

Asahikawa Medical University Repository http://amcor.asahikawa-med.ac.jp/

Hypertension Research (2011.10) 34巻10号:1121~1126.

Angiotensin II receptor blocker and long-acting calcium channel blocker combination therapy decreases urinary albumin excretion while maintaining glomerular filtration rate

Nakagawa Naoki, Fujino Takayuki, Kabara Maki, Matsuki Motoki, Chinda Junko, Kikuchi Kenjiro, Hasebe Naoyuki

1	Type: Original Article
2	
3	Angiotensin II receptor blocker and long-acting calcium channel blocker combination therapy
4	decreases urinary albumin excretion while maintaining glomerular filtration rate
5	
6	Running title: Combination therapy with ARB and long-acting CCB
7	
8	Naoki Nakagawa ¹⁾ , Takayuki Fujino ¹⁾ , Maki Kabara ¹⁾ , Motoki Matsuki ¹⁾ , Junko Chinda ¹⁾ ,
9	Kenjiro Kikuchi ^{1,2)} , and Naoyuki Hasebe ¹⁾ , and the NICE-Combi Study Group
10	
11	1) Division of Cardiology and Nephrology, Department of Internal Medicine, Asahikawa Medical
12	University, Asahikawa, Hokkaido, Japan
13	2) Hokkaido Junkanki Hospital, Sapporo, Hokkaido, Japan
14	
15	Corresponding author: Naoki Nakagawa, M.D., Division of Cardiology and Nephrology, Department
16	of Internal Medicine, Asahikawa Medical University
17	Phone: +81-166-68-2442; FAX: +81-166-68-2449
18	E-mail : naka-nao@asahikawa-med.ac.jp

1 Abstract

 $\mathbf{2}$ Microalbuminuria is a recognized risk factor and predictor for cardiovascular events in patients with hypertension. We analyzed changes in hypotensive effect, urinary albumin excretion (UAE), and 3 4 estimated glomerular filtration rate (eGFR) in subjects with hypertension and microalbuminuria as a subanalysis of the results of the NICE Combi (Nifedipine and Candesartan Combination) Study. A $\mathbf{5}$ 6 total of 86 subjects with essential hypertension with microalbuminuria (UAE $<300 \text{ mg} \cdot \text{g}^{-1}$ $\overline{7}$ creatinine) were randomly assigned in a double-blind manner to a combination therapy group 8 (standard-dose candesartan at 8 mg/day plus controlled-release (CR) nifedipine 20 mg/day) (n=42) 9 or an up-titrated monotherapy group (candesartan 12 mg/day) (n=44) for 8 weeks of continuous 10 treatment after initially receiving standard-dose candesartan (8 mg/day) monotherapy for 8 weeks 11 (initial treatment). After 8weeks, blood pressure was significantly reduced in both groups 12compared with at the end of initial treatment. UAE also showed a significant decrease in the 13combination therapy group, while there was no significant change of eGFR in either group. A 14significant positive correlation was seen between blood pressure reduction and UAE after 8 weeks of 15double-blind treatment in both groups, whereas no significant association was found between ΔUAE 16 and \triangle eGFR in either group. These findings show that combination therapy with standard-dose 17candesartan and nifedipine CR is more effective than up-titrated candesartan monotherapy for 18 reducing blood pressure and improving UAE while maintaining eGFR, and strongly suggest that the

1 combination of an angiotensin II receptor blocker and long-acting calcium channel blocker is

- 2 beneficial in patients with hypertension and microalbuminuria.
- 3
- 4 Key words: combination therapy, controlled-release nifedipine, candesartan, estimated glomerular
- 5 filtration rate, urinary albumin excretion

1 Introduction

2	The purpose of antihypertensive therapy for patients with chronic kidney disease (CKD) is to
3	inhibit the development of renal dysfunction by decreasing blood pressure and preventing the onset
4	or recurrence of cardiovascular disease. The renal protective effects of renin angiotensin system
5	(RAS) inhibitors have been demonstrated in many studies, ¹⁻³ and clinical practice guidelines
6	uniformly recommend an angiotensin-converting enzyme inhibitor (ACEI) or Angiotensin II type 1
7	receptor blocker (ARB) is first-line treatment for CKD. ⁴⁻⁶ A calcium channel blocker (CCB) or
8	diuretic is recommended as a second-line agent in combination with a RAS inhibitor. However, it
9	still remains unclear which agent is more effective in slowing the progression of renal insufficiency
10	in CKD patients in the context of changes in the glomerular filtration rate (GFR).
11	We previously reported that standard-dose combination therapy with an ARB plus
12	controlled-release (CR) nifedipine is superior to up-titrated ARB treatment in lowering blood
13	pressure and reducing urinary albumin excretion (UAE) in the NICE-Combi study. ⁷ In this study,
14	which involves a subanalysis of the results of the NICE-Combi study, we used the Japanese equation
15	proposed by the Japanese Society of Nephrology ⁸ to calculate eGFR and examine the association of
16	Δ eGFR with Δ UAE to determine whether UAE reduction is associated with a decline in the eGFR.

