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SPECIAL SUBSPACES
IN A FINSLER SPACE

Hiroshi Yasupa

Introduction. In the previous paper [6]1). we developed a thoery . of subspaces
in a Finsler space through three kinds of connections (Matsumoto connections, TA4D-
connections and 7M-connections). As for special subspaces, however, we could not
make a full discussion of them there.

The principal purpose of the present paper is lo make up for the above insuffi-
ciency. The terminologies and notations refer to papers [2] ~[7] unless otherwise
stated.

§1. Preliminaries. Let A4, be an n-dimensional Finsler space with a fundamen-
tal function L{x', ¥'), and be endowed with a Matsumoto connection M = (I}, I,
'E,‘k). This connection is defined as follows ([4], [5]): The w-connection is given by
a (—I}p-homogeneousz) tensor . The non-linear connection and the /-connection

are given by
(1. 1) I = Gt T,
(1.2) Fy=Tw+ Q=G+ T/ + @

where the symbol II; indicates the partial differentiation by ¥, G and G}, (= G'y,)
are the non-linear connection and the A-connection of Berwald, 7% and &/ are (1)
p- and (0) p-homogeneous tensors respectively and 777, = Ty,

An MIis called a TMD(resp. TMD(O))-connection and denoted by TMDI
(resp. TMDI,) if the tensors 7, D', @/ and ?f,-’,, are given as follows:

1) Numbers in brackets refer to the references at the end of the paper.

2) “(¥) p-homogeneous” means “positively homogeneous of degree »in ™.
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(1 3) Tok = T’g O. ’Ef;'g- = lea (!AUSD. ?_.l;,- — 0)

[l

(1. 4) D‘.k + Q,-m = 0, D;;— = [,’;‘D\m Dy = szl.»,

where g, and C/, are the metric tensor and the C-tensor on A, respectively, the
upper or lower index o indicates contraction by y, or ¥ and Q= gs &

A TMDr (resp. TMDI',) is called a TM (resp. TM(0))-connection and denoted
by TMT (resp. TMI,) if the tensor @, satisfies

(1.5) Qo= Q%=

Note 1.1. An MTI is a quite general connection with no metrical property.
TMDI (resp. TMDI,) satisfies the following axioms: (F1) metrical (L= O). (F3)
v-metrical and v-symmeyric (H(f,-'k = C}) (resp. (F3); v-natural (a‘k = ). (F4) Dy-
reciprocal (y'Dg; = 0). (F5) a geo-path connection (paths with respect to this con-
nection are always geodesics of M,). A TMr (resp. TMr,) further satisfies the
axiom : (F2) dft-free (D, = ). This connection is a slight generalization of the fol-
lowing connections : Cartan connection CI', Hashiguchi one AHI", Rund one RI" and
Berwald one BI' etc.

Let M,, be an m-dimensional subspace of M, represented parametrically by

the equation

(1. 6) M=xu) (i= 1,2 eevee ija= 1,2 seses )

where we suppose that variables #* form a cocordinate sysyem of M, and the mat-
rix with components B, (=3x'/3u°) 1s of rank m.

3)
If we denote the components of a vector »' tangent to a curve in M, by »

in terms of #°-system, then we have

(1.7) y= By, Y. =2ay oy =25,

The induced fundamental function L(x°, y°) and the metric tensor Zar(us, ¥

on M, are given by
(1.8) L = L(x'(u*), BL.y), &= guBiy: = guByB",.

We choose #-m unit normal vectors Ni (@ = m+ 1, «+++, %) at each point (z)

of M, such that

3) If no confusion occurs, then we shall use y»° in stead of the usual notation 27
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(1.9) gilNa Ni = 6, BLN! = 0, NI = g;Nj.

If we put Bf = g,;B,¢%, where g is the reciprocal tensor of Z.a4, then the

inverse matrix of (B, N}) is given by (87, N7). In this case, the following relati-

ons hold :

(1. 10) Bljp= GWlNE Oy = CAN] BeBY:

&L LT Nijp= —8CE, By — M N, By =NEN

(L 138) B l,= 000, =200, Cb:= CLNFNLBY,

The induced Matsumoto connection M = (ry,, e, Cs) on M, is defined

as follows [6]:

(L13) I, = BI (B, + TABY) + ToHg,
(1.14) e = Br(Bd, + B, Cy, = ThBrBj,

where we put
(1. ].5) B'gl-:, = GBE,. /5’%5. BO’;« = J)HB,?:;/, ’a":s'cb — al:kBlaBjﬁMk 1
(1.16) H*, = Nt (B, + 'y B*).

