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ABSTRACT

　　The mechanism by which the expenditure of oxygen to walk per unit distance at an 

intermediate speed is minimized, by definition optimal walking, was investigated to charac-

terize optimal walking in humans with variations in individual walking speeds. Oxygen 

uptake and step rate（SR）were measured among 7 young male subjects walking at an 

increasing speed from 16.7 to 131.7 m min－1 with 5 m min－1 increments every 1 min on a 

level treadmill. Measurements of leg length（L）were also made and step length（SL）was 

calculated by dividing walking speed by SR. The hip joint angle（θ）was calculated as a func-

tion of both L and SL such that θ＝2sin－1［SL／（2L）］ deduced from a mathematical geomet-

rically similar model of pendulum－like legs. The minimum oxygen cost to walk per unit 

distance for each subject was observed over a wide range of speeds from 60 to 100 m min－1. 

However, the oxygen cost of walking for all the subjects was minimized during a step cycle 

through a hip－joint angle of about 46 deg in the astride position, regardless of L. The stiff－

legged model demonstrated that the pathway of the trunk during optimal walking with a 

swing leg angle of 46 deg was approximately maintained at an even level by the counter-

acting effects of the leg decline and the heel rise. These results suggest that the minimum 

oxygen cost of transport during optimal walking was achieved by the mechanism underlying 

the maximum interchange between the gravitational－potential and kinetic energy for the 

body with an even level of the trunk that reduces extra muscular work needed against 

internal and external resistance, as well as against gravity.
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INTRODUCTION

　　In human walking, both step length（SL）and step frequency（rate）are a major determinant of speed 

of transport. Walking speed, SL, and step rate（SR）are the gait characteristics that are essential for 

understanding walking in terms of a fundamental aspect of kinematics, biomechanics, and energetics. 

There have been many studies on the relationship between walking speed and the expenditure of meta-

bolic energy in humans, as well as in animals1～6）. In addition, several studies have also demonstrated 

that the energetic costs of level walking per unit distance for humans were minimized at an intermediate 

speed, the optimal speed, but that a certain variation existed with respect to individual optimal walking 

speeds even in adults7～9）. Although in their papers either information about optimal speeds or how 

humans walk at optimal speeds was offered, the variation in individual optimal walking speeds has not 

been fully elucidated. In a mathematical model of the swinging leg as a physical pendulum, SL is directly 

proportional to the length of the walker’s leg and SR is inversely proportional to the square root of the 

leg length（L）；however, generally, taller humans walk faster than shorter ones. Due to differences in 

the L between individuals, only information about simple walking speeds appears to be insufficient to 

interpret the characteristics of optimal walking for humans of different sizes.

　　Therefore, the purpose of this study was to examine the relationships between SL, SR, and walking 

speed and to also clarify the principal mechanism that accounts for the variation in optimal walking 

speeds from subject to subject. We hypothesized that there would be a hidden mechanism, independent 

of L, by which the cost of oxygen expenditure to walk per unit distance is minimized would be related to 

the law of conservation of mechanical energy for the body, and that the mechanism would be common to 

various individual optimal walking speeds. A mathematical theory based on a walking model of a physical 

pendulum as a geometrically similar form1,7,8） can predict the characteristics of optimal walking in 

humans of different sizes as a criterion for physical similarity, such as non－dimensional parameters10）. In 

human walking, the movements of the leg resemble the movements of a pendulum, and these physical 

phenomena are theoretically not influenced by the length of the leg, except for a temporal dimension 

such as the period of leg swing oscillation. In this study, a simple mathematical model based on the 

geometrical similarity of movement of pendulum－like legs played a crucial role in describing and inter-

preting the gait characteristics of optimal walking during which humans moved with greater oxygen 

economy, regardless of L.

