all over the		
59	world are based on photometrical measurement of chelating chromophores bound to		
60	iron. Therefore, we hypothesized that those assays might have been affected by		
61	administration of DFX or DFX-iron complex (DFX-Fe) present in serum, and		
62	investigated the effects of DFX and DFX-Fe on those assays.		
63			
64	1. Materials and methods		
64 65	 Materials and methods Measurement of sFe and UIBC 		
64 65 66	 Materials and methods Measurement of sFe and UIBC For measurement of sFe, Fe³⁺ was firstly released from diferric Tf in serum in 		
64 65 66 67	 Materials and methods Measurement of sFe and UIBC For measurement of sFe, Fe³⁺ was firstly released from diferric Tf in serum in an acidic milieu and then reduced to Fe²⁺ by ascorbic acid. Fe²⁺ produced was then 		
64 65 66 67 68	 Materials and methods Measurement of sFe and UIBC For measurement of sFe, Fe³⁺ was firstly released from diferric Tf in serum in an acidic milieu and then reduced to Fe²⁺ by ascorbic acid. Fe²⁺ produced was then chelated by a chromogen and colorimetrically measured as the sFe value. 		
 64 65 66 67 68 69 	 1. Materials and methods 1.1. Measurement of sFe and UIBC For measurement of sFe, Fe³⁺ was firstly released from diferric Tf in serum in an acidic milieu and then reduced to Fe²⁺ by ascorbic acid. Fe²⁺ produced was then chelated by a chromogen and colorimetrically measured as the sFe value. For measurement of UIBC, iron with known content was added first to serum		
 64 65 66 67 68 69 70 	 1. Materials and methods 1.1. Measurement of sFe and UIBC For measurement of sFe, Fe³⁺ was firstly released from diferric Tf in serum in an acidic milieu and then reduced to Fe²⁺ by ascorbic acid. Fe²⁺ produced was then chelated by a chromogen and colorimetrically measured as the sFe value. For measurement of UIBC, iron with known content was added first to serum to fully saturate free apo-Tf in serum. Iron not bound to apo-Tf was chelated by a		
 64 65 66 67 68 69 70 71 	 1. Materials and methods 1.1. Measurement of sFe and UIBC For measurement of sFe, Fe³⁺ was firstly released from diferric Tf in serum in an acidic milieu and then reduced to Fe²⁺ by ascorbic acid. Fe²⁺ produced was then chelated by a chromogen and colorimetrically measured as the sFe value. For measurement of UIBC, iron with known content was added first to serum to fully saturate free apo-Tf in serum. Iron not bound to apo-Tf was chelated by a chromogen, and then the UIBC value was calculated by subtracting the unconsumed		
 64 65 66 67 68 69 70 71 72 	 1. Materials and methods 1.1. Measurement of sFe and UIBC For measurement of sFe, Fe³⁺ was firstly released from diferric Tf in serum in an acidic milieu and then reduced to Fe²⁺ by ascorbic acid. Fe²⁺ produced was then chelated by a chromogen and colorimetrically measured as the sFe value. For measurement of UIBC, iron with known content was added first to serum to fully saturate free apo-Tf in serum. Iron not bound to apo-Tf was chelated by a chromogen, and then the UIBC value was calculated by subtracting the unconsumed iron from the added iron.		
 64 65 66 67 68 69 70 71 72 73 	 1. Materials and methods 1.1. Measurement of sFe and UIBC For measurement of sFe, Fe³⁺ was firstly released from diferric Tf in serum in an acidic milieu and then reduced to Fe²⁺ by ascorbic acid. Fe²⁺ produced was then chelated by a chromogen and colorimetrically measured as the sFe value. For measurement of UIBC, iron with known content was added first to serum to fully saturate free apo-Tf in serum. Iron not bound to apo-Tf was chelated by a chromogen, and then the UIBC value was calculated by subtracting the unconsumed iron from the added iron. Four commercially available assay systems each for sFe and UIBC were tested		

75	chromogens: 3-(2-pyridyl)-5,6-bis(4-phenylsulfonicacid)-1,2,4-triazine (FerroZine),		
76	3-(2-pyridyl)-5,6-di(2-furyl)-1,2,4-triazine-5',5"-disulfonic acid disodium salt (Ferene),		
77	2-nitroso-5-(N-propyl-N-sulfopropylamino)-phenol (nitroso-PSAP), and		
78	bathophenanthroline sulfonate (bathophenanthroline). A general-purpose automated		
79	analyzer, 7180 Clinical Analyzer (Hitachi High-Technologies Corporation, Tokyo,		
80	Japan), was used for all assay kits, following the manufacturers' instructions.		
81			

