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Abstract 

Accumulating evidence have indicated that orexin-A in the brain 

stimulates vagal flow projecting to the stomach.  Since the vagal system 

palys an important role in gastric mucosal integrity, we examined in the 

present study the effect of central orexin-A on the development of gastric 

mucosal damage evoked by ethanol in rats.  Intracisternal but not 

intraperitoneal injection of orexin-A significantly inhibited the severity of 

gastric mucosal damage by 70 % ethanol in a dose-dependent manner, 

suggesting that orexin-A acts in the brain to prevent ethanol-induced gastric 

mucosal damage.  The anti-ulcer action was observed in rats received with 

central administration of orexin-A but not orexin-B, indicating that the 

action is mediated through orexin 1 receptors.  The gastroprotective action 

of central orexin-A was blocked by pretreatment with atropine, 

Nw-nitro-L-arginine methylester or indomethacin, respectively  All these 

results suggest that orexin-A acts in orexin 1 receptors in the brain to exert 

a gastroprotective action against ethanol.  Vagal muscarinic system, nitric 
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oxide and prostaglandins may mediate the cytoprotective action by central 

orexin-A. 
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Introduction 

Orexins/hypocretins are novel neuropeptides that are localized in 

neurons in the lateral hypothalamus1, 2,.   On the other hands, 

orexin-immunoreactive fibers and terminals, and specific orexin receptors 

are distributed in a wide variety of nuclei in the central nervous system3, 4 .  

Based upon these neuroanatomical evidence, orexinergic projection should 

be involved in a number of biological functions.  It has been so far 

demonstrated that orexins may be implicated in a wide variety of 

physiological functions.  These include feeding1, 5, 6, behavioral activity 7, 

sleep/awake 8-10, anxiety11, energy balance 12, neuroendocrinological 

response 13 and cardiovascular functions 14, 15.  In addition to these 

functions, we have demonstrated for the first time that orexin-A is involved 

in central regulation of gastric acid secretion 16-18.  Central but not 

peripheral injection of orexin-A dose-despondently stimulated gastric acid 

secretion in conscious rats 16.  The acid stimulation by central orexin-A 

was completely blocked by atropine or surgical vagotomy, suggesting that 
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orexin-A acts in the brain to stimulate gastric acid secretion through the 

vagal system.  Considering the potent orexigenic action of orexin-A, 

orexin-A may be an important candidate as a mediator of the cephalic 

phase secretion as proposed by Pavlov 19.  The vagal dependent 

stimulation of gastric acid secretion of orexin-A furthermore supports the 

hypothesis that orexin-A may play a vital role in cephalic phase gastric 

secretion because it has been recognized the importance of the vagus in 

conveying the neural impulses that mediate cephalic phase gastric secretion 

20.   

The vagal system is involved in not only the regulation of gastric 

acid secretion but also maintaining gastric mucosal integrity.  For instance, 

vagal stimulation induced by 2-deoxy-D-glucose prevented 

ethanol-induced lesions in intact but not in vagotomized rats 21.  Recent 

accumulating evidence 22, 23 that orexin-A acts centrally in the brain to 

influence vagal tone led us to speculate that brain orexin-A might possess 

gastroprotective action through modulating vagal tone.  The aims of the 
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present study were 1) to examine whether orexin-A in the brain exerts 

gastroprotective action against ethanol-induced gastric mucosal damage 

and 2) to investigate the mechanisms underlying the protective effect of 

orexin-A.  