METHOD

　1 　Subjects

　　Seven healthy young male volunteers participated in this study. Descriptive data of the subjects are 

given in Table 1. All subjects were fully informed about the procedures, risks, and benefits of the study, 

and written informed consent was obtained from all subjects before the study. None of the subjects had 

a history of cardiopulmonary disease and all had normal resting electrocardiograms, blood pressure, and 

echocardiograms. None of the subjects were engaged in any regular physical activity or were involved in 

competitive sports. Each subject was given practice time to become accustomed to walking on a tread-

mill and to putting on ECG lines and a mask to sample expired gases on separate days about 1 week 

before the formal study. Each subject wore a light T－shirt, shorts, and general gym shoes. These shoes 
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were made of soft, flexible material and a plastic sole with a heel height of 1 cm that gave a good walking 

grip. The weight of each subject used in computations regarding oxygen uptake（weight－specific oxygen 

uptake,  V O2）was that of a lightly clothed subject. The L of every subject was measured from the floor 
・

to the trochanter major of the right leg in the gym shoes and it was also used to calculate gait parame-

ters during walking. The study protocol was approved by the Institutional Human Studies Committee.

　2 　Experimental design

　　Prior to the experiments, each subject performed a 15 W min－1 incremental ramp－exercise test 

until exhaustion on an electromagnetically－braked cycle ergometer（Corival 300, Lode, The Nether-

lands）to determine peak oxygen uptake（ V O2peak）
11）. No walking－exercise test was performed to deter-

・

mine the  V O2peak because subjects on a treadmill at higher speeds are in danger of falling, especially at 
・

exhaustion.

　　The subjects walked on a motor－driven treadmill（AR－160 A, Minato, Osaka, Japan）. After resting 

in a supine position for 30 min, the subjects mounted the treadmill. The speed of the treadmill was 

increased from 16.7 m min－1（1.0 km h－1）to 131.7 m min－1（7.9 km h－1）with 5 m min－1（0.3 km 

h－1）increments every 1 min at a 0％ grade. The stepwise increases in speed were controlled succes-

sively by a personal computer（PC9801RX, NEC, Tokyo, Japan）.

　　Tests were initiated at approximately 10：00 a.　m. for all subjects. Each subject completed 2 repeti-

tions of the test, and each trial was performed only once a week to eliminate the influence of exercise 

training. Before the test, the subjects were not allowed to consume any beverages containing caffeine or 

alcohol after 9：00 p.　m. the previous night and vigorous exercise was forbidden for 36h before the day 

of testing. The subjects ate a small breakfast at least 3h before exercising. All subjects were familiarized 

with the test situation in several pilot experiments. All experiments were conducted at an ambient 

temperature between 21 and 22℃.

　3 　Measurements of respiratory and gait data

　　During walking exercise, oxygen uptake was measured breath－by－breath using an on－line auto-

mated measurement system, as previously described12）. Ventilatory airflow was monitored using a hot－

wire－type pneumotachograph（RF－2, Minato, Osaka, Japan）. The composition of expired gas was 

continuously analyzed using a medical mass spectrometer（WSMR－1400, Westron, Chiba, Japan）, which 
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Table　1　Physical characteristics of the subjects（n＝7）

V
・

O2peak

（mL min－1kg－1）
Leg length
（m）

Height
（m）

Weight
（kg）

Age
（year）Subject

45.00.801.6856221
46.60.821.7059212
34.30.791.7067243
42.30.771.6065214
50.00.871.7575215
45.30.791.6764216
37.30.851.7775237

43.0
 5.5

0.81
0.04

1.70
0.06

66
 7

22
 1

Mean
±SD



was calibrated with a standard reference gas mixture before each experiment.

　　The number of steps in contact with the surface of the treadmill was monitored through foot contact 

signals generated by a pressure－sensitive mechanical switch attached to the fore－sole of the right shoe. 

The signals from the foot－switch were fed to a computer.

　　All data for respiratory and gait variables were stored on diskettes for subsequent analysis using a 

personal computer（PC－9821Xa13, NEC, Tokyo, Japan）.