1 Methods

2 Study population

The methods of the NICE-Combi study were reported previously.⁷ In this subanalysis, we included 86 subjects with microalbuminuria (UAE <300 mg•g⁻¹ creatinine) at the start of the study from the 258 subjects enrolled with essential hypertension. The reference value of microalbuminuria was $\geq 22 \text{ mg•g}^{-1}$ creatinine for men and $\geq 31 \text{ mg•g}^{-1}$ creatinine for women, according to the European Society of Hypertension-European Society of Cardiology (ESH/ESC) 2003 guideline.⁹ Patients with overt nephropathy with a baseline UAE $\geq 300 \text{ mg•g}^{-1}$ creatinine were excluded from this study.

9

10 **BP** and renal function measurements

We estimated the glomerular filtration rate with a modified modification of diet in renal 11 disease equation for Japanese: glomerular filtration rate (ml·min⁻¹·1.73 m⁻²) = $194 \times$ (serum 12creatinine)^{-1.094} × (age)^{-0.287} (× 0.739 for females).⁸ We examined changes in blood pressure, 1314UAE, and eGFR measured on the designated appointment day (at trough before administration) 15again in the up-titrated monotherapy group (candesartan dosage increase to 12 mg/day) and the 16combination therapy group (candesartan 8 mg plus nifedipine CR 20 mg), to which patients had been 17randomly assigned using a double-blind design after initial treatment with candesartan (8 mg/day) 18monotherapy for 8 weeks. UAE and eGFR were measured before initial treatment, at the end of initial treatment, and at the end of double-blind treatment, with UAE adjusted for urinary creatinine
 using the first urine in the morning. For blinding, we put tablets into opaque capsules to prevent the
 study drugs from being identified.

4

5 Statistical analysis

6 We compared the demographics of patients in the up-titrated monotherapy group and the 7combination therapy group by analysis of categorical variables, including gender and eGFR 8 distribution, using the χ^2 test and Fisher's exact test, and continuous variables such as blood pressure, 9 UAE, serum creatinine, and eGFR, using Student's t-test or the Wilcoxon rank-sum test. Changes 10 in blood pressure over 4 weeks and in UAE and eGFR for 8 weeks, in each group were analyzed 11 using a linear mixed model with Bonferroni correction. In addition, the interactions between 12changes in blood pressure, UAE, and eGFR in both groups were determined using the Type III test using a linear mixed model, and differences between groups at each time of measurement were 1314evaluated using the Wilcoxon rank-sum test. 15Values are expressed as the mean \pm standard deviation, except for those of UAE and eGFR,

which are given as median values (midpoint between 25th and 75th percentiles). We reviewed correlations between UAE and blood pressure achieved at the end of double-blind treatment in each treatment group using Spearman's rank correlation coefficient. We then calculated the coefficients of

1	correlation and regression equations for the levels and $\Delta eGFR$ and ΔUAE during initial and
2	double-blind treatment. If a normal distribution was not found, we used Spearman's rank correlation
3	coefficient. Furthermore, we compared rates of progress and improvement with changes in UAE or
4	eGFR as a category in the two groups using the $\chi 2$ test. All statistical analyses were two-sided, with
5	a level of significance of α -0.05, and performed with SAS software version 2010 (SAS Institute,
6	Cary, North Carolina, USA).

1 Results

2 Subject demographics

The demographics of the 86 subjects (42 in the combination therapy group, and 44 in the up-titrated monotherapy group) at the end of initial treatment are shown in Table 1. No significant differences were seen between groups (mean eGFR $70.9 \pm 23.2 \text{ ml} \cdot \text{min}^{-1} \cdot 1.73 \text{m}^{-2}$ in the combination therapy group and $64.6 \pm 17.5 \text{ ml} \cdot \text{min}^{-1} \cdot 1.73 \text{m}^{-2}$ in the up-titrated monotherapy group; and mean UAE $81.0 \pm 66.9 \text{ mg} \cdot \text{g}^{-1}$ creatinine in the combination therapy group and $85.6 \pm 69.5 \text{ mg} \cdot \text{g}^{-1}$ creatinine in the up-titrated monotherapy group). In addition, no differences were seen between groups in blood pressure or eGFR distribution by age.

10

11 Changes in blood pressure

12 Changes of blood pressure from initial treatment to the end of double-blind treatment in the 13 two groups are shown in Fig. 1. Although no significant hypotensive effect for either systolic 14 blood pressure (SBP) or diastolic blood pressure (DBP) was seen during initial treatment with 15 candesartan 8 mg/day for 8 weeks, there was a significant decrease in blood pressure in the 16 up-titrated candesartan group (from $160.2 \pm 1.8/98.2 \pm 1.0$ mmHg to $153.7 \pm 2.1/95.0 \pm 1.2$ mmHg, 17 P=0.01/0.07) only at the end of the double-blind treatment. On the other hand, significant decreases 18 were seen in blood pressures in the combination therapy group after 4 weeks of double-blind

treatment, as well as at the end of treatment (from $153.9 \pm 2.0/97.3 \pm 1.0$ mmHg to $144.1 \pm 2.4/92.0 \pm$ 1 $\mathbf{2}$ 1.3 mmHg, P<0.001/<0.001). Furthermore, blood pressures after 4 weeks and at the end of double-blind treatment were significantly lower in the combination therapy group than in the 3 4 up-titrated monotherapy group (P<0.001/0.042, 0.003/0.104). When we examined changes in blood pressure in patients stratified by eGFR ≥60 ml•min⁻¹•1.73 m⁻² (eGFR ≥60) and eGFR <60 $\mathbf{5}$ 6 ml•min⁻¹•1.73m⁻² (eGFR <60), there were significant decreases of SBP and DBP after 4 weeks and at $\overline{7}$ the end of double-blind treatment only in subjects from the combination therapy group with eGFR 8 \geq 60 but not in those with eGFR <60.