1.2. Investigation of effects of DFX on assays

83 DFX was provided by Novartis Pharma AG (Basel, Switzerland), and resolved 84 in 50 mM borate (pH 9.0) to adjust the final concentration to 3.3 mM. To examine the 85 effect of DFX on the assays of sFe and UIBC, samples were prepared by adding 0-300 86 µM DFX to pooled human serum or 15 randomized human serum samples. Pooled 87 human serum and 15 randomized human serum samples were independently obtained 88 from different institutes. The sFe value was determined as 11.6 µM in pooled human 89 serum, and as 2.5-33.7 µM in the randomized human serum samples; however, no other 90 clinical information (including the conditions of iron metabolism) was available. The 91 concentrations of DFX were settled from the data previously reported; the 92 concentrations of free DFX were observed to be 30-90 µM /L within 24 hours of the oral 93 administration of 35 mg/kg DFX [13]. The UIBC value in the randomized human 94 serum samples ranged from 2.1 to 88.2μ M. 95 In addition, it is possible that DFX-Fe might have been present in the serum 96 during iron chelation therapy in iron-overload patients, and therefore, the effect of

97	DFX-F	e was also investigated. At first we mixed iron ammonium citrate solution and	
98	DFX solution at 37°C which resulted in the formation of a DFX-Fe complex. Using		
99	high performance liquid chromatography, we confirmed that the simple mixture of DFX		
100	and Fe led to their binding at a DFX:Fe ratio of 2:1. However, other complexes that		
101	showed a DFX:Fe ratio of 1:1 or 3:1 were also observed. We could however not		
102	determine if all the iron in the solution were bound to DFX; there is therefore the		
103	possibility of the presence of free iron other than the DFX-Fe complex if we simply add		
104	the DFX-Fe complex directly in the serum. This phenomenon may lead to		
105	misunderstanding of the effect of DFX-Fe on the measuring system, so that DFX itself		
106	was added to the iron solution at various DFX:Fe ratios. The DFX:Fe ratio was set at		
107	1:1 to 3:1, and the changes in absorbance (Abs) were determined to confirm the effect		
108	of DFX	Z-Fe.	
109			
110	1.3.	Measurement of NTBI	
111		Measurement of NTBI was performed by methods previously reported [14,15].	
112			
113	1.4.	Statistical analysis	
114		All experiments were performed at least twice, independently of each other;	
115	substar	tially the same results were obtained. Data obtained was analyzed using the	
116	Studen	t's t-test; a p value of 0.05 was considered to be statistically significant.	
117			

2. Results

119 2.1. Effect of iron-free DFX on measurement of sFe

120	After measurement, it was found that in all four measuring systems (sFe.A,		
121	sFe.B, sFe.C, sFe.D), addition of iron-free DFX at 60-300 μ M to pooled human serum		
122	had no significant influence on sFe values (Figure 1A). The reaction time for color		
123	development of serum containing 300 μ M DFX was not delayed compared to that of		
124	serum without DFX in all four measuring systems, indicating that there was no		
125	competition for iron between chromogen and iron-free DFX (data not shown). sFe		
126	measurement of randomized human serum samples with 0-60 μ M DFX showed no		
127	difference at all (Supplemental Data Figure 2).		
128			
129	2.2. Effect of iron-free DFX on measurement of UIBC in pooled human serum		
130	Addition of iron-free DFX gave positive errors in UIBC values when pooled		
131	human serum was used as a sample (Figure 2A). The increase in UIBC values seemed		
132	to be dependent on the concentrations of the added DFX. The degree of positive error		
133	observed differed among the measuring systems; positive errors were especially small		
134	when Ferene was used as a chromogen (UIBC.F). The measurement step of iron not		
135	bound to apo-Tf was not delayed, indicating that the reaction between the chromogen		
136	and Fe^{2+} was not influenced by iron-free DFX (data not shown). Therefore, DFX was		
137	thought to be bound to the iron contained in the first reagent, as is apo-Tf, leading to		
138	positive errors in UIBC values. To determine the binding between DFX and Fe^{3+} in		
139	the reagents, the reaction time was changed (3, 5 and 10 min); UIBC values increased as		
140	the reaction time was increased (Figure 2B). Addition of 60 µM DFX led to an		