　4 　Data analysis

　　Respiratory and gait data obtained from 2 repetitions of the walking test for each subject were 

arranged separately with a 5－s interval time base using a Lagrange interpolation. These data were then 

averaged to yield a single data set for each subject. To eliminate the effects of small, if any, day－to－day 

variability or unexpected artifacts on the measured variables13）, consecutive average values for all vari-

ables were calculated from the last 20 sec of averaged data obtained at each stage of incremental walking 

speeds14）. SL was obtained by dividing walking speed by the corresponding SR. The angle of the hip joint

（θ）between the legs in the sagittal view was determined on the basis of a stiff－legged walk model 

without the mechanism of the knee and ankle joints1,7,8） as schematically shown in Fig.　1. The hip－joint 

angle（the swing leg angle）was defined as θ＝2　� ＝2sin－1［SL／（2L）］, where 　�  is stance leg angle

（the angle of leg deflection from the perpendicular to the ground）. In gait analyses, the basic temporal 

and spatial factors were assumed to be symmetrical in each stride cycle15）. It was also assumed that 

there was consistency between successive gait cycles during walking at each constant speed16）. Least－

squares fitting was also applied to the data points on  V O2 and gait variables. The coefficient of variation
・

（the ratio of its standard deviation to the mean value）for the gait variables was used to compare their 

variability. All values are expressed as means±SD.

RESULTS

　　Fig.　2A shows individual changes in weight－specific oxygen uptake（ V O2）during walking on the 
・
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Fig.　1　Stiff－legged walk model with fixed joints of both knees and 
ankles in a sagittal view

This model was used to determine the characteristics of gait and to calculate 
both the distance and angle of the hip joint at each step. The angle（　� ）was 
an included angle between a line connecting the hip joint with the ankle and a 
line drawn perpendicular to the ground. The angle of the hip joint（θ）between 
the legs was defined as θ＝2　� ＝2sin－1［SL／（2L）］.

Lθ

SL

ϕ

ϕSL ＝ 2Lsin



level treadmill at an increasing speed with 5 m min－1 increments every minute in 7 male subjects. The 

 V O2 during walking increased progressively with increases in speed. A least－squares fitting was applied 
・

to the data points of  V O2 for each subject and a quadratic equation was held over the speeds ranging 
・

from 16.7 to 131.7 m min－1 indicated by the dashed lines. All the individual curves of  V O2 with respect 
・

to speed fitted well with a high coefficient of determination（0.979＜r2＜0.992）. Figs. 2B and 2C show 

the corresponding changes in SL and SR, respectively, against walking speed for each subject. The SL 

increased almost linearly as speed increased up to 106.7 m min－1 and then leveled off and remained 

fairly constant thereafter. Similarly, the SR increased almost linearly as speed increased. Although there 

were some contortions in linear relationships between SL and walking speed and between SR and 

walking speed, the mean values of both SL and SR for the 7 subjects could be expressed as a function of 

forward speed（v, m min－1）by simple equations, which satisfied the relation v＝SL×SR：

　　　　　SL（m）＝0.075   and　　　　　　　　　　（1）

　　　　　SR（steps min－1）＝13.3  　　　　　　　　（2）

The results obtained by a least－squares fitting applied to the data points for each subject are summa-

rized in Table 2, with high coefficients of determination（0.950＜r2＜0.993 for SL and 0.927＜r2＜0.993 

for SR）.

　　Fig.　3A shows the specific－weight oxygen costs of walking to move per unit distance, provided by 

dividing  V O2 by its corresponding speed, plotted against walking speed in each subject. The oxygen cost 
・

decreased as speed rose up to 60 m min－1 and then leveled off in a wide range from 60 to 100 m min－1, 

above which it increased. The oxygen costs of walking were also plotted as a function of hip－joint angle 

in Fig.　3B. The minimum oxygen costs of walking settled down in a range of about 45 to 50 deg. Table 3 

summarizes the results of the minimum oxygen costs for optimal walking together with the other corre-

sponding gait parameters. The coefficient of variation for the hip－joint angle was less than those for 

other variables, which implies that the hip－joint angle measurement is a practical predominant index of 

optimal walking. When the minimum expenditure of oxygen during optimal walking was associated with 