9

10 Changes in urinary albumin excretion

11	Changes of UAE from initial treatment to the end of double-blind treatment in the two
12	groups are shown in Fig. 2a. In all subjects, a significant increase in UAE was observed after 8
13	weeks of initial treatment (p< 0.01) (42 subjects in the combination therapy group: median from 40.1
14	to 56.7, P=0.055; 44 in the up-titrated monotherapy group: median from 31.5 to 51.1, P<0.05).
15	Although there was no significant decrease in UAE in the up-titrated monotherapy group during
16	double-blind treatment, a significant decrease was seen in UAE in the combination therapy group
17	(P<0.05), and the reduction at the end of the study was significant in comparison to the up-titrated
18	monotherapy group (P<0.05). When we examined changes in UAE in patients stratified at an

1	eGFR of 60 ml•min ⁻¹ •1.73 m ⁻² , the change was significantly lower in the combination therapy group
2	(26.1 mg•g ⁻¹ creatinine) than in the up-titrated monotherapy group (50.7 mg•g ⁻¹ creatinine, P<0.05)
3	at the end of double-blind treatment in subjects with eGFR ≥ 60 (Fig.2b), but similar in the
4	combination therapy group (40.5 mg \cdot g $^{-1}$ creatinine) and the up-titrated monotherapy group (63.2
5	$mg \cdot g^{-1}$ creatinine, P=0.252) in subjects with eGFR <60 (Fig. 2c).
6	
7	Changes in eGFR
8	Changes of eGFR from initial treatment to the end of double-blind treatment in the two
9	groups are shown in Fig. 2d. No significant changes were seen in both group between baseline and
10	the end of the study. Similar results were obtained in patients stratified by eGFR \geq 60 and <60. In
11	addition, examination of changes in eGFR according to subject age group revealed no significant
12	difference between treatment groups for any stratum between before and after randomized treatment
13	(Table 2).
14	
15	Relationships between blood pressure, UAE, and eGFR
16	Correlations between UAE and SBP at the end of double-blind treatment are shown in Fig. 3.
17	Significant positive correlations were seen in both the combination therapy group (γ =0.453, P<0.01)
18	and up-titrated monotherapy group (γ =0.334, P<0.05). There were only weak positive correlation

(not significant) between ΔUAE and ΔSBP among subjects stratified by eGFR ≥60 and eGFR <60
 from both the combination therapy group and the up-titrated monotherapy group.

3	We then examined the correlations between $\Delta eGFR$ and ΔUAE before and after double-blind
4	treatment. No significant correlation was seen between ΔUAE and $\Delta eGFR$ during double-blind
5	treatment in either the combination therapy group (γ =-0.195, P=0.217) or the up-titrated
6	monotherapy group (γ =0.214, P=0.164) (Fig. 4). In the combination therapy group, 27 of 35 subjects
7	(77%) with an increase of UAE during initial treatment showed a decrease of UAE during
8	double-blind treatment, whereas 22 of 38 subjects (58%) with increased UAE during initial
9	treatment showed a decrease during double-blind treatment in the up-titrated monotherapy group.
10	Comparison between groups revealed a strong tendency to improvement in UAE in the combination
11	therapy group (P=0.080).

1 Discussion

2	In this study, which involved a subanalysis of the results of the NICE-Combi study, we
3	demonstrated the following: (1) blood pressure level was significantly decreased in both groups with
4	intensive antihypertensive treatment, but blood pressure reduction was significantly earlier and
5	greater in the combination therapy group than in the up-titrated monotherapy group; (2) eGFR did
6	not change significantly in either group, although UAE decreased significantly in the combination
7	therapy group alone in parallel with blood pressure reduction during 8 weeks of double-blind
8	treatment. Recently, the GUARD study in the U.S. ¹⁰ showed treatment with an ACEI (benazepril)
9	plus a diuretic (hydrochlorothiazide) in patients with diabetic nephropathy reduced albuminuria to a
10	greater extent than an ACEI plus CCB (amlodipine). These results called into question whether a
11	diuretic or CCB is more suitable as a second-line agent with a RAS inhibitor. However, treatment
12	with ACEI plus CCB (-2.03 ml·min ⁻¹ ·yr ⁻¹) was superior to ACEI plus diuretic (-13.64 ml·min ⁻¹ ·yr ⁻¹)
13	for maintenance of eGFR, apparently because reduction of UAE with the latter treatment was caused
14	by a decline in eGFR. In general, eGFR can decrease temporarily in patients with CKD who are
15	placed on a strict antihypertensive treatment regimen for a short period of time. However, in the
16	analysis of renal events in the ONgoing Telmisartan Alone and in combination with Ramipril Global
17	Endpoint Trial (ONTARGET) study, ^{11, 12} combined treatment with ARB plus ACEI significantly
18	reduced UAE in comparison to monotherapy with either agent alone, but eGFR reduction (-6.11