141	increase in UIBC values in all randomized human serum samples. The degree of		
142	increase was 0.6-28 μ M in all samples regardless of the original UIBC value		
143	(Supplemental Data Figure 3). The change in UIBC values observed in the serum		
144	samples was also different among the measuring systems.		
145			
146	2.3. Effect of DFX-Fe on measurement of sFe		
147	Firstly, sFe levels were determined in 36 μ M Fe ³⁺ solution with added 33, 65,		
148	and 98 μ M DFX, and found not to differ from those in Fe ³⁺ solution without DFX		
149	(Figure 3). Usually, DFX binds to Fe^{3+} in a mixed solution and forms a complex, so		
150	that the fraction that should be measured as sFe is reduced in the solution. However,		
151	even in that situation, the measuring systems could not show the decreased levels of sFe		
152	indicating that DFX-Fe may also possibly be measured as sFe in those measurement		
153	systems. Therefore, it is likely that DFX-Fe may also be measured as sFe,		
154	undistinguishable from Tf-bound iron, in serum samples.		
155			
156	2.4. Effect of DFX-Fe on measurement of UIBC		
157	Similarly to the result obtained on the effect of iron-free DFX on UIBC		
158	measurement, the existence of DFX-Fe led to positive errors (Figure 4A). The degree		
159	of the positive errors observed in this experiment differed among the measuring kits, the		
160	same as for the influence of iron-free DFX. To determine the possibility of		
161	interference by Abs of DFX-Fe, we selected nitroso-PSAP (Shino-Test Corp., Tokyo,		

162 Japan) as a model of a chromogen. Abs for nitroso-PSAP-Fe²⁺ was calculated by

163	subtracting the subsidiary Abs at 600 nm from the main Abs at 750 nm. On the other
164	hand, DFX-Fe showed the main Abs at 500 nm. Abs at 500 nm of DFX-Fe should be
165	offset by the 2-point-end method if Abs does not change during the whole measuring
166	procedure, but Abs at 500 nm of DFX-Fe increased when the second reagent for UIBC
167	measurement was added. This influenced and increased Abs of nitroso-PSAP-Fe ^{$2+$} at
168	600 nm, leading to a decrease in the final Abs of nitroso-PSAP-Fe (Figure 4B). This
169	might have caused the positive errors in the UIBC values.
170	
171	3. Discussion
172	In the present study, the interference of an iron chelator, DFX, in serum
173	samples on assays of sFe and UIBC, both of which have been widely used as clinical
174	markers for iron metabolism, was measured using a general-purpose automated analyzer.
175	The effects of DFX itself and DFX-Fe complex on those assays were determined
176	(Figure 5).
177	In this study, iron-free DFX was simply added to serum samples to determine
178	the effect of DFX itself on the sFe measurement systems. There was a possibility that
179	added DFX might remove iron from Tf and form DFX-Fe complex immediately, but we
180	believed that the main portion of DFX should be iron-free because the added DFX
181	amount was much higher than the pooled human serum's sFe concentration of 11.6 μ M.
182	Therefore, the effect of iron-free DFX was thoroughly investigated in this study.
183	Initially, we presumed that the competition for iron between chromogens and
184	iron-free DFX decreased the production of chromogen-Fe, finally leading to decreased

185	sFe values; however, after measurement it was found that addition of DFX did not		
186	influence the sFe values. The reaction time curve also showed that there was no delay		
187	despite the presence of DFX. In all measurement systems we tested, the first step of		
188	the reaction was carried out at an acidic pH with ascorbic acid as a reductant. In such		
189	a condition, the iron removed from Tf must have changed to Fe^{2+} immediately;		
190	therefore, no competition for iron between the chromogen and DFX should have		
191	occurred, because the affinity between Fe^{2+} and DFX was extremely low.		
192	On the other hand, DFX-Fe measurement of sFe was certainly influenced by		
193	DFX-Fe; DFX-Fe seemed to have been measured as sFe undistinguishable from		
194	Tf-bound iron. Our results suggested that DFX-Fe readily released iron in an acidic		
195	milieu, like Tf, because the pH in the first step might have been lowered by addition of		
196	the first reagent. There was a possibility that a hydroxyl group in the DFX molecule		
197	dissociated in an acidic milieu, resulting in separation of DFX from iron. In iron		
198	chelation therapy for patients with iron overload, the existence of DFX-Fe in serum		
199	would be plausible, and DFX-Fe might have increased the sFe value. Lebitasy et al.		
200	[16] reported that there was interference of DFX-Fe but no effect of iron-free DFX on		
201	the assay of sFe with a slide cartridge-type measuring kit utilizing		
202	N-{4-[2,4-bis(1,1-dimethylpropyl)phenoxy]butyl}-5-methoxy-6-[(2,3,6,7-tetrahydro-8-		
203	1H,5H-benzoquinolizine-9-yl)azo]-3-pyridinesulfonamide as a chromogen. In our		
204	present measurement, the results furthermore proved that this phenomenon was		
205	generally observed in various commercially available colorimetric measuring systems		
206	of sFe, utilizing a general-purpose automated analyzer. This information should be of		