The normal curvature vector in a direction N is given hy (1. 16), while the

second fundamental tensor in the same direction is given by
(1.17) Hyy = NI (B, + B4 ) + T

where Cg2, = Ci, B, N* Nt .
Let Rw be the f-curvature tensor with respect to JMr. If we contract this

tensor by y°y*, then we have

~

Rﬂ&ﬁy = ??’mmBai# 1 f§a‘éhBé % Ny 0 H;’
(1L.18)  + BN (PaHy — PuBH ) + Hiolga, B NS + 5,5H,)
— f”foav(g;‘klﬁyﬁBjal P & Hai}”)'

~

~ L P —~ ~ ~ i —_~ ~ 7
where R, = ¥ ¥, S = S;w;:.‘v”', Pow= Pj;uy’y" and Rj:‘khn S}zkh. P}zkil are the #-,

v-, hv- curvature tensors respectively.
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§ 2. Totally n-parallel subspaces. In the previous paper [6], “we investigated
the following subspaces :

(a) a totally geodesic subspace M, of M,, in which each geodesic of M, 1s
alwavs a geodesic of M,.

(b) a totally auto-parallel subspace M, of M,, n which each path of M, with
respect to IMI" is always a path of M, with respect to MI"

(¢) a totally h-auto-parallel subspace M,, of M., in which each h-path of MM,
with respect to IMI" is always an h-path of M, with respect to M.

In this section, we shall consider another parallel subspace.

We shall say that M, is a fotally n-parallel subspace (or simply fotally n-parallel)
with respect to IMI™ if each normal vector N is parallel along any curve in M,
with respect to IMTI.

Note 2. 1. Subspaces (b) and (c) correspond to a hyperplane of the first kind
and of the second kind respectively in the theory of hypersurfaces ([1], [2]), while
the above new subspace corresponds to that of the third kind.

The ahsolute differential of A/ is given by

(2. 1) DN/ = Ni\, du? + Ni|, Dy,

where

2.2) NPy, = (NPNE) NG — g% (g, B NE + 8w Hy) B,
(2.3) Nil, = (NENE|) NG — 8%(gal, Ba NE + 04 CYy)BY.

Let M, be totally »-parallel. Then from (2.1) ~ (2. 3) we obtain

(2. 4) Gy Bl NE + 8uHS, = 0,
(2.5) 2ul; BlsNE + 84 Cé, = 0,
(2. 6) NENE = 0,
5. NENE|, = 0.

If we put Ci, = CénB",, then we have Nj|, = Njy, + Ci; N Therefore

it follows from (1.11) that N? N/}, = — AL, + Tt , where ’C’,,b., = ﬁCU;,",N";l Nt

Consequently the condition (2.7) is equivalent to
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(2.8) W, =0k
Differentiating the first in (1.9) %-covariantly by #’, we have

€y Ni Ni+ NE NGy, + NP, = 0,

a |y

which shows that the condition (2. 6) is equivalent to
(2 9) gijlrM M’: = O: -"\{ja A’? Ir = -{Vfb Ar? 1r-

Consequently we can state

Theorem 2.1. A subspace M, of M, is lotally n-parallel with respect to IMI i
and only if equations (2.4), (2.5), (2.8) and (2.9) hold.

The projection factors 5%, are independent of a direction y*, while the recipro-
cal ones Bf are dependent on it. Then it follows from (1.10) that Bry, = @ if and

only if the following equation holds :
(2.10) Ol = E5=CL=Cu =0

We shall say that M,, is projection factor-divection-free or simply pfd-free if the
equation (2. 10) holds on M,,.

Note 2.2. It is known [6] that if A, is pfd-free, then the induced connection
IMT is the intrinsic one on M,

Suppose that the MI™ is an f-metrical TMI (or TMDI). Then we have

cﬁ'ﬁr = Cﬂb:r' ng]r = gijlthr =0,

(2.11)
gily = g!ﬂthr i gnlnl)vuu H;-z = o

Therefore, from (2. 4), (2.5), (2.8), (2.9) and (2. 11) we obtain
(2.12) Cs =0, Hf =
(2.13) A, =Cf,, NINj, = NN,