1	ml•min ⁻¹ •yr ⁻¹) and renal events were significantly greater, suggesting that renal events cannot be
2	prevented by UAE reduction if there is an excessive decline of the eGFR. Therefore, the
3	characteristics of antihypertensive therapy should be examined in relation to changes of the eGFR.
4	In the present study, we found that the blood pressure reduction was greater in the
5	combination therapy group than in the up-titrated monotherapy group, and that UAE declined
6	significantly in the combination therapy group alone, while eGFR was unchanged over 8 weeks of
7	intensive antihypertensive treatment and no significant correlation was found between ΔGFR and
8	ΔUAE in either group. Furthermore, the percentage of subjects with improved UAE after
9	double-blind treatment was higher in the combination therapy group than in the up-titrated
10	monotherapy group, although the difference was not significant. When we examined changes of
11	UAE in subjects stratified at an eGFR of 60 ml•min ⁻¹ •1.73m ⁻² , marked improvement was seen in
12	subjects from the combination therapy group with eGFR \geq 60, suggesting that combination therapy
13	with nifedipine CR reduces UAE without affecting the eGFR, so that the improvement of UAE may
14	be attributed to increased tubular protein reabsorption. There was a weak positive correlation (not
15	significant) between Δ UAE and Δ SBP in subjects both eGFR >60 and eGFR <60 from both therapy
16	groups, probably because the number of subjects in each stratified group was too small.
17	A meta-analysis found that a higher rate of achievement of an SBP <130 mmHg, or a

18 decrease in blood pressure, in patients with CKD leads to decreased impairment in eGFR and

1	prevention of end-stage renal disease. ¹³ As shown in Fig. 3, we found greater improvement of
2	UAE in subjects who reached a lower blood pressure in both the combination therapy group and the
3	up-titrated monotherapy group, suggesting that UAE is worsen by standard dosage ARB treatment
4	but can be improved by the intensive antihypertensive treatment. Basic studies have reported that
5	nifedipine CR not only has stronger antihypertensive effects than other CCBs, but also strongly
6	inhibits activation and secretion of aldosterone through a mineralocorticoid receptor, and that the
7	strength of effect on aldosterone activation varies between CCB. ¹⁴ Previous studies have shown
8	that nifedipine reduces levels of expression of monocyte chemoattractant protein-1, transforming
9	growth factor- β , type III collagen and receptors for advanced glycation end products (AGE) in
10	AGE-exposed human cultured mesangial cells,15 and may act as an anti-inflammatory and
11	anti-fibrogenic agent against AGE via mineralocorticoid antagonistic activity. ¹⁶ These studies
12	indicate that combination therapy with an ARB plus nifedipine CR may have strong blood
13	pressure-decreasing effects and organ protective effects, and may thus improve renal function.
14	Recently, several studies comparing use of a CCB or diuretic with an RAS inhibitor have
15	been published. Initially, in the Antihypertensive and Lipid Lowering treatment to prevent Heart
16	ATtack (ALLHAT) ¹⁷ conducted in 30,000 patients with hypertension, amlodipine was found to be
17	superior to ACEI and diuretics in delaying the decline in renal function and maintaining GFR in
18	terms of the serum creatinine level (inverse/year), an indicator of renal function. Secondly, the

1	International Nifedipine GITS Study Intervention as a Goal in Hypertension Treatment (INSIGHT)
2	study ^{18, 19} compared the effects on renal function in patients with high-risk hypertension between
3	once-daily nifedipine formulations and combined co-amilozide (hydrochlorothiazide plus amiloride)
4	groups, and reported that the former treatment significantly inhibited decline in GFR in comparison
5	to the latter. Most recently, a subanalysis of renal outcome data in the Avoiding Cardiovascular
6	Events through Combination Therapy in Patients Living with Systolic Hypertension
7	(ACCOMPLISH) study ²⁰ demonstrated a significantly slower decline in eGFR after 2.9 years of
8	treatment in the benazepril (ACEI) plus amlodipine (CCB) group (-0.88 ml•min ⁻¹ •1.73m ⁻²) than in
9	the benazepril plus hydrochlorothiazide (diuretic) group (-4.22 ml•min ⁻¹ •1.73m ⁻² ; p=0.01) in some
10	11,500 patients at high cardiovascular risk. It has also been reported that CCBs, especially those of
11	the dihydropyridine class, increase urinary sodium and water excretion, partly by decreasing
12	proximal tubular sodium reabsorption. ^{21, 22} In addition, CCBs have been proven to be effective in
13	preventing arteriosclerosis, ^{23, 24} whereas diuretics can damage the sugar/fat metabolism system, ^{25, 26}
14	a possible factor in exacerbation of atherosclerosis.
15	This study has several limitations. One limitation of the NICE-Combi study is its lack of

direct comparison with diuretics, since we did not include a treatment arm with ARB plus diuretic. The effects of combination treatment including ARB, long-acting CCBs, and diuretics in patients with CKD require examination in large randomized studies. In addition, it has been reported in a