 

Materials and Methods 

Animals 

 Male Sprague-Dawley rats weighing approximately 120 g were 

housed under controlled light /dark conditions (lights on: 07:00 - 19:00) 

with the room temperature regulated to 23-25oC.  Rats were allowed free 

access to standard rat chow (Solid rat chow, Oriental Yeast Co., Tokyo, 

Japan) and tap water.  All experiments were performed in conscious 

animals deprived of food for 24 h but with free access to water up to the 

initiation of the experiments.   
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Chemicals 

 Synthetic orexin-A (human/bovine/rat/mouse) and orexin-B 

(human/rat) were purchased from Peptide Institute Inc., Osaka, Japan and 

were dissolved in normal saline just before experiments.  Atropine sulfate, 

and Nw-nitro-L-arginine methylester (L-NAME), an inhibitor of nitric 

oxide (NO) synthase, obtained from Sigma (St Louis, MO, USA) were 

dissolved in saline and injected subcutaneously in 1 ml/kg.  Indomethacin 

was purchased from Sigma, dissolved in 7 %sodium bicarbonate solution 

and injected intraperitoneally in 1 ml/kg. 

 

Treatments 

Gastric mucosal damage was induced by 1 ml of 70 % ethanol 

through an oroesophageal tube.  Rats were sacrificed 60 min after ethanol 

administration.  The stomachs were removed and examined for mucosal 

lesions.  We initially examined the dose-related effects of intracisternal 

injection of orexin-A on the severity of gastric mucosal lesions by ethanol.  
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As a control, whether intracisternal injection of orexin-A by itself is 

capable of inducing gastric mucosal damage was examined.  Rats in this 

group did not receive the administration of ethanol.   All animals received 

intracisternal injection (10 µl) of several doses of orexin-A.  Intracisternal 

injection was performed under brief ether anesthesia with a 10-µl-Hamilton 

microsyringe after rats were mounted in a stereotaxic apparatus (David 

Kopf Instruments, Tijunga, CA, USA) as previously described 24.  

Following the intracisternal injection, rats were returned to their cages.  

One h after the treatment, rats received administration of 70 % ethanol, and 

one h later the stomach was removed.  Effects of intracisternal injection of 

orexin-B or intraperitoneal administration of orexin-A on the severity of 

gastric mucosal damage induced by 70 % ethanol were also examined 

similarly. 

Effects of atropine, L-NAME or indomethacin on the 

gastroprotective action by orexin-A were examined to clarify possible 

mechanisms by which orexin-A exerts cytoprotecetive action against 
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ethanol.  Rats received each chemical subcutaneously or intraperitoneally 

and 60 min after the administration, 70 % ethanol was given to the stomach.  

One h after intubation of ethanol, the stomach was removed.  The doses of 

atropine (2 mg/kg), L-NAME (70 mg/kg) or indomethacin (5 mg/kg) were 

selected according to previous studies 25- 27. 

Assessment of gastric mucosal lesions 

Gastric lesions were assessed macroscopically.  Each stomach 

was opened along the greater curvature, gently rinsed in saline, opened to 

expose the mucosa, and photographed using a digital camera.  The lesion 

area out of the total area of corpus was calculated and the percentage was 

determined as the severity of gastric lesions. 

 

Statistical analysis 

 The results are expressed as mean ± SEM.  Statistical analysis 

was performed by analysis of variance and subsequent Fisher's LSD test.  

P < 0.05 was considered statistically significant.   
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Ethical considerations 

 Experiments were conducted in accordance with the Guide for the 

Care and Use of Laboratory Animals published by the Public Health 

Service.  The approval of the Research and Development and Animal 

Care committees at the Asahikawa Medical College was obtained for all 

studies.  

 

Results 

First, we examined whether intracisternal injection of orexin-A by 

itself induces gastric mucosal damage.  Intracisternal injection of orexin-A 

at 10 µg dose did not induce any gastric mucosal lesions in 10 rats.  Next, 

the effect of intracisternal administration of orexin-A on the severity of 

gastric mucosal damage evoked by 70 % ethanol was assessed 

macroscopically.  Figure 1 shows the representative macroscopic 

appearance of gastric mucosa in rats that had been treated with 
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intracisternal injection of saline or orexin-A in a dose of 10 µg.  Ten µg 