Consequently we can state
Corollary 2. 1. 1. Lei the connection MI™ i consideration be an h-melrical TMIT
(or TMDI). Then a subspace M, is fotally n-pavallel with vespect to IMI if and

only if M,, is pfd-free, each second fundamental {fensor vanishes and the wvelation
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(2. 13) holds.
If the Mr is an h-metrical TMI's(or TMDI,), then we obtain

(2.14) Ty =0, Bilv=00 By =BCHE

where Cy, = CyuB*, and Cy = CuNi. Therefore, by virtue of (1.12), (2.14) and

Theorem 2.1 we first obtain (2. 12) and then
(2 15) Ag} o= Cb“r( = Caby) = 0'
(2 16) CabcH; = O. ME A'Uillly = Mﬁ N‘Lly: Cnir: = C,‘,ki'\}':;N’LNE:

Consequently we can state

Corollary 2. 1. 2. Let the connection MI in consideration be an h-metvical TMI,
(or TMDI',). Then a subspace M, is totally n-pavallel with vespect to IMI' i and
only if M,. is pfd-free, eaeh second fundamental ftensor vanishes and the wrelations
(2.15) and (2.16) hold.

In the following, we shall call a TMI" or a TMDI (resp. a TMI', or a TMDI)
a T-connection (resp. a T(0)-connection) generically and denote it by 77T (resp.
Tr,).

For the induced T(or T(0))-connection [T (or ITT",), we have

(2.17) e i = P e = He 4 DRy, DY 1 = DRNEBY,.

We shall say that the induced connection I7T (or ITI,) satisfies the D-condit-

ion if each D¢, vanishes. Then we can state

Lemma 2. 1. The following induced connectons satisfy the D-condition:

(1) Al the induced TM(or TM(0) ) connections.

(2)  The induced AMD(or AMD(0) )-connections.

(3) The induced MD, AMBD, AMCD-connectios (or respective corresponding (0)-
CORNECtions).

Proof. For (1), from (1.5) we have D\, = @)= 0 and hence D% = 0. Next,
an AMD(or AMD(0) )-connection is an A-metrical TMD (or TMD{0)) -connection
defined by

(2.18) .= G+ fLki, Fjik = P‘f@ — fLC}y, Diy= —fLhkY,

where fis a (0) p-homogeneous scalar, "%, is the i-connection of Cr' and &' is
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the angular metric tensor. In this case, we have D% = 0 because of (1.9). Lastly,
an MD(or MD(0))-connection is also an h-metrical TMD (or TMD(0)) -connection
defined by

(2.19) =G Fiv= T4+ (L3 — U'ga), D= fLR,,

which implies D, = 0. Successively, an AMBD (or AMBD(0)) -connection and an
AMCD(or AMCD(0) )-connection are both Z-symmetric TMD(or TMD{(O) )-connecti-
ions defined as follows: I''iv = G%, I'ii= Gi + Q4.

(2 20) Q;k = f( [;h o [;- h fyo ['h;'.‘,) = P,‘r{- (AJWBDF{{)r Fu) );
(2.21) Qi = S+ Lh'i— Uhy) (AMCDI {or I',)),

where P}, is the hu-torsion tensor of CI'. Contracting (2.20) and (Z.21) by y', we
have D' = fLh% and hence D¢, = 0. Q. E.D.
Note 2.3. In Corollaries 2.1.1 and 2.1.2, M, is also a totally geodesic subspace
if the IMI satisfies the D-condition.
Note 2.4. Practical examples for Corollaries 2.1.1 and 2.1.2 are as follows
([2], [5], [6]):
T™r : Cr, ISr, AMRP ««- TMDr - AMDEr, CDI', MDI™ .
TMr,: R, ISry, AMRIg +«+ TMDIy: AMDIy, RDI, MDI; +++

Since N4, = AL N, from (1.16) and (1.17) we have
2. 22) Hip = (A% — Co) HY + Hy, — QF,, QF, 1 = Qi N*Bi*.

It @, = 0, then we have vy @, = D% = 0. Consequently, by virtue of (2.17)
and (2. 22) we can state

Lemma 2. 2. Suppose that the connection MI" in consideration is a T (or TT,)
and the induced connection IMI™ satisfies QF, = 0. Then each Hj, vanishes if and
only if each H® vanishes, that is, M, is totally geodesic.