1	clinical study that protective effects on organs may differ among CCBs, ²⁷⁻²⁹ and a controlled trial is
2	needed to investigate antihypertensive effects and protection of organs in patients with CKD.
3	Secondly, the up-titrated dose of candesartan was 12 mg/day, which is the maximum recommended
4	dose in Japan, so the achieved systolic blood pressure significantly differed by about 10 mmHg
5	between the two groups. There is still be a possibility that other ARB monotherapy up-titrated to
6	doubled the standard dose could reduce blood pressure and UAE to the same extent as the
7	combination therapy. Thirdly, our subjects were all Japanese, and several studies have reported
8	racial/ethnic differences in BP responses to antihypertensive therapy. ³⁰ Finally, 8 weeks of
9	double-blind treatment was relatively short period to estimate of long-term improvement of renal
10	function. Further studies are needed to clarify these issues in large number of patients and long-term
11	administration.
12	In conclusion, it appears that ARB plus nifedipine CR treatment can provide rapid and
13	greater hypotensive effects and contribute to the preservation/improvement of renal function, in
14	which UAE is reduced while maintaining eGFR. Our findings strongly suggest that early use of
15	nifedipine CR is effective in patients with hypertension and microalbuminuria.
16	

17 Conflict of interest

18 Drs Kikuchi and Hasebe report receiving advisory board fees from Bayer Yakuhin Ltd, Osaka, Japan.

- 1 The remaining authors declare no conflict of interest.
- $\mathbf{2}$
- 3 Acknowledgements
- 4 We would like to thank the investigators and members of the NICE-Combi Study Group. The
- 5 support of Bayer Yakuhin, Ltd. is gratefully acknowledged.

References

2	1	Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, Ritz E, Atkins RC, Rohde
3		R, Raz I, Collaborative Study G. Renoprotective effect of the angiotensin-receptor
4		antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med
5		2001; 345 : 851-860.
6	2	Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, Remuzzi G,
7		Snapinn SM, Zhang Z, Shahinfar S. Effects of losartan on renal and cardiovascular
8		outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001; 345:
9		861-869.
10	3	Wright JT, Jr., Bakris G, Greene T, Agodoa LY, Appel LJ, Charleston J, Cheek D,
11		Douglas-Baltimore JG, Gassman J, Glassock R, Hebert L, Jamerson K, Lewis J, Phillips RA,
12		Toto RD, Middleton JP, Rostand SG. Effect of blood pressure lowering and antihypertensive
13		drug class on progression of hypertensive kidney disease: results from the AASK trial.
14		<i>JAMA</i> 2002; 288 : 2421-2431.
15	4	Ogihara T, Kikuchi K, Matsuoka H, Fujita T, Higaki J, Horiuchi M, Imai Y, Imaizumi T, Ito
16		S, Iwao H, Kario K, Kawano Y, Kim-Mitsuyama S, Kimura G, Matsubara H, Matsuura H,
17		Naruse M, Saito I, Shimada K, Shimamoto K, Suzuki H, Takishita S, Tanahashi N,
18		Tsuchihashi T, Uchiyama M, Ueda S, Ueshima H, Umemura S, Ishimitsu T, Rakugi H. The

1		Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH
2		2009). Hypertens Res 2009; 32 : 3-107.
3	5	Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, Grassi G,
4		Heagerty AM, Kjeldsen SE, Laurent S, Narkiewicz K, Ruilope L, Rynkiewicz A, Schmieder
5		RE, Boudier H, Zanchetti A, Task Force Management A. 2007 guidelines for the
6		management of arterial hypertension. J Hypertens 2007; 25: 1105-1187.
7	6	KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Diabetes
8		and Chronic Kidney Disease. Am J Kidney Dis 2007; 49: S12-154.
9	7	Hasebe N, Kikuchi K. Controlled-release nifedipine and candesartan low-dose combination
10		therapy in patients with essential hypertension: the NICE Combi (Nifedipine and
11		Candesartan Combination) Study. J Hypertens 2005; 23: 445-453.
12	8	Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Yamagata K, Tomino Y,
13		Yokoyama H, Hishida A. Revised equations for estimated GFR from serum creatinine in
14		Japan. Am J Kidney Dis 2009; 53: 982-992.
15	9	2003 European Society of Hypertension-European Society of Cardiology guidelines for the
16		management of arterial hypertension. J Hypertens 2003; 21: 1011-1053.
17	10	Bakris GL, Toto RD, McCullough PA, Rocha R, Purkayastha D, Davis P. Effects of different
18		ACE inhibitor combinations on albuminuria: results of the GUARD study. Kidney Int 2008;

1 **73**: 1303-1309.