dose of orexin-A completely protected against ethanol-induced gastric 

mucosal lesions when compared with saline control.  As shown in the 

Figure 2, the gastropeotective action of central orexin-A was 

dose-dependent.  To clarify whether orexin-A acts centrally to exert its 

gastroprotective action, we examined the effect of peripherally 

administered orexin-A on the development of gastric mucosal damage by 

ethanol.  Intrascisternal injection of orexin-A in a dose of 10 µg potently 

inhibited the severity of gastric mucosal lesions while intraperitoneal 

injection of orexin-A in a same dose failed to protect against 

ethanol-induced gastric lesions (Table 1), suggesting that the 

gastroprotective action of orexin-A is mediated via the central nervous 

system.   

We have next compared the effects of orexin-A and orexin-B on 

the severity of ethanol-induced gastric mucosal damage.  Intracisternal 

injection of orexin-A (10 µg) but not orexin-B (10 µg) suppressed the 
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development of gastric mucosal lesions by ethanol (Figure 3), indicating 

that orexin-A specifically exerts its gastroprotective action against ethanol.   

 In the next step, we tried to clarify the mechanisms by which 

centrally administered orexin-A exerts gastroprotective action against 

ethanol.  Role of the vagal-muscarinic system, nitric oxide and 

prostaglandins in the gastroprotective action by orexin-A was evaluated.  

Rats were pretreated with atropine (2 mg/kg), L-NAME (70 mg/kg) or 

indomethacin (5 mg/kg), and the effect of orexin-A on the severity of 

gastric mucosal lesions by ethanol was assessed.  As illustrated in Figure 

4 and 5, and Table 2, atropine, L-NAME or indomethacin blocked the 

cytoprotective action by orexin-A.  Atropine, L-NAME or indomethacin 

alone did not modify gastric lesions induced by ethanol, being in agreement 

with previous reports 25- 28,.    

 

Discussion 

 The present study demonstrated for the first time that centrally but 
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not peripherally administered orexin-A exerts a dose-dependent 

gastroprotective effect on ethanol-induced gastric mucosal damage, 

indicating the site of action of orexin-A must be in the brain.  It has been 

shown that a number of chemicals act centrally in the brain to exert 

gastroprotective action 27, 29-32.  Based upon the present evidence, we 

would suggest that orexin-A should be listed as one of neuropeptides in the 

brain that have gastroprotective action against ethanol.  

Orexin-A and orexin-B were initially identified as endogenous 

peptide ligands for two orphan G protein-coupled receptors 1.  In the 

present study, the effect of intracisternal injection of orexin-A or -B on the 

severity of gastric mucosal damage by ethanol was examined and it was 

clearly demonstrated that the gastroprotective action was induced by 

orexin-A but not orexin-B.  It has been so far shown that orexins bind to 

two specific receptors, named OX1R and OX2R.  According to in vitro 

binding and functional assays, OX1R is selective for orexin-A and OX2R is 

non-selective for orexin-A and orexin-B1.  Based upon the finding, the 
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lack of gastroprotective action of orexin-B may suggest that 

orexin-A-induced anti-ulcer action against ethanol may be mediated by 

OX1R. 

The vagal system is involved in maintaining gastric mucosal 

integrity.  For instance, vagal activation could exert gastroprotective 

action against ulcerogenic stress including ethanol 21, 27.  Since 

accumulating evidence have indicated that orexin-A administered into the 

cerebrospinal fluid acts in the dorsal motor nucleus of the vagus (DMN) 

neurons in the medulla oblongata, cells of origin innervating the stomach 

through the vagus nerve, to activate vagal flow 22, 33, 34, the gastroprotective 

action by central orexin-A may be mediated by the vagal system.  In fact, 

the present study demonstrated that atropine completely blocked the 

gastroprotective action by central orexin-A, supporting the above 

speculation that the vagal system plays an important role in the 

gastroprotective action by centrally administered orexin-A. 