Further we can state

Lemma 2. 3. The following facts hold -

(@) If M, is pfd-free, then a relation Cyu T", = Cyo T, holds,

(b) A condition Cu, = O implies Cow T*, = Cu T, ,
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where Cya = CinBa Ni, Cap = Ce B3 Na NG, Caw = CaNLN,, T = ThB and
Te = T\NiB",.
Proof. Since B’.By = &7/, — N, N}, we have
Cou T%, = (CouBLY(BE T") = Con T — Cou T =0,
which implies (a). Similarly we obtain
Cuse Ty = (CayB") (B T") = Cn T* — Cax T = 0,

which implies (b). Q. E.D

A GTror GTr,) is a TMr(or TMTI',) whose hv-torsion tensor vanishes, 1. e.
@/, = 0. Then we can state

Corollary 2.1.3. Lel the connection MI' in consideration be a GTr (vesp.GTIy).
Then a subspace M,, is totally n-parallel with respect to IMI” if and only if M, is
both pfd-free and totally geodesic and further the following equations (2. 23)and (2. 24)
(vesp. (2.25) and (2.26)) hold :

(2.23) Toey + Tagy + 2(Caes T + Pay) = 0, N}Niy; = NiNy,,
(2. 24) Tar + Ty + 2(Cae Ty + Cate T + Pay) = 0, A% = Gy,
(2.25) " Toay + Tagy + 2 Poay = 0, N!Niy, = NiNjy,,

(2. 26) T + Tiy ¥ 2(Cia T + Pad =0, X3, =G5 = 0,

where TE!JT = TFI-RNLB::-'";" Pﬁ-’-’:’ = J*N:IB}H‘:' Tﬂbr = Tuk]velzN';!Bk)—: Pab7 = P,ﬁ.N;NJ,;BkT'
T = 8 T} and Piw=gu Pl
Proof. For either of connections GTT and GTT,, we have yigsu = 0. There-

fore, contracting (2.4) by »*, we get H: = 0(M,,: totally geodesic) and hence H%,

— 0 because of Lemma 2.2. In this case, from (2. 4) and (2.9) we obtain

ngI:'Bj:?jV: = —(Tpey + Ty + 2 Caan T" + 2PF;,) =0,
(2.27)
gjklyNi:Nﬁ — —(Tan’iy + Tba7 + zcﬂM Thr + 2P:¢-'17) = 0
On the other hand, from (2.5) we get C;, = O(resp. 2, = ) (M, i pid-free).

Applying Lemma 2.3 to (2.27) and taking account of Theorem 2.1, we can deduce
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Corollary 2. 1. 3. Q.E.D.
Note 2.5. Practical examples for Corollary 2.1.3 are HrI", ISP and Br.. Isr,.
§3. Totally ned-free subspaces. In this section, we shall be concerned with

subspaces that correspond to totally umbilical subspaces in Riemannian geometry.
Let f(u", y°) be a scalar on M,. Then it is said that the scalar fis direct-free

if it is independent of y°.
We shall call a point (%°) of M,, an ncd-free (resp. ne-constant) point if the
following relation holds at the point («°) for direct-free scalars f/* (resp. constants

i}
3.1) VH; =He= L2 (a= m+ 1, veoes, n).

In this case, the square of the normal curvature N(u, ) in y°-direction at the
point (#°) is given by N’ = §,/*f". Therefore the normal curvature at an ncd-free

(resp. nc-constant) point is direct-free (resp. constant).

We shall say that M, is totally ncd-free (resp. nc-comstant) if every point of
M, is an ncd-free (resp. nc-constant) point,

In the following, we assume that M, is endowed with a geo-path connection
M. In this case, it is known [6] that the induced connection IMTI” is also a £2eo-

path connection on A,, and that the following relation holds :
3.2) T, = Téy = 0, Hi= He: = Ni(B), + 2G").

If we differentiate (3. 1) by »* on making use of (3.2) and divide the result by

2, then we have
(3.3) H" % Aé, A = S5y,
b - =
where H = Ni(B},+ G%B") and y,= LaL / a9y’ (= 837,
Further if we differentiate (3.3) by 3*, then we obtain
b ” b & , 1
(3.4) Hﬂ,:f”g,;,—(/\?i,;HfH-)\Z,Hﬁ] 3 ,.(AMH- A AG),

b
where H,%, = N{(By, + GABj%). By virtue of (3.1) and (3. 3), the expressions (3. 3)

and (3. 4) are expressible in

3.3)’ b= foy, —

2ya b
L5,

{\)m
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4 a h a I r2 e ]
(3 4‘}’ Hﬁ P fagﬂr - fl‘ ()\ b Yy + ’\?JTJE] - 2 L“fh ('1 bylla ’ltﬂ Ag}‘)

Conversely if we contract (3.3) (or (3.3)) and (3.4) (or (3.4)) by »*, then we
get (3.1) and (3.3) (or (3.3)). Hence we can state
‘Theorem 3. 1. Let M, be endowed a geo-path connection MI'. Then the jol-

lowing facts mutually equivalent

(a) M, is totally ned-free (vesp. nc-costant).