2	11	Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, Schumacher H, Ingelheim B, Dagenais G,
3		Sleight P, Anderson C, Investigators O. Telmisartan, ramipril, or both in patients at high risk
4		for vascular events. N Engl J Med 2008; 358 : 1547-1559.
5	12	Mann JFE, Schmieder RE, McQueen M, Dyal L, Schumacher H, Pogue J, Wang XY,
6		Maggioni A, Budaj A, Chaithiraphan S, Dickstein K, Keltai M, Metsarinne K, Oto A,
7		Parkhomenko A, Piegas LS, Svendsen TL, Teo KK, Yusuf S, Investigators O. Renal
8		outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the
9		ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet 2008;
10		372 : 547-553.
11	13	Bakris GL, Williams M, Dworkin L, Elliott WJ, Epstein M, Toto R, Tuttle K, Douglas J,
12		Hsueh W, Sowers J. Preserving renal function in adults with hypertension and diabetes: a
13		consensus approach. National Kidney Foundation Hypertension and Diabetes Executive
14		Committees Working Group. Am J Kidney Dis 2000; 36: 646-661.
15	14	Dietz JD, Du S, Bolten CW, Payne MA, Xia C, Blinn JR, Funder JW, Hu X. A number of
16		marketed dihydropyridine calcium channel blockers have mineralocorticoid receptor
17		antagonist activity. <i>Hypertension</i> 2008; 51 : 742-748.
18	15	Matsui T, Yamagishi S, Takeuchi M, Ueda S, Fukami K, Okuda S. Nifedipine, a calcium

1		channel blocker, inhibits advanced glycation end product (AGE)-elicited mesangial cell
2		damage by suppressing AGE receptor (RAGE) expression via peroxisome
3		proliferator-activated receptor-gamma activation. Biochem Biophys Res Commun 2009; 385:
4		269-272.
5	16	Matsui T, Takeuchi M, Yamagishi S. Nifedipine, a calcium channel blocker, inhibits
6		inflammatory and fibrogenic gene expressions in advanced glycation end product
7		(AGE)-exposed fibroblasts via mineralocorticoid receptor antagonistic activity. Biochem
8		Biophys Res Commun 2010; 396 : 566-570.
9	17	Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting
10		enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and
11		Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 2002; 288:
12		2981-2997.
13	18	Brown MJ, Palmer CR, Castaigne A, de Leeuw PW, Mancia G, Rosenthal T, Ruilope LM.
14		Morbidity and mortality in patients randomised to double-blind treatment with a long-acting
15		calcium-channel blocker or diuretic in the International Nifedipine GITS study: Intervention
16		as a Goal in Hypertension Treatment (INSIGHT). Lancet 2000; 356: 366-372.
17	19	de Leeuw PW, Ruilope LM, Palmer CR, Brown MJ, Castaigne A, Mancia G, Rosenthal T,
18		Wagener G. Clinical significance of renal function in hypertensive patients at high risk:

1		results from the INSIGHT trial. Arch Intern Med 2004; 164: 2459-2464.
2	20	Bakris GL, Sarafidis PA, Weir MR, Dahlof B, Pitt B, Jamerson K, Velazquez EJ,
3		Staikos-Byrne L, Kelly RY, Shi V, Chiang YT, Weber MA. Renal outcomes with different
4		fixed-dose combination therapies in patients with hypertension at high risk for
5		cardiovascular events (ACCOMPLISH): a prespecified secondary analysis of a randomised
6		controlled trial. Lancet 2010; 375 : 1173-1181.
7	21	Sluiter HE, Wetzels JF, Huysmans FT, Koene RA. The natriuretic effect of the
8		dihydropyridine calcium antagonist felodipine: a placebo-controlled study involving
9		intravenous angiotensin II in normotensive volunteers. J Cardiovasc Pharmacol 1987; 10
10		Suppl 10: S154-161.
10 11	22	Suppl 10: S154-161. Wetzels JF, Wiltink PG, Hoitsma AJ, Huysmans FT, Koene RA. Diuretic and natriuretic
	22	
11	22 23	Wetzels JF, Wiltink PG, Hoitsma AJ, Huysmans FT, Koene RA. Diuretic and natriuretic
11 12		Wetzels JF, Wiltink PG, Hoitsma AJ, Huysmans FT, Koene RA. Diuretic and natriuretic effects of nifedipine in healthy persons. <i>Br J Clin Pharmacol</i> 1988; 25 : 547-553.
11 12 13		Wetzels JF, Wiltink PG, Hoitsma AJ, Huysmans FT, Koene RA. Diuretic and natriuretic effects of nifedipine in healthy persons. <i>Br J Clin Pharmacol</i> 1988; 25 : 547-553. Mancini GB, Miller ME, Evans GW, Byington R, Furberg CD, Pitt B. Post hoc analysis of
11 12 13 14		 Wetzels JF, Wiltink PG, Hoitsma AJ, Huysmans FT, Koene RA. Diuretic and natriuretic effects of nifedipine in healthy persons. <i>Br J Clin Pharmacol</i> 1988; 25: 547-553. Mancini GB, Miller ME, Evans GW, Byington R, Furberg CD, Pitt B. Post hoc analysis of coronary findings from the prospective randomized evaluation of the vascular effects of the
 11 12 13 14 15 	23	 Wetzels JF, Wiltink PG, Hoitsma AJ, Huysmans FT, Koene RA. Diuretic and natriuretic effects of nifedipine in healthy persons. <i>Br J Clin Pharmacol</i> 1988; 25: 547-553. Mancini GB, Miller ME, Evans GW, Byington R, Furberg CD, Pitt B. Post hoc analysis of coronary findings from the prospective randomized evaluation of the vascular effects of the Norvasc trial (PREVENT). <i>Am J Cardiol</i> 2002; 89: 1414-1416.