207 great significance for clinical laboratories and clinicians involved in the treatment of208 patients with iron overload.

209 Concerning the measuring system for UIBC, the first step was performed at the appropriate condition for binding of apo-Tf to Fe^{3+} contained in the reagent. Therefore, 210 if DFX is added in this situation, DFX can easily bind to Fe^{3+} , as does apo-Tf. 211 The remaining Fe³⁺ that does not bind to apo-Tf or DFX will be reduced to Fe²⁺ by ascorbic 212 213 acid at the next step. At this step, DFX-Fe will not release iron, so that the amount of 214 iron bound to the chromogen might decrease, leading to increased UIBC values. The 215 reason for the difference in UIBC values among the measuring kits might be the 216 difference in pH of the reagents or the difference in affinity of the chromogens used in 217 each kit. The final pH values, after adding the second reagents of the UIBC.E, 218 UIBC.G, and UIBC.H kits were approximately 8.5, but that of the UIBC.F kit was 7.8 219 (data not shown). A slightly acidic milieu might have led to easy removal of iron from 220 DFX-Fe, so that the UIBC.F kit might have been less influenced than other kits. 221 Measurement of serum UIBC values was also influenced by DFX-Fe. Our 222 results using nitroso-PSAP showed one possible explanation, that this came from the 223 Abs of DFX-Fe. Therefore, UIBC assay systems would have been affected both by 224 iron-free DFX and DFX-Fe. This study proved the interference of DFX itself and 225 DFX-Fe on the UIBC assays.

During iron chelation therapy for iron overload, DFX-Fe comes from organs with iron deposition, such as the liver and heart. In other words, DFX-Fe may increase when iron chelation therapy is successful, and unexpected high sFe values are observed

229 during iron chelation therapy. However, even though DFX-Fe increased in serum, 230 DFX-Fe will finally be excreted mainly in the stool after being taken up from the serum 231 by hepatocytes again. Besides, NTBI level gradually decreased unless sFe value 232 increased during iron chelation therapy with DFX in our patients, suggesting that the 233 binding of DFX and iron was so tight that DFX-Fe was not detected as NTBI; thus, 234 DFX-Fe might not be harmful to organs compared to NTBI. 235 Deferoxamine (DFO) was widely used as an iron chelator until the introduction 236 of DFX as the novel iron chelator. Moreover, clinical concerns had been reported; for 237 example, the measurements of sFe and total iron binding capacity (TIBC) were 238 considered not to be useful in acute iron overload and during iron chelation therapy with 239 DFO [17, 18]. Although there should be differences in the biological behavior of DFO 240 and DFX, our present results indicated that careful attention should be paid when these 241 markers are observed during iron chelation therapy with DFX. We therefore 242 recommend careful observation when high serum sFe values or unexplainable UIBC 243 values are observed prior to the cessation of iron chelation therapy. We also

recommend the direct measurement of Tf by nephelometry or radio assay in the

245 measurement of UIBC values [19], although there is no other useful method to measure

sFe values, once unexplainable values of sFe or UIBC are observed during iron

chelation therapy using DFX.

In conclusion, the commonly used laboratory assessment method available tosupport the clinical therapy of iron overload states could be interfered with by the therapy

- 250 itself and so careful attention should be paid during therapy in order to understand the
- 251 laboratory data. Alternative methods should also be considered for precise evaluation.