(b) For direct-free scalars f*(resp. constants %), the equation (3.3) (or (3.3))
holds on M,

(c) For direct-free scalars f° (vesp. constanis [*), the equation (3.4) (or (3.4))

holds on M,,.
In the following, we shall consider only a Tr(or 77,) and the induced conne-
ction /7T (or ITT,). In this case, since Gl = Gl or Cii = 0, we first have Sy =

0. Further we have
b : 4) )
(3 5) Hﬂar = HE'I? + ?.'J‘n'r + Qﬁ'dr = [Cj’H“f] 1 Tif”'r: = T}lk“\r‘:Bgﬁ'
Contracting (3.5) by y* or by »*, we obtain
b
(3. 6) HE=H; % T%+ D%,
h [
(3.7) He, = Hy— T% + Q) + [CAHL].
For the sake of simplicity, we impose the following assumption (called the
TDQ-condition) -
(3. 8) =0, D=8 @Qf5=0.

In this case, we can state
Lemma 3.1. The induced connections on M,, from the following connections
satisfy the TDQ-condition
(a) TMr: Cr, Hr, AMBr, AMCr, AMRI";, TMr,: RI", BI', AMBI,,
AMCr,, AMRT,,
(h) TMDI: AMDI', AMBDI, AMCDIr, MDr; TMDr,: AMDr,,
AMBDI,, AMCDIr,, MDI",

4) In the following, the terms within the square brackts [ ] vanish for the

induced connection I7T,.
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Differentiating the first in (3.8) by 3*, we have
Tap= 25T+ T° =0,
from which it follows that
(3.9) Tfi=10;

Applying (3.8) and (3.9) to (3.5) ~ (3.7), we have

b b
(3.10) H = He 4+ Q5 + [Crf HEL
Gl)  HE=Hi=#, Hi=H+l0nk)

If we apply (3.10) and (3.11) to (1. 18), then we obtain
Roo = RanBit + 8 | HE(HS, + Q) — Bl + (F1:C0 1R
& s b . h‘ . ‘.J. .
(3.12) - H5 G HU + (i B HY — gjnpy® B HS) N
+ (B bt — P B, H) B, NI

Let M, be totally ncd-free (or nc-constant). Then, on making use of (3. 1),

(3.3) and a relation C;%. = C,%, we first obtain
h b B b _
FalHICLHG — HAC HS) = éL“é‘,m Colelhg o — 15,7077
(3.13)
= 3 L CAML !~ BuCldaf ) = 0.
On the other hand, from (1. 12) we have

(3 1'4) aab )‘?befc = Cnbr.fr:fbl 6af’"?rll-¥fﬂfc = Ca.‘rr.w_fu,fﬁ-

If we apply (3.1), (3.3), (3.4)" and (3.13) to (3.12) and use (3. 14), then we

obtain

(3.15) L B+ RBos) = LB + Bod B + L2N2, + L0
d E ad oy oye8) = 5 ook Voot Ba’;r Lsy 2=
where

Bge= B2 R0+ Q%) — Wnih+ Cud) P = I8 C P —

fe Al AL S+ ‘{5%/\:5 AL + [_«'?Nﬁfd Hgims B, + Lin, ')

11
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(3.16) — Pou (Bt + B — (gpy” — Pua) NELF(B'23,+ B, 30)

L3 (B's A%, + B, A%)/*), being f, = 8uf"

o~

Consequently we can state

Theorem 3. 2. Suppose that M, is endowed with a TI(or TT,) and the indu-
ced connection ITD (or ITD,) saiisfies the TDE)-condition, and that the ftensor @y,
defined by (3.16) vanishes. Then if M, is of scalay curvatuve R (resp. of costant
curvature R) with respect to TI'(or TT,) and M,, 15 totally ned-free (vesp. nc-const-
ant) with N, then M, is of scalay curvature (R + N?) (resp. of constant curvature
(R + N?)) with respect to ITI (or ITT,).