1153-1158.

2	25	Redon J, Cifkova R, Laurent S, Nilsson P, Narkiewicz K, Erdine S, Mancia G. The
3		metabolic syndrome in hypertension: European society of hypertension position statement. J
4		Hypertens 2008; 26 : 1891-1900.
5	26	Carlsen JE, Kober L, Torp-Pedersen C, Johansen P. Relation between dose of
6		bendrofluazide, antihypertensive effect, and adverse biochemical effects. BMJ 1990; 300:
7		975-978.
8	27	Fujita T, Ando K, Nishimura H, Ideura T, Yasuda G, Isshiki M, Takahashi K. Antiproteinuric
9		effect of the calcium channel blocker cilnidipine added to renin-angiotensin inhibition in
10		hypertensive patients with chronic renal disease. Kidney Int 2007; 72: 1543-1549.
11	28	Ogawa S, Mori T, Nako K, Ito S. Combination therapy with renin-angiotensin system
12		inhibitors and the calcium channel blocker azelnidipine decreases plasma inflammatory
13		markers and urinary oxidative stress markers in patients with diabetic nephropathy.
14		Hypertens Res 2008; 31 : 1147-1155.
15	29	Konoshita T, Makino Y, Kimura T, Fujii M, Wakahara S, Arakawa K, Inoki I, Nakamura H,
16		Miyamori I. A new-generation N/L-type calcium channel blocker leads to less activation of
17		the renin-angiotensin system compared with conventional L type calcium channel blocker. J
18		Hypertens 2010; 28 : 2156-2160.

Nguyen TT, Kaufman JS, Whitsel EA, Cooper RS. Racial differences in blood pressure
 response to calcium channel blocker monotherapy: a meta-analysis. *Am J Hypertens* 2009;
 22: 911-917.

1	Figure legends
2	
3	Figure 1 Changes in blood pressure
4	Changes in blood pressure (BP) during initial treatment with candesartan 8 mg/day, and
5	double-blind treatment with nifedipine controlled release 20 mg/day plus candesartan 8 mg/day
6	combination therapy (\circ , n = 42), or with candesartan 12 mg/day up-titrated monotherapy (\bullet , n = 44).
7	Data are expressed as mean \pm SD. P < 0.05: *compared to the end of initial treatment (8 weeks) in
8	each treatment group; # comparison between two treatment groups.
9	
10	Figure 2 Changes in urinary albumin excretion and estimated glomerular filtration rate
10 11	Figure 2 Changes in urinary albumin excretion and estimated glomerular filtration rate(a) Changes in urinary albumin excretion (UAE; measured as the ratio of albumin to
11	(a) Changes in urinary albumin excretion (UAE; measured as the ratio of albumin to
11 12	(a) Changes in urinary albumin excretion (UAE; measured as the ratio of albumin to creatinine) before and after double-blind treatment in all patients (\Box , combination therapy, n = 42; \blacksquare ,
11 12 13	(a) Changes in urinary albumin excretion (UAE; measured as the ratio of albumin to creatinine) before and after double-blind treatment in all patients (\Box , combination therapy, n = 42; •, up-titrated monotherapy, n = 44), (b) in patients with baseline eGFR ≥ 60 ml·min ⁻¹ ·1.73m ⁻² (\Box ,
11 12 13 14	(a) Changes in urinary albumin excretion (UAE; measured as the ratio of albumin to creatinine) before and after double-blind treatment in all patients (\Box , combination therapy, $n = 42$; •, up-titrated monotherapy, $n = 44$), (b) in patients with baseline eGFR ≥ 60 ml·min ⁻¹ ·1.73m ⁻² (\Box , combination therapy, $n = 27$; •, up-titrated monotherapy, $n = 23$) and (c) in patients with baseline
 11 12 13 14 15 	(a) Changes in urinary albumin excretion (UAE; measured as the ratio of albumin to creatinine) before and after double-blind treatment in all patients (\Box , combination therapy, $n = 42$; •, up-titrated monotherapy, $n = 44$), (b) in patients with baseline eGFR ≥ 60 ml·min ⁻¹ •1.73m ⁻² (\Box , combination therapy, $n = 27$; •, up-titrated monotherapy, $n = 23$) and (c) in patients with baseline eGFR < 60 ml·min ⁻¹ •1.73m ⁻² . (d) Changes in estimated glomerular filtration rate (eGFR) before

2	Figure 3 Correlation between urinary albumin excretion and systolic blood pressure after
3	double-blind treatment
4	Correlation between urinary albumin excretion (UAE) and systolic blood pressure (SBP)
5	after double-blind treatment in (a) the combination therapy group ($n = 42$), and (b) the up-titrated
6	monotherapy group (n = 44). r_s , Spearman's rank correlation coefficient.
7	
8	Figure 4 Correlation between $\Delta eGFR$ and ΔUAE during double-blind treatment
9	Correlation between delta change of estimated glomerular filtration rate (eGFR) and
10	urinary albumin excretion (UAE) during double-blind treatment in (a) the combination therapy
11	group (n = 42), and (b) the up-titrated monotherapy group (n = 44). r_s : Spearman's rank correlation
12	coefficient.