a hip－joint angle of 46 deg at each step, the mathematical interrelationships among gait parameters of 

individual optimal walking could be expressed as a function of L（m）by 3 empirical equations in combi-

nation with Eqs.（1）and（2）：

　　　　　vopt＝108.4L2 　　　　　　　　　　　 　（3）

　　　　　SLopt＝0.781L　　　　　　　　　　　　（4）

　　　　　SRopt＝138.5L　　　　　　　　　　　　（5）

where vopt is optimal walking speed, SLopt optimal SL, and SRopt optimal SR. Accordingly, although there 

was a variation in individual L, the Strouhal number（SR・L／v）for optimal walking was relatively 

constant（1.27±0.03）, reflected by the small coefficient of variation（0.026）, which was as low as that

（0.027）of the hip－joint angle（Table 3）.

DISCUSSION

　　Although the minimum oxygen cost of transport per unit distance during level walking was deter-

mined in all 7 subjects, optimal walking speeds differed between them. The subjects practically achieved 

optimal walking during a step cycle through a swing leg angle（the hip－joint angle）of about 46 deg, 

despite differences in individual optimal walking speeds and L. Consequently, the gait characteristics of 

v

v
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Fig.　2　Weight－specific oxygen uptake（oxygen uptake per unit of 
weight, A）, step length（B）, and step rate（C）for 7 subjects 
during level walking at increasing treadmill speeds

Data points for each subject are represented with different symbols.
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Table　2　Relation between step length, step rate and walking speed（v）calculated 
by least－squares fitting（n＝7）

Coefficient of
determination

Step rate
（steps min－1）

Coefficient of
determination

Step length
（m）Subject

0.97013.4√　v 0.9810.075√　v 1
0.99012.7√　v 0.9820.079√　v 2
0.99113.3√　v 0.9930.075√　v 3
0.95214.1√　v 0.9500.071√　v 4
0.98413.3√　v 0.9810.075√　v 5
0.99313.1√　v 0.9880.076√　v 6
0.92713.5√　v 0.9730.075√　v 7

0.973±0.02513.3±0.4√　v 0.979±0.0140.075±0.002√　v Mean±SD

Fig.　3　Oxygen cost（weight－specific oxygen uptake divided by walking 
speed）for 7 subjects as a function of walking speed（A）and of 
hip－joint angle（B）

Data points for each subject are represented with different symbols.
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walking speed（vopt, m min－1）, SL（SLopt, m）, and SR（SRopt, steps min－1）for optimal walking were 

represented as a function of L（m）as follows：vopt＝108.4L2, SLopt＝0.781L, and SRopt＝138.5L, 

respectively. Accordingly, the Strouhal number（SR・L／v）for optimal walking was relatively constant

（1.27±0.03）among the subjects.

　　In animals, the contraction of muscles uses both nutrients and oxygen and excretes waste products. 

These substances are brought to, and taken away from, the muscular tissues by the blood circulation. 

Our previous study quantifying the vascular branch system based on fractal geometry suggested that for 

any organ, a basic unit composed of a single capillary and some organ－specific cells is uniform in size 

and shape in mammals17）. Differences in body size between and within species are mainly ascribed to the 

accumulated number of basic units. Accordingly, mammals have the same general skeletal muscles 

consisting of the basic unit sarcomere with respect to the contracting mechanism, irrespective of body 

size6,18,19）. In particular, the structure of the musculoskeletal system in humans is very uniform, and the 

contraction of skeletal muscles, its primary function, is independent of their size20） or growth process19）. 

Such a common musculoskeletal function fulfilling the ambulatory system supported by evolutional traits 

in humans21,22） may be designed with genetic information to bring about an optimum organ with the 

highest functional efficiency23）. The studies of terrestrial locomotion in animals and humans by Cavagna 

et al.7,8） demonstrated that there was an optimal walking speed for each animal of different size, and that 

the optimal walking was associated with the least external muscular work with which the alternate 

exchange between gravitational－potential energy and kinetic energy was maximal during a stride cycle. 