It has been demonstrated that nitric oxide plays an important role 
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in maintaining gastric mucosal integrity 35.  Kiraly et al. have 

demonstrated that NO is involved in the gastroprotection by central vagal 

stimulation 36, suggesting that gastric NO synthesis and release might be 

under vagal control.  The gastroprotective action of centrally administered 

orexin-A appears to be mediated by the NO pathway because inhibition of 

NO synthesis by L-NAME completely abolished the gastroprotective effect 

of orexin-A as shown in the present study.  Interestingly, Farr et al. have 

very recently demonstrated that subcutaneous injection of L-NAME 

blocked orexin-A-induced increase in food intake in rats and orexin-A 

failed to increase food intake in the NO synthase knockout mice 37.  They 

further demonstrated that L-NAME drastically inhibited NO synthase 

activity in the hypothalamus.  These results suggest that NO in the brain 

plays a vital role in the orexin-A-induced food consumption.  The present 

data that L-NAME also blocked the gastroproteective effect by orexin-A 

may raise a possibility that NO in the brain might also contribute to the 

anti-ulcer action by central orexin-A.  According to the observation by 
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Zheng et al., as many as 20 % of hypothalamic orexin neurons project to 

the dorsal vagal complex including the DMN neurons in the medulla and 

some of which are in close anatomical apposition with nitric oxide 

synthase-immunoreactive neurons 38.  These observation furthermore 

support that NO is implicated in the signal transduction from the vagal 

preganglionic neurons in the brain to the stomach to exert the 

gastroprotective action by central orexin-A.   

 Endogenous prostaglandins in the gastric mucosa are thought of 

as mediators of cytoprotection 28.  In fact, exogenously administered or 

endogenously released prostaglandins are well established to protect gastric 

mucosa against ethanol 28.  Yoneda et al., have demonstrated that 

endogenous prostaglandins are involved in the gastroprotection by vagal 

stimulatio by central TRH, suggesting that vagus nerve plays a vital role in 

gastric prostaglandin synthesis and release 27, 39 .  The gastroprotective 

action of centrally administered orexin-A appears to be mediated by 

endogenous prostaglandins similarly as TRH because inhibition of 
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prostaglandin synthesis by indomethacin completely blocked the 

gastroprotective effect of orexin-A as shown in the present study.  In 

addition to endogenous prostaglandins, heat shock protein known as a 

gastroprotective molecule expressed in the gastric mucosa 40 might be 

related to the mechanisms by which central orexin-A protects gastric 

mucosa against ethanol.  Further studies shhoud be needed to clarify the 

above speculation. 

 In conclusion, the present study demonstrated for the first time that 

orexin-A acts in the brain to prevent ethanol-induced gastric mucosal 

damage.  It is also suggested that OX1R in the brain, vagal pathway, and 

endogenous NO and prostaglandins are implicated in the gastroprotection 

by central orexin-A.   
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Table 1 

Effect of intraperitoneal injection of orexin-A on the severity of gastric 

mucosal damage induced by ethanol 

  Number of animals  Gasatric lesions (%) 

Saline   5   12.3 ± 1.7 
Orexin-A  5   13.2 ± 2.6 

 

Rats received intraperitoneal injection of either saline or orexin-A (10 µg).  

One h after the injection, the animals were given 1 ml of 70 % ethanol 

through an oroesophageal tube.  One h after ethanol, the animals were 

sacrificed and the stomachs were removed.  Each stomach was opened 

along the greater curvature and photographed using a digital camera.  The 

lesion area out of the total area of corpus was calculated and the percentage 

was determined as the severity of gastric lesions.  Each result is expressed 

as mean ± SEM. 
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Table 2   

Effect of intraperitoneal injection of indomethacin on the severity of gastric 

mucosal damage induced by ethanol 

       Number of animals     Gastric lesions (%) 

vehicle (ip) + saline (ic)   5  14.4 ± 2.1 
indomethacin (ip) + saline (ic)  5  13.8 ± 1.9 
vehicle (ip) + orexin (ic)   7   3.4 ± 0.5 * 
indomethacin (ip) + orexin (ic)  8  14.1 ± 1.6 

 

Rats received intraperitoneal injection of either vehicle or indomethacin (5 

mg/kg) and intracisternal injection of saline or orexin-A (10 µg/10 µl) 30 

min after the intraperitoneal injection.  One h after the injection, the 

animals were given 1 ml of 70 % ethanol through an oroesophageal tube.  