	All (n=86)	Nifedipine CR	Candesartan up-titrated	Р
		+ candesartan	monotharapy (n=44)	
		combination therapy		
		(n=42)		
Sex				
male	51 (59.3%)	25 (59.5%)	26 (59.1%)	0.967
female	35 (40.7%)	17 (40.5%)	18 (40.9%)	
Age				
$20\sim59$ years	50 (58.1%)	27 (64.3%)	23 (52.3%)	0.312
$60\sim 69$ years	25 (29.1%)	9 (21.4%)	16 (36.4%)	
$70 \sim 80$ years	11 (12.8%)	6 (14.3%)	5 (11.4%)	
All	57.7 ± 9.9	57.2 ± 10.7	58.1 ± 9.1	0.674
SBP/DBP (mmHg)				
$20\sim59$ years	$153.9 \pm 12.9/98.5 \pm 6.6$	$151.7 \pm 13.7/97.6 \pm 6.3$	$156.4 \pm 11.6/99.4 \pm 7.0$	0.201/0.341
$60\sim 69$ years	$160.0 \pm 10.7/97.3 \pm 6.5$	$154.9 \pm 9.4/98.8 \pm 8.5$	$162.9 \pm 10.5/96.5 \pm 5.2$	0.069/0.481
$70 \sim 80$ years	$165.0 \pm 10.2/95.7 \pm 5.4$	$162.0 \pm 10.5/93.7 \pm 2.5$	$168.6 \pm 9.7/98.2 \pm 7.2$	0.311/0.179
All	$157.1 \pm 12.5/97.8 \pm 6.4$	$153.9 \pm 12.7/97.3 \pm 6.5$	$160.2 \pm 11.6/98.2 \pm 6.4$	0.018/0.512
Heart rate (beats/min)	73.9 ± 8.8	71.4 ± 6.6	76.3 ± 10.0	0.009
Serum creatinine (mg/dL)	0.87 ± 0.23	0.85 ± 0.23	0.90 ± 0.23	0.261
eGFR (ml•min ⁻¹ •1.73 m ⁻²)				
≥90	11 (12.8%)	7 (16.7%)	4 (9.1%)	0.413
60 to 90	39 (45.3%)	20 (47.6%)	19 (43.2%)	
< 60	36 (41.9%)	15 (35.7%)	21 (47.7%)	
All	67.7 ± 20.6	70.9 ± 23.2	64.6 ± 17.5	0.16
UAE (mg•g-1 creatinine)	83.3 ± 67.9	81.0 ± 66.9	85.6 ± 69.5	0.759

Table 1 Demographic characteristics of patients randomly allocated to groups at baseline

Variables are presented as mean ± SD, or number (percentage). SBP, systolic blood pressure; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; UAE, urinary albumin excretion.

Age (year)	Treatment group	After baseline	After double-blind	Paired t	Unpaired t
		treatment (8w)	treatment (16w)		
		$(ml \cdot min^{-1} \cdot 1.73 m^{-2})$	(ml•min ⁻¹ •1.73 m ⁻²)		
20-59	Combination (n=27)	77.2 ± 4.9	74.3 ± 4.2	0.513	0.43
20-39	Up-titrated (n=23)	70.0 ± 2.9	70.4 ± 2.6	1.000	
60-69	Combination (n=9)	64.2 ± 3.6	60.9 ± 3.9	0.475	0.936
00-09	Up-titration (n=16	60.7 ± 5.5	61.6 ± 6.4	1.000	
>70	Combination (n=6)	52.4 ± 4.9	54.7 ± 5.9	1.000	0.73
≥70	Up-titrated (n=5)	52.4 ± 1.8	52.3 ± 2.7	1.000	

 Table 2
 Changes in estimated glomerular filtration rate (stratified by age)

Variables are presented as mean \pm SEM.

Figure 1 Changes in blood pressure

Figure 2a Changes in urinary albumin excretion in all subjects

200 75th percentile Median 25th percentile 150 P<0.05^a Combi Up-titra NS^a nation tion UAE (mg/g Cr) NS^a 100 55.1 56.7 51.1 31.5 50 40.1 31.0 NS^b P<0.05^b P<0.05^b NS^b 0 (n=42)(n=44) (n=42)(n=44)(n=42)(n=44) 0W 16W 8W

Figure 2b Changes in urinary albumin excretion in subjects with eGFR ≥60 mL•min⁻¹•1.73 m⁻²

Figure 2c Changes in urinary albumin excretion in patients with estimated glomerular filtration rate <60 mL•min⁻¹•1.73 m⁻²

Figure 2d Changes in estimated glomerular filtration rate in all patients

Figure 3 Correlation between urinary albumin excretion and systolic blood pressure after double-blind treatment

SBP after double-blind treatment (mmHg)

Figure 4 Correlation between $\triangle eGFR$ and $\triangle UAE$ during double-blind treatment

ΔUAE during double-blind treatment