From this perspective of physiological consistency, we hypothesized that the principal mechanism by 

which the energetic cost of optimal walking per unit distance was minimized, irrespective of body size or 

especially L, would be related to the law of conservation of mechanical energy for the body and that the 

mechanism would be common to variations in individual optimal walking speeds. This point is discussed 

in the following section.

　　Fig.　4A shows the effects of both the leg deflection and planter flexion of the foot on the vertical 
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Table　3　Gait variables at minimum cost of oxygen to walk per unit of distance（n＝7）

Strouhal number
（dimensionless）

Hip－joint
angle
（deg）

Step rate
（steps min－1）

Step length
（m）

Speed
（m min－1）

O2 cost
（mL m－1 kg－1）

Leg length
（m）Subject

1.26471120.63871.70.2260.801
1.23481070.66971.70.1820.822
1.29461090.61266.70.1730.793
1.29451120.59566.70.1840.774
1.26471190.68981.70.1570.875
1.24471050.63566.70.1550.796
1.32451040.64466.70.1320.857

1.27
0.03

46
 1

110
  5

0.640
0.032

70.2
 5.6

0.173
0.030

0.813
0.036

Mean
±SD

0.0260.0270.0470.0500.0790.1710.044CV

CV：Coefficient of variation



displacement of the hip joint. In a walking model without the mechanism of the knee and ankle joints, 

the vertical displacement of the hip joint from the neutral standing position was decreased with an 

increase in angle of the inclined leg, represented by the shorter dotted line. In contrast, the vertical 

displacement of the heel from the ground was increased with the plantar flexion of the foot, represented 

by the longer dotted line. As a result, the net vertical displacement of the hip joint（the trunk or the 

body’s center of mass）, which was brought about by the sum of the opposite effects of the leg inclining 

and the heel rising, was convex upward, exhibited a zenith, and then returned to the initial neutral posi-

tion through the maximum leg deflection angle of 23.0 deg, namely a hip－joint angle（the swing leg 

angle）of 46.0 deg. Fig.　4B shows the relationship between the vertical and horizontal displacements of 

the hip joint using the results of Fig.　4A, together with a drawing of leg movements. The downward arc 
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Fig.　4　Vertical displacement of the hip joint downwards due to the step effect and 
upwards due to plantar flexion of the foot（A）. The pathway of the hip joint in the 
plane of progression（B）

A：The displacements were calculated with a leg length of 0.80 m and effective length of the foot 
between the ankle joint and the ball of the foot as 0.165 m in plantar flexion. B：The trajectory 
was derived from the relationship between the vertical and horizontal displacements during 1 
step with a 23.0 deg leg deflection from the perpendicular to the ground and with 23.0 deg foot 
plantar flexion from the ground, using the results from Fig.　4A.
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of the hip joint was counteracted by the upward arc of the ankle due to foot planter flexion, so that the 

vertical position of the hip joint（the trunk）could be approximately maintained at an even level. Such 

a counteracting effect of the harmonious lower－extremity system could sustain the pathway of the trunk 

forward at an approximately horizontal level during walking, resulting in a greater economy of metabolic 

energy due to the conservation of mechanical energy, including gravitational－potential energy and 

kinetic energy. This hypothesis is consistent with the results of studies by Cavagna et al.7,8） demon-

strating that the total work to move a given distance was minimal under the conditions that the 

exchange between the gravitational－potential energy and the kinetic energy for the center of mass of 

the body was maximal. However, the energy for the body during walking is most likely to be lost due to 

internal resistance of the body joints and of moving tissues, as well as external resistance including the 

drag in air and friction between the soles of the feet and the ground. Since part of the potential and 

kinetic energy is inevitably lost due to both resistance and friction, even though the legs and arms swing 

with gravitation, in order to keep these energies interchangeable and in balance, extra energy must be 

supplied by muscular work7,8）.