One h after ethanol, the animals were sacrificed and the stomachs were 

removed.  The lesion area out of the total area of corpus was calculated 

and the percentage was determined as the severity of gastric lesions.  Each 

result is expressed as mean ± SEM.  * p < 0.01 when compared with 

vehcle (ip) + saline (ic).  
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Figure legends 

Figure 1 

Representative macroscopic appearance of ethanol-induced gastric 

mucosal damage in rats injected intracisternally with either saline control 

or orexin-A. Rats received intracisternal injection of either saline (10 µl) or 

orexin-A (10 µg/10 µl).  One h after the injection, the animals were given 

1 ml of 70 % ethanol through an oroesophageal tube.  One h after ethanol, 

the animals were sacrificed and the stomachs were removed.   Each 

stomach was opened along the greater curvature. 

 

Figure 2 

Dose response effect of intracisternal injection of orexin-A on the 

severity of ethanol-induced gastric mucosal damage.  Rats received 

intracisternal injection of orexin-A (0, 2.5, 5, 10, 20 or 40 µg/10 µl).  One 

h after the injection, the animals were given 1 ml of 70 % ethanol through 

an oroesophageal tube.  One h after ethanol, the animals were sacrificed 
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and the stomachs were removed.  The lesion area out of the total area of 

corpus was calculated and the percentage was determined as the severity of 

gastric lesions.  Each bar represents the mean ± SEM of 5-12 animals.   

* p < 0.01 when compared with control (orexin-A, 0). 

 

Figure 3 

Effect of intracisternal injection of orexin-A or orexin-B on the 

severity of ethanol-induced gastric mucosal damage.  Rats received 

intracisternal injection of saline, orexin-A (10 µg/10 µl) or orexin-B (10 

µg/10 µl).  One h after the injection, the animals were given 1 ml of 70 % 

ethanol through an oroesophageal tube.  One h after ethanol, the animals 

were sacrificed and the stomachs were removed.  The lesion area out of 

the total area of corpus was calculated and the percentage was determined 

as the severity of gastric lesions.  Each bar represents the mean ± SEM of 

6 animals.  * p < 0.01 when compared with saline control. 
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Figure 4 

 Effect of atropine on the gastroprotection by central orexin-A.  Rats 

received subcutaneous administration of saline or atropine (2 mg/kg) and 

intracisternal injection of saline or orexin-A (10 µg/10 µl) 30 min after the 

subcutaneous injection.  One h after the intracisternal injection, the 

animals were given 1 ml of 70 % ethanol through an oroesophageal tube.  

One h after ethanol, the animals were sacrificed and the stomachs were 

removed.  The lesion area out of the total area of corpus was calculated 

and the percentage was determined as the severity of gastric lesions.  Each 

bar represents the mean ± SEM of 7 animals.  * p < 0.01 when compared 

with saline control. 

 

Figure 5 

 Effect of L-NAME on the gastroprotection by central orexin-A.  

Rats received subcutaneous administration of vehicle or L-NAME (75 

mg/kg) and intracisternal injection of saline or orexin-A (10 µg/10 µl) 30 
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min after the subcutaneous injection.  One h after the intracisternal 

injection, the animals were given 1 ml of 70 % ethanol through an 

oroesophageal tube.  One h after ethanol, the animals were sacrificed and 

the stomachs were removed.  The lesion area out of the total area of 

corpus was calculated and the percentage was determined as the severity of 

gastric lesions.  Each bar represents the mean ± SEM of 7 animals.  * p < 

0.01 when compared with saline control. 
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