- 253 content of this paper and have met the following 3 requirements: (a) significant
- 254 contribution to the conception and design, acquisition of data, or analysis and
- 255 interpretation of data; (b) drafting or revising the article for intellectual content; and
- 256 *(c) final approval of the published article.*
- 257
- 258 Authors Disclosures of Potential Conflicts of Interest: Upon manuscript submission,
- 259 all authors completed the Disclosure of Potential Conflict of Interest form. Potential
- 260 *conflicts of interest:*
- 261
- 262 **Employment or Leadership:** None declared.
- 263 Consultant or Advisory Role: None declared.
- 264 Stock Ownership: None declared.
- 265 Honoraria: None declared.
- 266 Research Funding: K. Sasaki and Y. Kohgo, Novartis Pharma K. K.
- 267 **Expert Testimony:** None declared.
- 268 Role of Sponsor: The funding organizations played no role in the design of study,
- 269 choice of enrolled patients, review and interpretation of data, or preparation or approval
- of manuscript.

271 **References**

- 272 [1] Galanello R, Piga A, Forni GL, et al. Phase II clinical evaluation of deferasirox, a
- 273 once-daily oral chelating agent, in pediatric patients with beta-thalassemia major.
- 274 Haematologica 2006;91:1343-51.
- [2] Cappellini MD, Cohen A, Piga A, et al. A phase 3 study of deferasirox (ICL670), a
- 276 once-daily oral iron chelator, in patients with β -thalassemia. Blood
- 277 2006;107:3455-62.
- 278 [3] Vichinsky E, Onyekwere O, Porter J, et al. A randomized comparison of
- 279 deferasirox versus deferoxamine for the treatment of transfusional iron overload in
- sickle cell disease. Br J Haematol 2007;136:501-8.
- [4] Piga A, Galanello R, Forni GL, et al. Randomized phase II trial of deferasirox
- 282 (Exjade, ICL670), a once-daily, orally-administered iron chelator, in comparison to
- 283 deferoxamine in thalassemia patients with transfusional iron overload.
- 284 Haematologica 2006;91:873-80.
- [5] Neufeld EJ. Oral chelators deferasirox and deferiprone for transfusional iron
- overload in thalassemia major: new data, new questions. Blood 2006;107:3436-41.
- 287 [6] Shashaty G, Frankewich R, Chakraborti T, et al. Deferasirox for the treatment of
- 288 chronic iron overload in transfusional hemosiderosis. Oncology (Williston Park)
- 289 2006;20:1799-1806.
- 290 [7] Ohno N, Sakai T. Spectrophotometric determination of iron in boiler and well
- 291 waters by flow injection analysis using
- 292 2-nitroso-5-(*N*-propyl-*N*-sulphopropylamino)phenol. Analyst 1987;112:1127-30.

- [8] Stookey LL. Ferrozine a new spectrophotometric reagent for iron. Anal Chem
 1970;42:779-81.
- [9] Bouda J. Simple determination of iron-binding capacity with bathophenanthroline.
- 296 Clin Chim Acta 1969;23:511-2.
- 297 [10] Bouda J. Determination of iron with bathophenanthroline without deproteinisation.
- 298 Clin Chim Acta 1968;21:159-60.
- 299 [11] Smith FE, Herberd J, Gaudin J, Hennessy DJ, Reid GR. Serum iron determination
- 300 using ferene triazine. Clin Biochem 1984;17:306-10.
- 301 [12] Hennessy DG, Reid GR, Smith FE, Thompson SL. Ferene a new
- 302 spectrophotometric reagent for iron. Can J Chem 1984;62:721-4.
- 303 [13] Chirnomas D, Smith AL, Braunstein J, et al. Deferasirox pharmacokinetics in
- 304 patients with adequate versus inadequate response. Blood 2009;114:4009-13.
- 305 [14] Singh S, Hider RC, Porter JB. A direct method for quantification of
- 306 non-transferrin-bound iron. Anal Biochem 1990;186:320-3.
- 307 [15] Gosriwatana I, Loreal O, Lu S, Brissot P, Porter J, Hider RC. Quantification of
- 308 non-transferrin-bound iron in the presence of unsaturated transferrin. Anal Biochem
- 309 1999;273:212-20.
- 310 [16] Lebitasy M, Ampe E, Hecq JD, Karmani L, Nick H, Galanti L. Ability of
- 311 deferasirox to bind iron during measurement of iron. Clin Chem Lab Med
- 312 2010;48:427-9.
- 313 [17] Tenenbein M, Yatscoff RW. The total iron-binding capacity in iron poisoning. Is it
- 314 useful? Am J Dis Child 1991;145:4537-9.