　　To verify that the presented model for analysis of human walking was useful to characterize 

optimum walking with the minimum expenditure of oxygen to move per unit of distance, we applied this 

model to the data from the literature2，3，7）. When kinematical information of both SL and L was provided 

with the optimal walking speed, the angle of the hip joint, as shown in Fig.　1, was given by θ＝2sin－1

（SL／（2 L））：1）θopt＝44.5°＝2sin－1（0.694／（2×0.916）） at the optimal speed of 80.7 m min－1

（Ref. 3）；2）θopt＝45.1°＝2sin－1（0.683／（2×0.890）） at the optimal speed of 67.5 m min－1 in calcu-

lations where a L of 0.890 m was used, although the mean L was 1.09 m measured as the floor－to－iliac 

crest length in their study2）；3）θopt＝47.2°＝2sin－1（0.80／（2×1.00）） at the optimal speed of 76.7 

m min－1（Ref. 7）. These estimates of hip－joint angle are very close to 46 deg and support our assertion 

that optimal walking for humans is achieved during leg swing oscillation at the hip－joint angle of 46 deg, 

regardless of L, although there is quite a wide variation among humans with respect to their optimal 

walking speeds.

　　Our analysis was based on the geometrically similar walking model of pendulum－like legs in this 

study. The geometric similarity, especially the static similarity, generally requires similar geometric 

forms of human body segments between one and another10）. In contrast to the static similarity, the 

dynamic similarity between 2 systems（e. g. 2 humans have the same shape but differ in size）is relevant 

to the dynamic behaviour of their motions. When 2 geometrically similar shape systems, but of different 

sizes, satisfy the dynamic similarity in kinetics, they give equal Strouhal number values（SR・L／v）, such 

as non－dimensional parameters24）. Here v, L, and SR indicate forward speed, leg length, and step rate, 

respectively, of optimal walking in particular. In this study, the mean value of the Strouhal number was 

1.27 and its coefficient of variation was 0.026（Table 3）. Because the Strouhal number for optimal 

walking is mathematically equivalent to 1／（2sin　� ） in the present model, optimal walking may exist 

under special conditions that satisfy simultaneously the static and dynamic similarity.

　　Recently, the assessment of locomotor responses to different gravity environments, such as on 

other planets than the earth, has created considerable scientific interest25,26）. Information on physical 

activity or cardiovascular dynamics under different gravity conditions will be necessary for humans to 

live safely on other planets or on space stations for short or long periods of time. In addition, clinical 
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interest may help develop a new technology of gravitational－mediated medicine, including orthopedic 

treatments and rehabilitation training, or circulatory treatment for cardiovascular diseases. However, 

currently we are interested in the economy of human walking in the earth’s environment, including 

gravity and atmospheric pressure, because it is important that hidden principles of biological design 

could be discovered in the structure and function of organs and organism systems that evolved under 

certain conditions23,27）. If humans live on other planets with different gravities for a long period, the 

muscle and skeleton masses and the distribution of blood for the body will change from those before 

moving to the other planet due to gravity changes28）. Because of such an adaptive change to different 

gravity forces, it is no longer desirable for us to estimate the optimal walking on other planets using the 

optimal solution for locomotion on the earth.

Limitations

　　Since we assumed the present model of stiff－legs swing to be that the knee and ankle joint mecha-

nisms were not operating, the accuracy of this model remains incomplete to determine precisely the indi-

viduality in walking due to some differences in musculoskeletal configurations or articular flexibility. 

Further studies are necessary to analyze the motion of walking from not only the sagittal view, but also 

the frontal view, using a more realistic walking model with a mechanism of multiple joints.

CONCLUSIONS

　　The minimum oxygen cost to walk per unit distance was achieved during the swing of 2 legs 

between which the hip－joint angle was about 46 deg, regardless of L. The stiff－legged model demon-

strated that the pathway of the trunk during optimal walking was approximately maintained at a hori-

zontal level by the counteracting effects of leg decline and heel rise. The minimization of vertical 

displacement of the trunk resulted in optimal walking with the lowest rate of oxygen expenditure at 

which extra muscular work would be needed against the internal and external resistance, as well as 

against gravitation, which was most probably minimized by the maximum interchange between the gravi-

tational－potential and kinetic energy.
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