By virtue of (3.1) and (3.3)', we have

s = i B + [2Cucf ys = L7 Cua AisS"),
Zupd® = gy + [2L7Cieef*),
from which it follows that
LN gs By — Gy NAP B 3o — S 128/, 26 1%)
(3.17) ;
= LN g Bl — By NS By — 5 L2B, 5o f*).
Applying (3.17) to (3. 16). we obtain
(3.18) ®p=Up+ Vi,
where

Urﬁ‘ = E’J‘ Lif(f‘" lgr A‘t’“ﬁ_"{c e Crdk?\l‘.‘f”f.h = %%AZ, Agﬁfbfc}

(3.19)
- (C{:hyy& I Cubﬁ J/,) fJfbi T
Vo= L2f(Q)% + Qi) + (g — Puw) NLF*(Bi3 + BY))
(3. 20) = Zisio— D) NI B 30+ By} = _% LB A%+ BLaAR) S,

being give = L y".
Suppose that the following condition holds

(3.21) L= 0. A =0.
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Then from (1.12) we have C,,f° = 0. Therefore it is seen that the tensor U,s
defined by (3.19) vanishes. In this case, if the connection 7T (or 7Tr,) is h-metrical,

then from (3.20) we have
(3 22} v’m“ — {LE(Q‘;«?& -+ Qany = ’P\’:",HM = ’P:wyﬂ) + ?ju’:ym}:ﬁ + Tj:é’myy}_f“;

where @, = QuaN:B.}, E,ﬁ,; = ?’:,-,-,A.]\"i Bl and ?):m — ﬂ:,ﬂ,,,Nﬁ B

Consequently we can state

Corollary 3. 2. 1. Suppose that M, is endowed with an h-metrical T (or TI,)
and the induced connection ITT (or [TI,) salisfies the TQD - condition, and that the
condition (3.21) holds and the tensor V., defined by (3. 22) vanishes. Then if M, is
of scalar curvature R (vesp. of constant curvature R) with respect to TI(or TT,) and
M,, is totally wncd-free (vesp. nc-constant) with N, then M, is of scalar curvature
(R + N?) (resp. of constant curvature (K + N?)) with respect fto ITr (or ITT,).

Note 3.1. In the above Corollary, if the T (or TT,) is an h-metrical TMI
(or TMT,) then the tensor V,,in (3.22) is expressed in

(3.23) Vi = 1 E5Q s+ Quss + Qia + Qins) — (@aads ¥ Qi ddLI.
where @5, = Q,aN.B’; ¥*. In particular, we have

V,e= —4L?f*P,, for CI'(or RI'),
(3.24)

Vo= —4Lf(fLC,;s + P,;) for AMRF (or AMRT,),
where fis a function of x'(«°) alone.
If the connection 77 (or 77,) is a GTI'(or GTI,), then we have

gimn = —(Tjm+ Toin 4+ 2C T% + 2Piw),
(3. 25)

~

Eine = ]—"* + T"f‘ PD:‘M = = Ql'l,lf\' = 0.
Applying (3. 25) to (3.20) and using (3.8), (3.9) and (3.21), we get
V',rﬁ = — L_,"-'f"{ T».';res - '[‘_.J,, + 4 ,{3?‘:5 <4 Z(C,d} Tﬁs e C‘,y“-,-} Tﬂ.’)l

(3. 26)
= P Tude+ Tpuds):

Hence we can state

Corollary 3. 2. 2. Suppose that M, is endowed with a GTI" (ov GTT,) and the
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induced connection IGTTI (o IGTI,) satisfies the TDQ-condition, and that the condi-
tion (3. 21) holds and the tensor V., defined by (3. 26) vanishes. Then if M, is of
scatar curvatuve R (resp. of constant curvature R)with respect to GTI (or GTT,) and
M, is totally ncd-free (vesp. nc-constant) with N, then M, is of scalar curvaiure (R
+ N?) (resp. of constant curvature (R + N°)) with vrespect to IGTr (or IGTT,).

We shall call a GT(resp. GT(0))-connection a GTA (resp. GTA(D)) -connection
and denote it by GTAI (resp. GTATI,) if the tensor T¢, is defined by T, = fLh',.

Note 3.2. As practical examples for Corollary 3.2. 2, we have

V= —4L2 P, for Hr(or BI),

@.27) Vo= — 4 L2(fLCpis + Pyus) for GTAI (or GTAT),

where fis a function of x(«*) alone.
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