315	[18] Roberts WL, Smith PT, Martin WJ, Rainey PM. Performance characteristics of
316	three serum iron and total iron-binding capacity methods in acute iron overdose. Am
317	J Clin Pathol 1999;112:657-64.
318	[19]Kreutzer HJ. An immunological turbidimetric method for serum transferrin
319	determination. J Clin Chem Clin Biochem. 1976;14:401-406.
320	[20] Saito H. New method for determining total iron-binding capacity of serum (TIBC)

with radioiron by eliminating iron from transferring. J Nucl Med 1971;12:489-492. 321

Table 1. Assay systems for measuring serum iron and unsaturated iron binding capacity evaluated in the present study.

2	2	2
3	7	3

Abbreviation	sFe Kit (Manuacturer)	Chromogen
sFe.A	Fe (Roche Diagnostis GmbH, Mannheim, Germany)	Ferrozine
sFe.B	IRON-SL ASSAY (Sekisui Diagnostics Ltd., Kent, UK)	Ferene
sFe.C	QuickAuto Neo Fe (Shino-Test Corp., Tokyo, Japan)	Nitroso-PSAP
sFe.D	LtypeWAKO Fe•N (Wako Pure Chemical Industries Ltd., Osaka, Japan)	Bathophenanthroline

	UIBC Kit (Manufacturer)	
UIBC.E	UIBC (Roche Diagnostics GmbH, Mannheim, Germany)	Ferrozine
UIBC.F	UIBC ASSAY (Sekisui Diagnostics Ltd., Kent, UK)	Ferene
UIBC.G	QuickAuto Neo UIBC (Shino-Test Corp., Tokyo, Japan)	Nitroso-PSAP
UIBC.H	LtypeWAKO UIBC (Wako Pure Chemical Industries Ltd., Osaka, Japan)	Bathophenanthroline

326	Figure legends
327	
328	Fig. 1.
329	Effect of iron-free DFX on measurement of sFe. In all measuring systems (sFe.A,
330	sFe.B, sFe.C, sFe.D), there was no significant influence on sFe value.
331	
332	Fig. 2.
333	(A) Effect of iron-free DFX on measurement of UIBC in pooled human serum using
334	four measuring systems (UIBC.E, UIBC.F, UIBC.G, UIBC. H). Iron-free DFX gave
335	positive errors in UIBC values. (B) UIBC values increased as the reaction time
336	increased.
337	
338	Fig. 3.
339	Effect of DFX-Fe on measurement of sFe. sFe levels were determined in 36 μ M Fe ³⁺
340	solution with added 33, 65, and 98 μM DFX. $$ Even in this simple mixture, DFX was $$
341	expected to chelate Fe^{3+} and form a complex, so that sFe levels were expected to
342	decrease substantially; however, sFe values were found not have changed at all after
343	measurement, indicating that neither of the measuring systems could distinguish free
344	Fe ³⁺ from iron bound to DFX.
345	

Fig. 4.

347 (A) Effect of DFX-Fe on measurement of UIBC. Existence of DFX-Fe led to positive

348 errors. (B) Changes in absorbance (Abs) of DFX-Fe by adding the first reagent (R1)

349 and the second reagent (R2) in the measuring system. Abs of DFX-Fe increased when

350 R2 for UIBC measurement was added.

351

352 **Fig. 5.**

353 (A) Influence of DFX on sFe measurement. DFX-Fe was measured as sFe

354 undistinguishable from Tf-bound iron. (B) Influence of DFX on UIBC measurement.

355 Iron-free DFX should be bound to iron in the reagent. The absorbance (Abs) of

356 DFX-Fe might have influenced Abs of chromogen-iron, leading to positive errors for

357 UIBC values. DFX: deferasirox, UIBC: unsaturated iron binding capacity, Abs:

358 absorbance, Tf: transferrin

0.3 R1 ······ R1+R2 0.25 0.2 0.15 0.1 0.05 ******* 0 (nm) 400 500 600 700 800 Wavelength

Absorbance

• Fe³⁺ • Fe²⁺ • Fe³⁺ in reagent Chromogen
$$DFX$$

• Chromogen-Fe²⁺ • DFX-Fe³⁺

